

Quantification of spore resistance for assessment and optimization of heating processes: a never-ending story

Pierre Mafart, Ivan Leguérinel, Olivier Couvert, Louis Coroller

▶ To cite this version:

Pierre Mafart, Ivan Leguérinel, Olivier Couvert, Louis Coroller. Quantification of spore resistance for assessment and optimization of heating processes: a never-ending story. Food Microbiology, 2010, pp.568-572. hal-00654628

HAL Id: hal-00654628 https://hal.univ-brest.fr/hal-00654628

Submitted on 22 Dec 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	
2	
3	
4	
5	
5	
0	
7	Quantification of spore resistance for assessment and optimization of
8	heating processes: a never-ending story
9	
10	P.Mafart, I. Leguérinel, O. Couvert, and L. Coroller
11	
12	Laboratoire Universitaire de Biodiversité et d' Ecologie Microbienne
13	o, rue de l'Université, 29534 Quimper (France) Pierre.mafart@univ-brest.fr
15	
16	
17	
18	
19	
20	
$\frac{21}{22}$	
23	
24	
25	
26	
27	
28	
29	
30 21	
31	
32	
34	
35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48	
49 50	
5U 51	
51 52	
52 53	

54 Abstract

55

The assessment and optimization of food heating processes require knowledge of the thermal resistance of target spores. Although the concept of spore resistance may seem simple, the establishment of a reliable quantification system for characterizing the heat resistance of spores has proven far more complex than imagined by early researchers. This paper points out the main difficulties encountered by reviewing the historical works on the subject.

- 62 During an early period, the concept of individual spore resistance had not yet been 63 considered and the resistance of a strain of spore-forming bacterium was related to a 64 global population regarded as alive or dead. A second period was opened by the 65 introduction of the well-known D parameter (decimal reduction time) associated with 66 the previously introduced z- concept. The present period has introduced three new 67 sources of complexity: consideration of non log-linear survival curves, consideration 68 of environmental factors other than temperature, and awareness of the variability of 69 resistance parameters. The occurrence of non log-linear survival curves makes spore 70 resistance dependent on heating time. Consequently, spore resistance characterisation 71 requires at least two parameters. While early resistance models took only heating 72 temperature into account, new models consider other environmental factors such as 73 pH and water activity ("horizontal extension"). Similarly the new generation of 74 models also considers certain environmental factors of the recovery medium for 75 quantifying "apparent heat resistance" ("vertical extension").
- 76Because the conventional *F*-value is no longer additive in cases of non log-linear77survival curves, the decimal reduction ratio should be preferred for assessing the78efficiency of a heating process.
- 79
- 80
- 81

82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			

110		
111		
112		Introduction
113		The assessment and optimization of food heating processes is clearly closely linked to
114		the resistance of target pathogenic or spoilage spores, and the required intensity of any
115		cooking, pasteurization or sterilization mainly depends on two factors:
116	-	the level of risk which can be accepted by the operator and corresponds to a required
117		reduction ratio, generally expressed as a decimal log-decrease,
118	-	the resistance of spores which requires a relevant and, if possible, accurate
119		quantification.
120		The establishment of a reliable quantification system for characterizing the heat
121		resistance of spores has proven far more complex than imagined by early researchers.
122		This paper aims to point out the main difficulties encountered by reviewing the
123		historical concerned works on the subject, from the first attempts at spore resistance
124		quantification, to an overview of the present situation. Similarly, the parallel evolution
125		in the assessment of heating processes will be addressed.
126		
127	1.	Quantification of spore resistance
128		
129		The history of spore resistance quantification can be arbitrarily fractionated into three
130		periods. During an early period, the concept of individual spore resistance had not yet
131		been considered and the resistance of a spore strain associated with a heating
132		temperature or an exposure time, was related to a global population regarded as alive
133		or dead.
134		The second period was opened by the introduction of the well-known D parameter
135		(decimal reduction time) associated with the previously introduced z-concept. Today,
136		calculations of food heating processes are still based on this quantification system and
137		implicitly admit the two following assumptions:

