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ABSTRACT

Several factorial models extending the famous Bigehodel to describe the influence of the
heating and recovery pH ang eonditions on bacterial heat resistance have bdegaloped.
These models can be associated in an overall axtitiial model describing the influences of
heating and recovery conditions Drvalues. FoBacillus cereusstrain ADQP 407 the mo D

el parameters characterising the environmentabfantluences (pH, Temperature, aw) were
evaluated. Determination of bacterial heat restsan cream chocolate have been realised to
validate these parameter values and to evaluatéetiet of the influence of food texture or

different compounds not taken account of in the ehod
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INTRODUCTION

Several environmental conditions influence bactéwat resistance. In addition to the heating
temperature, it has been recognized that pH andrveativities of the heating and recovery
medium are the main factors that affect the appaneat resistance of bacteria (Esty and
Bigelow, 1920; Esty and Meyer, 1922; Murrel and t§ct966; Cook and Gilbert, 1968;
Harnulv et al., 1977; Lynch and Potter, 1988; Fdazaet al., 1996; Fernandez et al., 2002).
Different multifactorial models which describe thdluence of the heating environmental
condition have been published (Davey et al.,, 19R8ichart, 1994; Cerf et al., 1996;
Fernandez et al., 1996) Mafart and Leguérinel (19&8d Gaillard et al. (1999) have

developed an extension of the linear Bigelow mad¢he pH and aw influence Eq. 1.

- * - * —_
IogD=IogD*—T T*|_|pH - pH ‘— a, -1 Eqg. 1
p Z oy ‘ z,

w

whereT* is the reference temperature (generalt{5121.1°C) ancpH* is the referenceH
fixed at =7,D* is theD-value atT*, pH* andaw = 1, zr is the conventional thermalvalue,
Zyn is the difference of pH frompH*, which leads to a ten fold reduction@fvalue,z,, is the
difference of aw fromaw* = 1 which leads to a ten fold reduction®ivalue. As the Bigelow
model, this imbricate model, taking temperature,gotd water activities into account, is used
to evaluate the decimal reduction ratio and theligiion value (F- value) Mafart (2000).
However, these models assume that the heat restsianmeasured at optimal recovery
condition and do not take the influence of the ptimal condition of the recovery media
into account. It is well known that the count of\gual bacteria after heating treatment is
greatly influenced by the characteristic of theokery medium: temperature, pH, aw and
composition. When the recovery condition differsnfrthe optimal condition both a decrease
in the number of heated stressed cells capableaafuping colonies and a decrease in the
estimate decimal reduction time, are observed {${a®63; Katsui et al., 1982; Mallidis and

Scholefield, 1986; Feeherry et al., 1987). Recerattcording to the same approach as that
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adopted in the Mafart and Leguerinel model (19@®)uvert et al. (1999) and Coroller et al.
(2001), have developed similar Bigelow models tecdbe the influence of pH and water
activities respectively, of the recovery medium, tbe apparent heat resistance of bacteria

Eq.2-3.

2
H'-pH'
logD'=1log D', —[M} Eqg. 2

pH
a',—a ?
log D'=log D‘Opt —[Wl—wc’pt} Eq. 3
zZ.

WherepH’ oraw’ are thepH or the water activity of the recovery mediubi, is the apparent
reduction time apH’ or aw’, pH’opr andaw’q, correspond to the maximér'value andz’,y
and z’aw are the distance from theH’op: or aw’qp: respectively, which leads to a ten fold
reduction of the apparent reduction tibe

Mafart and Leguerinel, Gaillard et al., Couvertadt and Coroller et al. models can be
associated in an overall nested model which desstibe influences of heating and recovery
conditions on the estimatdd value of bacteria. This model (eq 4) can be udesl the
Bigelow model to estimate the heat resistance amcinthl reduction rate of bacterial

population.

IogDzlogD*—(T ;T }—

T

2 ' ' 2
pH_pH* _ aw_l _{pH_pH oth _ aW_awopt Eq4
Z,, ‘ z,, z'pH z'aa

The aim of this paper is to obtain the model's paeters forBacillus cereusspores and

validate these parameter values in the food proafuctiocolate.

Material and methods
Micro-organism and spore production
The strain oBacillus cereusADQP407 isolated from shrimp was obtained from the

ADRIA (France). Spores were kept in distilled waaerd°C.
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Cells were precultivated at 37°C for 24 hrs iniBrileart Infusion (Difco ). The
preculture was used to inoculate nutritive agategléBiokar Diagnostics BK021) added with
MnSQ, 40mg I and CaGl 100 mgl* on the surface area. Plates were incubated at BF&
days. Spores were then collected by scraping tHacguof the agar and suspended in sterile
distilled water and washed three times by centafimgp (10000xg for 15 min) (Bioblock
Scientific, model Sigma 3K30). The final suspens{about 16° spores mt) was finally

distributed in sterile Eppendorfs microtubes anpt ket 4°C.

Thermal treatment of spore suspension and recas@mgitions.

In basic condition the heating medium was a tmyptsalt broth ( 10d! tryptone
Biokar and 10gt sodium chloride) at pH 7 with no sucrose added, hbating temperature
was 100°C. The heating medium was sterilized biyafibn. The influence of heating
temperature was studied ranging from 95°C to 102i€ heating pH ranging from 4.5 to 7
adjusted with HCL and the heating water activiteasging from 1 to 0.92 were adjusted using
sucrose. The previous molarities of the differasitites were determined using curves from
model UNIFAC-LARSEN ( Achard et all992). The @ values were controlled with an aw-
meter ( FA-stl GBX France Scientific Instrument).

