C. Ball, Thermal process time for canned food, p.535, 1923.

W. Bigelow, The logarithmic nature of thermal death time curves, Journal of Infectious Diseases, vol.29, issue.5, pp.528-536, 1921.
DOI : 10.1093/infdis/29.5.528

C. Ball, Theory and practice in processing, The Canner, vol.64, pp.27-32, 1927.

O. Cerf, A REVIEW Tailing of Survival Curves of Bacterial Spores, Journal of Applied Bacteriology, vol.13, issue.1, pp.1-540, 1977.
DOI : 10.1111/j.1365-2672.1977.tb00665.x

O. Cerf, K. Davey, and A. Sadoudi, Thermal inactivation of bacteria, p.542, 1996.

H. Chick, An Investigation of the Laws of Disinfection, Journal of Hygiene, vol.XXIV, issue.01, p.92, 1908.
DOI : 10.1007/BF02140521

H. Chick, The Process of Disinfection by Chemical Agencies and Hot Water, Journal of Hygiene, vol.III, issue.02, 1910.
DOI : 10.1007/BF01831212

L. Coroller, I. Leguérinel, and P. Mafart, Effect of water activities of heating 548 and recovery media on apparent heat resistance of Bacillus cereus spores, 2001.

O. Couvert, . Leguérinel, P. Mafart, O. Leguérinel, and P. Mafart, Modelling the overall effect of pH on Couvert Modelling the influence of the 553 incubation temperature upon the estimated heat resistance value of heated spores, 1999.

K. Davey, Extension of the Generalized Sterilization Chart for Combined Temperature and pH, LWT - Food Science and Technology, vol.26, issue.5, 1993.
DOI : 10.1006/fstl.1993.1093

K. Davey, S. Lin, and D. Wood, The effect ofpH on continuous high-temperature/short-time sterilization of liquid foods, AIChE Journal, vol.24, issue.3, pp.537-540, 1978.
DOI : 10.1002/aic.690240322

S. Gaillard, I. Leguérinel, and P. Mafart, Model for Combined Effects of Temperature, pH and Water Activity on Thermal Inactivation of Bacillus cereus Spores, Journal of Food Science, vol.55, issue.5, pp.887-889, 1998.
DOI : 10.1016/0168-1605(93)90218-6

URL : https://hal.archives-ouvertes.fr/hal-00653529

S. Gaillard, I. Leguérinel, and P. Mafart, b. Modelling combined effects 564 of temperature and pH on the heat resistance of spores of Bacillus cereus, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00011486

R. Jordan and S. Jacobs, Studies on the dynamics of desinfection . 567 XIV. The variation of the concentration exponent for hydrogen and hydroxyl 568 ions with the mortality level using standard cultures of Bact, p.569, 1948.

L. Katzin, L. Sandholzer, and E. Strong, Application of the decimal reduction 571 time principle to a study of the resistance of coliform bacteria to pasteurization, J, 1943.

P. Mafart, Taking injuries of surviving bacteria into account for optimising heat treatments, International Journal of Food Microbiology, vol.55, issue.1-3, pp.175-180, 2000.
DOI : 10.1016/S0168-1605(00)00160-4

P. Mafart, O. Couvert, S. Gaillard, and I. Leguérinel, On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model, International Journal of Food Microbiology, vol.72, issue.1-2, pp.107-113, 2002.
DOI : 10.1016/S0168-1605(01)00624-9

URL : https://hal.archives-ouvertes.fr/hal-00654614

P. Mafart and I. Leguérinel, Modeling Combined Effects of Temperature and pH on Heat Resistance of Spores by a Linear-Bigelow Equation, Journal of Food Science, vol.19, issue.1, pp.6-8, 1998.
DOI : 10.1007/BF01584196

M. Peleg and M. Cole, Reinterpretation of microbial survival curves. Critic, p.583, 1998.

O. Williams, The Heat Resistance of Bacterial Spores, Journal of Infectious Diseases, vol.44, issue.6, pp.422-465, 1929.
DOI : 10.1093/infdis/44.6.421