- 138 spore inactivation is assimilated to first order kinetic and survival curves are log-139 linear. 140 the only environmental factor considered is heating temperature. In other words, it is _ 141 assumed that spore resistance depends exclusively on the strain and temperature. 142 Indeed, the effect of some other environmental factors such as pH or water activity 143 were already qualitatively known, but not directly integrated in heat process 144 calculations. 145 The third period which includes the present period introduced three new sources of 146 complexity: 147 consideration of non log-linear survival curves, _ 148 taking into account of environmental factors other than temperature, 149 awareness of the variability of resistance parameters. 150 151 1.1. First period: 1907-1942 152 153 Surprisingly, early authors who tried to quantitatively characterize the heat resistance 154 of spores seem to have ignored the previous works of Madsen and Nyman (1907) and 155 Chick (1908) who pointed out the first order nature of spore survival kinetics. More 156 than 20 years after these works which should have imposed the specific rate of 157 inactivation as the parameter characteristic of heat sensitivity, spore resistance was 158 still regarded as the *death time of a global spore population at a given heating* 159 temperature which corresponds to the famous TDT (Thermal Death Time) introduced 160 by Bigelow in 1921. One of the main drawbacks of this simplistic concept was the fact 161 that it was clearly dependent on the initial size of the living population. Aware of the 162 need to standardize experimental determinations of spore heat resistance. Williams 163 (1929) proposed the concept of *basic resistance* defined as the TDT of a 5.10^7 spore
 - 164 population aged 10 days and heated in a pH 7 phosphate buffer, at 95 or 100°C.

165	As early as the first works on survival kinetics, the famous Arrhenius equation (1889)
166	was successfully applied for quantifying the effect of temperature on the specific rate
167	of inactivation. Alternatively, ten years before the introduction of the z-concept by
168	Bigelow (1921), Chick (1910) had already observed a linear relationship between the
169	logarithm of the specific rate of inactivation and temperature. She then introduced the
170	concept of <i>temperature coefficient</i> which corresponded to the multiplication factor of
171	the specific rate of inactivation caused by an increase of $1^{\circ}C$ of the heating
172	temperature. The author could not detect any difference of goodness of fit between the
173	latter relationship and the Arrhenius equation and, still nowadays, both models can be
174	used indifferently.
175	
176 <i>1.2</i> .	Second period: 1942-1978
177	
178	The popular D concept (required heating time for a survival ratio of 10%) was
179	introduced as late as 1943 by Katzin and Sandholzer who rewrote the first order
180	survival kinetic in a decimal base. From this date, the quantification of spore
181	resistance could be based on two alternative model systems:
182	
183	System I:
184	
185	- Primary model: (first order kinetic):
186	$N = N_0 e^{-kt} \tag{1}$
187	where N_0 is the initial number of spores and N the number of surviving spores after
188	heating time t; k is the specific rate of inactivation
189 -	Secondary model: $k = k * \exp\left[-\frac{E_a}{R}\left(\frac{1}{T} - \frac{1}{T*}\right)\right]$ (2)
190	This is the Arrhenius equation where k^* is the k-value at the T^* reference temperature.
191	E_a is the so-called activation energy and R , the perfect gas constant.

192	Within the frame of this system, each strain resistance	e can be quantified by the two
193	parameters (k^* , E_a).	
194		
195	System II	
196	- Primary model: $N = N_0 10^{-\frac{t}{D}}$	(3)
197	(first order kinetic rewritten in decimal base)	
198	- Secondary model: $D = D * 10^{-\frac{T-T^*}{z}}$	(4)
199	(Bigelow relationship) where z corresponds to the incr	ease in temperature yielding a
200	ten-fold D reduction.	
201	Using this system, each strain resistance can be quantifi	ied by the two parameters (D^* ,
202	z).	
203		
204	Both systems are still very useful: for traditional reason	s, the first one is preferentially
205	applied in the field of industrial microbiology, where	as the second is more widely
206	used in the field of food heat processes. Unfortunately,	both are limited to the cases of
207	log-linear survival curves and ignore all factors other	than temperature and time of
208	heating.	
209		
210	1.3. Third period: 1978 to date	
211		
212	The beginning of this era demonstrates a growing comp	plexity in the problem of spore
213	quantification resistance due to the consideration of a	non log-linear survival curves
214	(primary modelling) and new environmental factors	(secondary modelling). An
215	extensively cited review of the cases of observed non	log-linear survival curves was
216	published by Cerf (1977), in which the author classified	d the curves according to their
217	patterns and tried to biologically or physically interpre-	et the different shapes. On the

