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On calculating sterility in thermal preservation methods :

application of the Weibull frequency distribution model.

P. MAFART, O. COUVERT, S. GAILLARD and |. LEGUERINEL

ABSTRACT A simple and parsimonious model originated from the Weibull frequency
distribution was proposed to describe non linear survival curves of spores. This model
was suitable for downward concavity curves (Bacillus cereus and Bacillus pumilus) as
well as for upward concavity curves (Clostridium botulinum). It was shown that
traditional F-values calculated from this new model were no more additive, to such an
extend that a heat treatment should be better characterized by the obtained decade
reduction of spores. A modified Bigelow method was then proposed to assess this decade
reduction or to optimizethe heat treatment for atarget reduction ratio.

KEYWORDS: spores, heat treatment, F-value, Weibull

INTRODUCTION

The conventional way of calculating the efficienalyheat treatments in food protection is
based on the assumption that survival curves oftabial cells and bacterial spores are
governed by a first order kinetic. Consequentlytinaar relationship between the decimal
logarithm of the number of surviving microorganisisd the treatment time at a given
temperature is used to estimate the D-value (timgeoimal reduction). However, in many
cases , the survival curve of heated microorganismsot linear and present a downward
concavity (presence of a shoulder) or an upwaraaaty (presence of a tail). A number of

models describing non linear survival curves wemppsed. Some of them are mechanistic or
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pseudo-mechanistic (Brynjolfsson, 1978; Casole®B8t Kilsbyet al., 2000; Rodriguezt

al., 1988; Saprat al., 1992 and 1993; Shull et al., 1963; Xicgiaal., 1999) while others are
purely empirical (Badhurét al., 1991; Baranyi, 1996; Buchanahal., 1997; Chiruteet al.,
1997; Coleet al., 1993; Daughtryet al., 1997; Geeraerét al., 1999; Lintonet al., 1995;
Whiting, 1993). These models generally presenttiafgeng goodness of fit, but they lack of
robustness and are adapted to some particulartisitsaonly. Moreover, parameters of
mechanistic models can be difficult to estimatejlevparameters of empirical models have
generally no easily interpretable physical or hiital significance. For both kinds of
equations, the number of parameters exceeds thrdeup to such an extend that the
complexity of models prevents them from being agaptio heat treatment calculations.

While the conventional first order model implicittpssumed that microbial populations are
homogeneous from the point of view of their heaistance, some researchers (Fernandez et
al., 1999; Peleg, 1999; Peleg and Cole, 1998 aff)2fssumed that , at a given temperature,
the time of heat exposure which caused the deathrofcrobial cell or a bacterial spore is
variable from one individual to the other, and ttie dispersion of individual heat resistance

was governed by a Weibull distribution, the cumutaform of which yields:

N = N,e™ (1)

Where N represents the number of surviving cellerad duration of heat treatment t, while
Np is the initial size of the alive population. Fogaen temperature, parameter distribution

are k and p.

Peleg and Cole (1998) wrote out this model in tle¥ing decimal logarithmic form:

N
log— = —DbtP
gN (2)
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The cited authors successfully checked the modeCfostridium botulinum and Bacillus
stearothermophilus spores andsalmonella thyphimurium and Listeria monocytogenes cells.
Similarly, Fernandeet al. (1999) successfully applied the same model tdda destruction
of Bacillus cereus. Such a model presents the main advantage of remganery simple and
being sufficiently robust to describe both downwaahcave survival curves (p > 1) and
upward concave curves (p < 1). Obviously, the maugldes the traditional case where the
survival curve, originated from a first order, iisdar (p = 1).

The present paper aims to improve the parametencaf the model , to propose a new
method of assessing the efficiency of heat treatsnand to bring the traditional F-value
concept up to date.

Material and methods

Microorganism and spore production. The strain oBacillus cereus was isolated from dairy
food line process, the strain &acillus pumilus from eggs powder. Spores were kept in
distilled water at 4°C. Cells were precultivated3@tC during 24 hrs in Brain Heart Infusion

(Difco ). The preculture was used to inoculate itiue agar plates (Biokar Diagnostics
BK021) added with MnS@ 40mg I* and CaCp 100 mg]1 on the surface area. Plates were

incubated at 37°C for 5 days. Spores were theraeld by scraping the surface of the agar
and suspended in sterile distilled water and wasihee times by centrifugation (10000xg for
15 min) (Bioblock Scientific, model Sigma 3K30). &'pellet was then resuspended in 5 ml
distilled water and 5 ml ethanol. The obtained saspn was then kept at 4°C during 12
hours in order to eliminate vegetative non spoeaddiacteria, and washed again three times

by centrifugation.