218		other hand, Davey et al. (1978) published the first thermal resistance secondary model
219		including not only temperature, but also pH of the heating medium.
220		
221	1.3.1.	Primary quantification
222		
223		The primary quantification of spore heat resistance has to cope with several typical
224		curve shapes:
225	-	curves presenting a shoulder: an initial phase showing gradual acceleration of the
226		inactivation followed by a linear portion,
227	-	curves presenting a <i>tail</i> : an initial linear portion followed by a braking phase,
228	-	sigmoid curves showing both a shoulder and a tail,
229	-	curvilinear curves with a downward concavity,
230	-	curvilinear curves with an upward concavity,
231	-	Biphasic curves with two straight lines of different slopes
232	-	Biphasic curves including a shoulder.
233		
234		For a given strain and in equal environment conditions, one parameter $(k \text{ or } D)$ is
235		sufficient to quantify and compare spore heat resistances in the case of a log-linear
236		survival kinetics. The situation is far more complex when the kinetics are no longer
237		linear for two reasons:
238	-	quantification of the resistance requires at least two parameters,
239	-	heat resistance becomes dependent on heating time.
240		Any comparison of resistances then becomes quite difficult.
241		Whatever the shape of the survival curve, a general expression of heat resistance can
242		be:
243		
244		$HR = -\frac{dt}{d(\log N)} \tag{5}$

246

247

248

249

250

In the particular case of log-linear curves, it is obviously obtained HR = D.

Among the numerous published models for fitting non linear curves, the cumulative function of the Weibull frequency distribution model is used increasingly frequently on account of its simplicity and its flexibility (Peleg and Cole, 1998; Mafart et al., 2002). This model can be written as follows:

251

$$\log \frac{N}{N_0} = -\left(\frac{t}{\delta}\right)^p \tag{6}$$

253

254

255

256

257

252

In this example, the heat resistance of spores is quantified by the two following parameters: δ (scale parameter) and *p* (shape parameter):

$$HR = p\delta^p t^{p-1} \tag{7}$$

Let us consider two strains characterized by the couples (δ_1, p_1) and (δ_2, p_2) respectively. Which one is the most heat resistant? A simple answer to this question is not possible because heat resistance is dependent on heating time, so one strain may be more resistant than the other at the beginning of the heating and more sensitive by the end of the exposure. For want of a better solution, a number of authors simply characterize heat resistance by the so-called *tDn*, which is defined as the required time of heating for obtaining *n* decimal reductions (most frequently, n = 4).

265

1.3.2. Secondary quantification

267

266

The new secondary models include not only heating temperature for estimating the spore heat resistance, but also some other main environmental factors such as pH, water activity or sodium chloride concentration ("horizontal extension") (Davey et al., 1978; Cerf et al., 1996; Gaillard et al., 1998 a; Mafart et Leguérinel, 1998). On the 272 other hand, as the observed heat resistance depends not only on the heating conditions, 273 but also on the recovery conditions of surviving cells, new generation models include 274 factors which are related to the recovery medium. For example, pH of the heating 275 medium and pH of the recovery medium are regarded as two distinct factors, even if 276 cells are recovered in the heating medium, as is the case for heat processed foodstuffs 277 ("vertical extension") (Coroller et al., 2001; Couvert et al., 1999; Couvert et al., 2000). 278 279 Horizontal extension -280 281 The first non-thermal factor which was included in inactivation models was the pH of 282 the heating medium. As early as 1948, Jordan and Jacobs observed a linear 283 relationship between the logarithm of the decimal reduction time and pH, but the first 284 model combining heating temperature and pH was proposed as late as 1978 by Davey 285 et al. to describe the effect of these two factors on the specific inactivation rate of 286 *Clostridium botulinum*:

287

288
$$Lnk = C_0 + \frac{C_1}{T} + C_2 pH + C_3 pH^2$$
(8)

289

291

290 where T represents the absolute heating temperature and C are empirical parameters. If the pH terms of this equation are dropped, the logarithmic form of the Arrhenius 292 equation can be recognised. For this reason, Davey regarded his model as an extension 293 of the Arrhenius equation. The Davey model was later further extended by the 294 adjunction of a water activity term:

295

296
$$Lnk = C_0 + \frac{C_1}{T} + C_2 pH + C_3 pH^2 + C_4 a_W^2$$
(9)

From the same bibliographic data as those used by Davey in 1993, regarding the heat resistance of *C. botulinum, C. sporogenes* and *Bacillus cereus*, Mafart and Leguérinel (1998) proposed a Bigelow-like model including a pH term:

301

302
$$\log D = \log D^* - \frac{T - T^*}{z_T} - \left(\frac{pH - pH^*}{z_{pH}}\right)^2$$
(10)

303

304 where T^* represents the reference temperature (most often 121.1°C) and pH^* 305 the reference pH 7. The sensitivity parameters are z_T which simply corresponds 306 to the conventional *z*-value, and z_{pH} which is the distance of pH from pH^* 307 which leads to a ten-fold reduction in the decimal reduction time. Lastly, D^* 308 represents the *D*-value in the reference conditions ($T = T^*$; $pH = pH^*$). This 309 model was also further extended with the addition of a water activity term 310 (Gaillard et al., 1998 a):

311

312
$$\log D = \log D^* - \frac{T - T^*}{z_T} - \left(\frac{pH - pH^*}{z_{pH}}\right)^2 - \frac{a_W - 1}{z_{a_W}}$$
(11)

313

Regarding the pH terms of the models, Davey himself observed a strong selfcorrelation between his C_2 and C_3 parameters, which denotes a certain overparameterization of his equation. On the contrary, the Mafart equation which includes one less parameter could be regarded as under-parameterized: in some cases (mild heat treatments, vegetative cells), a first degree instead of second degree equation may be more suitable:

321
$$\log D = \log D^* - \frac{T - T^*}{z_T} - \frac{|pH - pH^*|}{z_{pH}}$$
(12)

Moreover, the linearity of the Davey equation allows a very simple estimation of confidence intervals of each parameter, whereas the estimation of confidence intervals of Mafart parameters requires more sophisticated calculations. On the other hand, Davey parameters are difficult to use for quantifying heat resistance of a given spore strain because they lack robustness and do not have any biological significance. As an example, from the same set of data regarding *C.botulinum*, the following parameter estimates could be respectively obtained:

- 332 Davey model:

- $C_0 = 105.23$
- $C_I = -3.7041.10^{-4} \,^{\circ}\mathrm{K}$
- $C_2 = -2.3967$
- $C_3 = 0.1695$
- *Mafart model:*

- $D^* = 0.139 \min$
- $z_T = 9.32^{\circ} C$
- $z_{pH} = 3.61$

345	The main drawback of both models is their absence of an interaction term
346	while it is well known that interactions frequently occur between
347	environmental factors. Gaillard et al. (1998 b) attempted to modify the
348	equation (10) by adding a temperature/pH interaction term. Applying this
349	modification to the inactivation of Bacillus cereus, they obtained a relatively
350	poor improvement of goodness of fit ($R^2 = 0.985$ instead of 0.977). The authors
351	then considered that this slight improvement was not sufficient to justify the
352	implementation of an additional parameter and the loose of biological meaning
353	of all parameters, except D^* . According to our results, values of the sensitivity
354	parameters (z_T , z_{pH} , z_{aw}) seem to be independent of the food matrix. However,
355	further works would be needed to confirm this property. Because of the
356	possible occurrence of interactions between factors, it is recommended to
357	estimate a sensitivity parameter linked to a factor, while the other considered
358	factors are adjusted at their reference level.

360

- Vertical extension

361

362 It has been long known that the measured "apparent" decimal reduction time is 363 dependent on the recovery conditions. When the recovery medium diverges 364 from optimal conditions of incubation temperature, pH or water activity, the 365 measured apparent D-value (denoted D') is always lower than the D-value 366 which would have been measured in optimal recovery conditions. For this 367 reason, any environmental factor X which is related to the heating medium has 368 to be clearly distinguished from the factor X' of the same name which is related 369 to recovery medium. As far as we know, the only models integrating recovery environmental factors were derived from our laboratory and present the same form which is as follows:

372

373

371

370

$$\log D' = \log D - \left(\frac{X' - X'_{opt}}{z'_{X}}\right)^{2}$$
(13)

374

375 where X'_{opt} corresponds to the optimal value of the considered factor and z'_X 376 the distance from the optimal level of this factor, which leads to a tenfold 377 reduction of the *D*-value. This simple equation presents the drawback of 378 artificially assuming a symmetric pattern of apparent heat resistance with 379 respect to its maximum level. However, it yields quite a fair goodness of fit and 380 its main advantage is the requirement of as few as three parameters, each 381 having a biological meaning.