Lastly the final suspension (aboutlﬁipores rrif) was at last distributed in sterile Eppendorfs
microtubes and kept at 4°C.

Thermal treatment of spore suspension.
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First, 30ul of spore suspension was diluted in edting medium. Capillary tubes of 25 pl

(vitrex) were filled with 10ul of sample and subtmed to a thermal treatment in a

thermostated oil bath. After heating, the tubesenaroled in water/ice bath, washed in a
solution of soap and rinsed with sterile distilladiter. Finally, ends were flamed with

ethanol. The capillary tubes were broken at bottlseand their contents poured into a tube
containing 9 ml sterile tryptone salt broth (Biokaiagnostics) by rinsing with 1 ml tryptone

salt broth contained in a needle-equipped syringe.

Data analysis

For each spore species, a single p value was dstinfi]mm the corresponding whole set of
data according to a non-linear regression by ugiegolver capability of the Excel software.

Each survival curve was then fitted according ta Bdpy a linear regression.
Results and discussion
1. Improvements of the model

Parameter b of the last equation has no immediaissiqal significance and has the
dimensions of a time power —p, so we preferred eparameterize the model into the

following form:

N t)" -1
log— =- — or logN =logN, +| — |xtP (3
9N (J g gN, (N,j (3)

0
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Where n represents the decimal reduction ratioarRarerd which has now the simple
dimensions of a time, can be callédne of first decimal reduction: contrarily to the
conventional D-value which is originated from tlstforder kinetic and which represents the
time of decimal reduction, regardless of the tilh@eating, the significance of tlevalue is
restricted to first decimal reduction of surviviggores or cells from §\o Ny/10.

This model, if unmodified, presents two major draeks: first, assessment of parameters
requires a non linear regression. Secondly, p wisch shape parameter, is structurally
strongly correlated with values. That is to say, both parameters are wefendent: an error
on & will be balanced by an error on p in the same v@&ych an autocorrelation causes a
certain instability of parameter estimates. Seeef@mple p values estimated by Peleg and
Cole (1998) forC botulinum (table 1).

As p values are expected to be dependent on tetopmrave calculated correlation
coefficients between p and heating temperatureléT2b It can be seen that, for the three sets
of data, correlation coefficients are poor. Borcereus , the correlation is not significant,
while for C botulinum and B. pumilus, correlation coefficients just reach the significa
threshold (at the level p = 0.05). Then, it seenwsthwhile to fix p at an average value,
characteristic of a strain, so thag Ahdd values can be estimated from a linear regression.
Obviously, the fixation of p will have repercusssoon é values which, as expected, are
governed by the Bigelow relationship as a functebriemperature. For the previously cited
set of data regardin@ botulinum, when p and were estimated together from a non linear

regression, we obtained the following results:

z=7.09°C;r=0.969
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When p was fixed to its average value (p = 0.34®@)destimated from a linear regression, it

yielded:

z=28.58°C ;r=0.989

Because the fixation of p causes a better stalmfityestimates, the clear improvement of the
concerned correlation coefficient was expected.il8ity, average p-values regardirig)
cereus and B. pumilus were determined and respective z-values assesdesllts are
presented in Table 3. It is them confirmed tWatalues have the same dependence

relationship towards temperature as conventionahlDes:

T-T*

0=0*10 = (5)

Whered* is the time of first decimal reduction at theerfnce temperature T*.

2. Application of the model to calculations of heat treatment efficiency

The traditional sterilization value (F-value) isfided as the time of a heat treatment at the
reference temperature (generally, T* = 121.1°Cf)a® any equivalent heat treatment which
would cause the same destruction ratio. The taFgealue which depends both on the
required level of safety and on the heat resistaridbe target species of spore or bacterial

cell, is:

F=nD* (6)
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Where n is the ratio of decimal reduction (safetyel) and D* , the time of decimal reduction
at the reference temperature (heat resistance).
At a constant temperature, the actual F-value espifoduct of the heating time and the so

called Biological Destruction value L, which isunttion of temperature:

F=L(Mt (7)
With

T-T*

L(T)=10 = (8)

In standard calculations, the z-value is assumdakt@0°C, which corresponds to thatf
botulinum. Then, the traditional F-value is implicitly apgdi to an ideal strain o€C.
botulinum, the destruction curve of which would be governgdabfirst order kinetic, and
which would be characterized by a z-value of 1B€cause F-values are additive, in the case

of a variable temperature heat treatment, it cawrtéen:

t
F=[ LTt (9)
Bigelow numerically solved this equation by wrgiit in the following discrete form:
F=L(Tht (20)

Where incrementAt; were equally fixed at 1 minute.