382 Couvert et al. (2000) applied this equation to fit the effect of incubation temperature on the apparent heat resistance of B. cereus with the following 383 estimates: $D_{95^{\circ}C} = 2.85$ min; $T'_{opt} = 23.6^{\circ}$ C; $z'_{T} = 33.7^{\circ}$ C ($R^{2} = 0.95$). The 384 385 authors validated the model on other types of spore from data in the literature. Equation (13) was equally successfully applied to describe the effect of the pH 386 of the recovery medium on the heat resistance of B. cereus (Couvert et al. 387 388 1999) with the following estimates: $D_{max} = 2.33 \text{ min}$; $pH'_{opt} = 6.78$; $z'_{pH} = 1.81$ $(R^2 = 0.983)$. Coroller et al. (2001) applied the same equation to describe the 389 390 effect of the water activity of the recovery medium on the apparent D-value of 391 the same strain of *B cereus*. They found an optimal water activity close to 0.98-392 0.99, whereas the z'_{aw} value was dependent on the involved depressor which 393 was used to adjust the water activity: in the range of 0.1 for glucose or glycerol394 and close to 0.07 for sucrose.

395

396

397

- Multi factorial combination of unit-models

The structure of equations (9) and (11) is an illustration of the classical modular approach which is frequently adopted in the field of food predictive microbiology and consists of assuming a multiplicative effect of combined involved factors on spore heat resistance. Indeed, the yielded product of factorial unit-models becomes a sum when the resistance parameter is submitted to a logarithmic transformation. If any given environmental factor related to the heating medium is denoted X_i , the overall model can then be written as follows:

405
$$\log D = \log D^* - \sum \left(\frac{X_i - X^*_i}{z_{X_i}}\right)^n$$
 (14)

406 where the *n* exponent can be equal to 1 or 2. Note that X^*_i does not correspond to a 407 parameter to be estimated, but to a reference value such as $T^* = 121.1^{\circ}$ C, $pH^* = 7$ or $a^*_w = 1$.

408 Similarly, if any given environmental factor related to the recovery medium is 409 denoted X'_i , the overall model can then be written as follows:

410

411
$$\log D' = \log D - \sum \left(\frac{X'_i - X'_{iopt}}{z'_{X_i}}\right)^2$$
 (15)

412

413 The combined effects of environmental factors linked to the heating and to the 414 recovery medium can then be written as follows:

415

417
$$\log D' = \log D_{(X^*, X'_{opt})} - \sum \left(\frac{X_i - X^*_i}{z_{X_i}}\right)^n - \sum \left(\frac{X'_i - X'_{iopt}}{z'_{X_i}}\right)^2$$
(16)

419 From this last equation, it can be seen that the complete heat resistance420 characterization of a given strain requires three sets of parameters:

- 421 a main resistance parameter such as $D_{(X^*, X'opt)}$ which is an overall parameter 422 and may be depend on the food matrix.
- 423 the sensitivity parameters *z* and *z*' which are assumed to be independent of the
 424 food matrix,
- the optimal level of each considered factor yielding the maximum apparent
 heat resistance. If needed, the reference values of factors linked to the heating
 medium can be replaced by estimated optimal values. For example, if the
 optimal pH of the heating medium is distant from 7, it can be estimated and
 input in the model instead of retaining pH* = 7.
- 430
- 431

433

432 *1.3.3. Variability of spore resistance*

Although the last cited models allow a clear improvement in spore heat resistance assessment, they still suffer considerable background noise due to the number of controlled or uncontrolled factors such as the strain, the composition and the texture of the medium, the thermal history of spores (pre-incubation or sporulation temperature), possible pre-adaptation to different types of stress, interaction between factors etc. Any conclusion or decision from calculations of heat processes therefore requires the greatest caution.