If it is assumed that, instead of obeying to at fingler kinetic, survival curves of spores are
governed by the Weibull frequency distribution mipdievalues are no more additive. Let F
be the overall sterilization value resulting fromvot successive heat treatments whose
sterilization values would be; Fanf F, respectively. The first heat treatment would caase

decimal destruction ratio:
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N
=log—2 (11
n ogNl (11)

where N is the number of surviving cells after the firstating. Similarly, the second

treatment would cause a decimal destruction ratio:

N
n, =log—
2 N2
N N, N N N
n=log—2 =log—— =log—+log—=n +n 12
gN2 gNlNz gNl gNZ n+n, (12)

where N is the number of surviving cells after the sectwedting. Lastly, the overall heat

treatment would yield:

According to the new model,

(LY Z(EY
”‘(5) (5*) (13)

So that

BEOEHEE

And

FP=FP+F (15)

The F-value being no more additive, it is clear thia® destruction ratio is no more
proportional to this value, so that the F concepets a great part of its relevance.
Consequently, the decimal reduction ratio becorhesohly convenient indicator of the heat

treatment efficiency.

At constant temperature,

o o
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Then,
p
dn = D[ﬂ} t"dt (17)
5*
So
n= pj;[%}ptp‘ldt (18)

that, at variable temperature,
A procedure similar to that of Bigelow can then d@plied to solve numerically this last

equation from the following discrete form:

p
n=py, {%} AL (19)

An adjusted F-value (adjusted according to the p and z values of thgetamicroorganism)

can then be calculated from the following equation:

1

F=nP3* (20)
Indeed, the conventional F-value, which could bkedathe standard F-value remains an
interesting criterion, as it allows to intrinsigattompare several heat treatments, regardless of

the target species which is to be destroyed.

Figure 1 represents registrations of a retort teatpee (with an average value of 115.3°C)
and inside temperature of a canned tomato sauceBigatow procedure (1920) allows to
calculate a conventional F-value of 7.31. Assunang*-value of 0.21 minutes, the decimal
destruction ratio which theoretically would be reed after the sterilization run would be n =
34.8. Data showed in Table 3 yield forbotulinumthe following estimates:

p =0.346

o* = 0.00527
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z=8.58°C

An actual decimal destruction ratio of 6.18 andaaljusted F-value of 1.02 can be then
calculated. A 12 decade reduction Gf botulinum being conventionally proposed, for
reaching this reduction ratio, the actual sterii@@awould have to be prolonged to obtain a

further decimal reductioAn:

An=12-6.18 =5.82

From Eqgn 17, it can be deduced that the correspgmatolongation time would be:

1
_AnPo*

T

(21)

At an assumed heart stationary product temperafuté5.3°C, the needed prolongation time
of sterilization would then be 3.85 minutes, whihe adjusted F-value would become 4.09
(for a standard F-value which would become 8.32)

Indeed, applications of the Weibull frequency dlsttion are not likely to render traditional
concepts out of date: the conventional F-value ephcemains highly useful. However heat
treatment calculations require some modificatiohgrvsurvival curves of spores or bacterial
cells are not linear. We presented an adaptatiagheoBigelow method based on the Weibull
frequency distribution method for assessing theieficy of sterilization. Similarly, further

useful investigations to adapt the analytical apphoof Ball (1923) would be possible.
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Legend figure

Fig 1:

The fit of Equ 3 to the data for the death kinetit8arcillus pumilus heat injured at 89°C

Fig 2
The fit of Equ 3 to the data of Anderson et al. ()986 the death kinetics d@lostridium

botulinum heat injured at 111°C

Fig 3
Registrations of a retort temperature (with an agervalue of 115.3°C) and inside

temperature of a canned tomato sauce
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Tablel

Temperature (°C) p
103 0.364
105 0.349
107 0.432
109 0.392
111 0.319
113 0.314
115 0.312
117 0.295
119 0.337
121 0.324
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Table 2

Type of spore

Number of data

Correlation coefficient
between temperature and f

value
C. botulinum 10 0.600 (0.60)
B. cereus 5 0.453 (0.81)
B. pumilus 6 0.751 0.75)
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Table 3
Type of spore p-value z-value r
C. botulinum 0.346 8.58°C 0.989
B. cereus 1.37 8.57°C 0.997
B. pumilus 2.24 8.04°C 0.998
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