443

2. Assessment and optimization of heating processes

- 444 The most simple and direct criterion for assessing the efficiency of a heating process is 445 indeed the obtained inactivation ratio, which is commonly expressed as the decimal 446 log decrease of alive spores, $n = \log N_0/N$. The major advantage of this criterion is the 447 fact that it is additive whatever the pattern of the survival curve. Its main limit is that it 448 is dependent on the target strain and the heating medium, so that it does not 449 intrinsically allow comparison of two heating processes. Because of the considerable 450 variability of spore resistance, such a comparison requires arbitrary assumptions and 451 standard calculations. As early as 1927, Ball introduced the popular concept of F-452 value which corresponds to the time (in minutes) of heating at a reference temperature 453 (250°F or 121.1°C for sterilization), or to any time/temperature combination which 454 would yield the same destruction ratio. The reference z-value, equal to 10°C, which is 455 that of the reference strain (Clostridium botulinum 62A), is associated with the 456 reference temperature. Note that the determination of the F-value does not require the 457 knowledge of any D-value. The F concept can be applied both for the assessment of a 458 given process (*observed F-value*) and for the optimization of a heating process (*target* 459 *F-value*). Both applications encounter specific difficulties.
- 460

461

- 2.1. Observed F-value
- 462 463
- 464
- 465

466

The obtained *F*-value can be calculated from the following equation:

 $F = \int L(T)dt \tag{17}$

467 with $L(T) = 10^{\frac{T-T^*}{z}}$

469	where T is the core temperature of the exposed foodstuff, T^* is the reference
470	temperature and $L(T)$ corresponds to the so called lethality factor. Because T is itself a
471	function of time, the solution of the integral requires the knowledge of the heat
472	transfer kinetic $T = f(t)$, then a core temperature registration. The numerical approach
473	of Bigelow consisted of a graphic determination of the integration area of the curve
474	L(T) = f(t), whereas the analytical approach of Ball involved simplified heat transfer
475	equation. The empirical approach of Bigelow can be regarded as a measurement tool
476	and as the reference method, whereas the theoretical approach of Ball can lead to
477	some errors due to some simplifying assumptions, although it is an efficient
478	simulation tool.
479	2.2. Target F-value
480	
481	The required F -value for yielding n decimal reductions (or a n log-decrease) is as
482	follows:
483	
484	$F = nD^* \tag{18}$
485	
486	where D^* corresponds to the decimal reduction time at the reference temperature. The
487	required F-value is therefore the product of two factors: a safety factor which is
488	determined from a management decision, and a resistance factor which is linked to the
489	target strain. This very simple equation is in reality extremely difficult to apply. The
490	first difficulty is the choice of the target pathogenic or spoilage strain according to its
491	prevalence and to its level of nuisance in a given factory. Secondly, provided that the
492	initial concentration of contaminants is approximately known, it will be possible to
493	make an arbitrary decision from the accepted level of risk. Even if the target organism
494	is clearly identified and if the problem of the choice of the n value is solved, the
495	difficulty for determining the D^* -value remains, the variability of which was
496	discussed earlier.

498

2.3. Limits of the F concept and alternatives

499

500 While the *F* concept is a simple and convenient indicator allowing comparisons of cooking or 501 sterilization procedures regardless of the target strains, it is not a suitable tool for accurately 502 optimizing heat processes for the two following reasons:

- if the survival curve linked to the process is not log-linear, the *F*-value loses its
 property of additivity and conventional calculation can no longer be applied (Mafart et
 al.,2002),
- an optimization of a process from the *F*-value takes only heating temperature into
 account and ignores the other environmental factors such as the pH and the water
 activity of the medium.
- 509 What can be done to circumvent these drawbacks?
- 510 In the cases of non-log-linear survival curves, optimization calculations can be made 511 from a suitable primary model and from log decrease values (*n*) instead of from *F*-512 values. Conventional calculation procedures can then be modified and adapted to the 513 primary model that should preferably be sufficiently simple for allowing analytical 514 solutions.
- 515 In the case of log-linear curves, the *F*-concept could be kept, provided that it is 516 extended according to the main environmental factors other than temperature (see 517 Mafart, 2000). According to this approach, D^* denotes the *D*-value, not only at the 518 reference temperature, but also at reference levels of other environmental factors (for 519 example, $pH^* = 7$, $a_w^* = 1$). Similarly, the conventional concept of the lethality factor 520 L(T) is extended into a multifactorial function such as $L(T, pH, a_w)$.
- 521 Traditional calculations regarding heating processes were mainly devoted to *F*-values 522 determinations and optimisation but rarely to risk assessment which is rather difficult 523 on account of the dissuasive variability which can be observed everywhere: heat 524 transfer inside foodstuffs, *F*-values, food matrix, levels of initial contamination, spore

525	resistance etc. However, the contribution of statisticians and the presence of powerful
526	computers at every desk make it possible to conduct simulations taking the distribution
527	of each input variable into account.
528	
529	
530	
531	References
532	
533	Arrhenius, S., 1889. Über die Reaktiongeschwindigkeit bei der Inversion von
534	Rohmzucker durch Saüren. Z. Phys. Chem. 4, 226-248.
535	Ball, C., 1923. Thermal process time for canned food. Bull.7-1. Nat. res. Council,
536	Washington, DC
537	Bigelow, W. 1921. The logarithmic nature of thermal death time curves. J. Infec. Dis.
538	29, 528-536.
539	Ball, C., 1927. Theory and practice in processing. The Canner 64, 27-32.
540	Cerf, O., 1977. Tailing of survival curves of bacterial spores. J. Appl. Bacteriol. 42, 1-
541	19.
542	Cerf, O., Davey, K. and Sadoudi, A. 1996. Thermal inactivation of bacteria: a new
543	predictive model for the combined effects of temperature, pH and water activity. Food
544	Res. Inst. 299, 219-226.
545	Chick, H., 1908. An investigation of the laws of disinfection. J. Hyg. 8, 92
546	Chick, H., 1910. The process of disinfection by chemical agencies and hot water. J.
547	Hyg. 10, 237-286.
548	Coroller, L., Leguérinel, I. and Mafart, P., 2001. Effect of water activities of heating
549	and recovery media on apparent heat resistance of Bacillus cereus spores. Appl.
550	Environ. Microbiol. 67, 317-322.
551	Couvert, O., Leguérinel, I and Mafart, P., 1999. Modelling the overall effect of pH on
552	the apparent resistance of Bacillus cereus spores. Int. J. Food Microbiol. 49, 57-62.

553 Couvert, O., Leguérinel, I and Mafart, P., 2000. Modelling the influence of the 554 incubation temperature upon the estimated heat resistance value of heated spores. 3rd 555 International Conference on Predictive Modelling in Foods, September 12-15, 2000, 556 Leuven (Belgian). 557 Davey, K. 1993. Extension of the generalized chart for combined temperature and pH. 558 Lebensm-Wiss.u-Technol. 26, 476-479. 559 Davey, K., Lin, S. and Wood, D., 1978. The effect of pH on continuous high 560 temperature/short time sterilization of liquids. Am. Inst. Chem. Eng. 24, 537-540. 561 Gaillard, S., Leguérinel, I. and Mafart, P., 1998 a. Model for combined effects of 562 temperature, pH and water activity on thermal inactivation of *Bacillus cereus* spores. 563 J. Food Sci. 63, 887-889. 564 Gaillard, S., Leguérinel, I. and Mafart, P., 1998 b. Modelling combined effects 565 of temperature and pH on the heat resistance of spores of Bacillus cereus. Food Microbiol. 15, 625-630. 566 567 Jordan, R. and Jacobs, S., 1948. Studies on the dynamics of desinfection . 568 XIV. The variation of the concentration exponent for hydrogen and hydroxyl 569 ions with the mortality level using standard cultures of *Bact. coli* at 51°C, J. 570 Hyg. Cambridge 46, 289-295. 571 Katzin, L., Sandholzer, L. and Strong, E., 1943. Application of the decimal reduction 572 time principle to a study of the resistance of coliform bacteria to pasteurization. J. 573 Bacteriol. 45, 265-272. 574 Madsen, T. and Nyman, M., 1907. Zur Theorie der Desinfecktion. Zeitschr. Hyg. 17, 575 388-404. 576 Mafart, P., 2000. Taking injuries of surviving bacteria into account for optimizing heat 577 treatments. Int. J. Food Microbiol. 55, 175-180.

578	Mafart, P., Couvert, O. Gaillard, S. and Leguérinel, I., 2002. On calculating sterility in
579	thermal preservation methods: application of the Weibull frequency distribution
580	model. Int. J. Food Microbiol. 72, 107-113.
581	Mafart, P. and Leguérinel, I., 1998. Modeling combined effects of temperature and pH
582	on heat resistance of spores by a linear-Bigelow equation. J. Food Sci. 63, 6-8.
583	Peleg, M. and Cole, M., 1998. Reinterpretation of microbial survival curves. Critic.
584	Rev. Food Sci. 38, 353-380.
585	Williams, O. 1929., The heat resistance of bacterial spores. J Infec. Dis. 49, 422-465.
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	
596	
597	
598	
599	
600	
601	
602	
603	
604	