Firstly, 30ul of spore suspension was diluted imBadjusted heating medium. Capillary
tubes of 200 pl (vitrex) were filled with 100ul sample, sealed, and submitted to a thermal
treatment in a thermostated glycerol bath for déifie heating times. The heat treatment was
stopped by cooling capillary tubes in water / ie¢hb Then they were broken at both ends and
their contents poured into a tube containing 9 ndrile tryptone salt broth (Biokar
Diagnostics) by rinsing with 1 ml tryptone salt thro

The viable spores were counted by duplicate platingutritive agar (10g tryptone, 5g meat

extract, 5g sodium chloride, 15 g agar for 1000rates)(Biokar Diagnostic) and incubated at
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37°C for 6 days. The recovery medium pH rangingnfré to 7 was adjusted with sterile
solution of HCI after autoclaving. The recovery nued water activity ranging from 1 to 0.95
was adjusted with added sucrose. To adjystadues, the previous molarities of the different
solutes were determined using curves from modelRAT-LARSEN ( Achard et al1992).
Nutritive agar and sucrose solutions were stedligeparately by autoclaving to avoid the
Maillard reaction. After sterilisation the two sttns were mixed, pH was adjusted to 7 and
ay value was controlled.

The validation of the heating sensibility parametbad been realized by heatiBgcillus
cereusspores scattered in “chocolate cream” (pH: 6.76 @an: 0.968), included in capillary

tubes

Experimental design and data analysis

For each environmental factor studied a monofaaitesiperimental design was carried out. D
values were determinate by linear regression orstitaght portion of curves obtained when
the log number of survivors was plotted againstiihgaime. The sensibility parameters of

the models 2’ were fitted on experimental values using Excdtvgare.

Results and discussion

For the strain oBacillus cereusADQP 407 studied, all survival curves presentalinear
relation between the number of colony forming uaitsl heating time. The classical D values
were determined by linear regression. One exangpfgdasented Figl.The whole set of data
values is presented table 1.

The fitting of Bigelow model, related to the heatitemperature, on the experimental D
values (Fig 2), gives ar value equal to 7.1°C, which corresponds to the@eslcurrently

given forBacillus cereuspores (Bergere and Cerf, 1992).
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The decrease of heating and recovery medium pHesaleduces the apparent bacterial heat
resistance. (Fig 3-4). The fitting of parametexs 1e2) and associated correlation coefficients
were computed Table 2. The decrease in recoverynpium (z'pu: 2.18) appears to have
more influence on the apparent heat resistance dhdgcrease in heating medium pl,{
3.45).

The dominating influence of recovery pH medium theen observed for other bacterial
species (Couvert et al., 1999; Couvert thesis 2002)

Regarding the water activity influences, a decreasav value leads to a thermo-protective
effect (Fig 5). In the recovery medium heated spasbow an apparent maximum heat
resistance at an optimum close to 0.985. Under dptgnal value, an increase in sucrose
concentration reduces the bacterial heat resistéifice 6). The aw decrease of recovery
medium (z,, 0.092) presents a more pronounced effect tharptbective effect of heating
medium (zay 0.156).

These values correspond to the parameters detatrfoneotherBacillus cereusstrain with
sucrose as the same water depressor (Coroller, €08ll). For the different models tb& or
D’opt correspond to thd value evaluated to the reference or the optimalditmns
respectively, and could not be considered the saimget one and onlp value, the overall
equation ( Eq 4) was fitted on the whole set oadatheD* value correspond closely to those
determined at heating conditio*: 121.1°C,pH*: 7, aw*: 1 and the evaluated optimal
recovery conditionpH’gprandaw’op. The heat resistance parameterszH, Z'pH, Zaw andz’aw
obtained in Table 3, show the parameter valuesmeted from each monofactorial design.
Fig 7 illustrates the relationship between expentakand calculateD values

In food product the main factors that influence thpparent heat resistance are the
temperature, pH and water activities. Moreovereddht compounds or food textures can

influence the bacterial heat resistance. Howewewipus studies, not published, have shown
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that these secondary factors had a low influencthersensibility parameterg™ The part of
these factors is evaluated by the ratio betweemxperimental heat resistance determined in
food and the corresponding calculated values.

This comparison is made on the heat treatment onlghe one hand and, on the overall
apparent heat resistance, heating and recovenryeoather hand. Fig 8 shows the comparison
of the experimental and calculat®acillus cereusdeath kinetics determined in chocolate
cream (pH 6.76 and aw:0.968). The figure and raff@, higher than 1, shown that the model
taking temperature, pH and water activities intgoamt, underestimates the bacterial heat
resistance. However, on the overall apparent hesistance heating and recovery, the
experimental result confirms the calculated foreaamcerning the overall apparent heat
resistance (Table 4); after heat treatment at 166fG5 minutes no growth was observed in
cream chocolate incubated at 37°C for 7 days.

The confrontation between the validation ratio @mel food texture and composition could

bring to the fore new factors or compounds thacfapparent heat resistance.
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Legend of figure

Fig 1: log N versus heating time

Fig 2: Log D versus heating temperature
Fig 3: Log D versus heating medium pH
Fig 4: Log D versus recovery medium pH
Fig 5: Log D versus heating medium aw

Fig 6: Log D versus recovery medium aw

Fig 7 : correlation between experimentally log Blues and theoretically log D values calculated

from the overall model
Fig 8: comparison of the experimental  and calculated (--facillus cereusleath kinetics,

heating in chocolate cream and recovery in nu@itigar pH7, aw1.

Table of legends

Table 1 Effects of heating temperature, heatingrandvery medium pH and aw on D-values (min) of
Bacillus cereus

Table 2: models parameters

Table 3: fitting parameters on the whole set oadat

Table 4: comparison of the experimental and caledIBacillus cereuggrowth in capillary

tube after heating and recovery in chocolate crisardifferent heating times
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383
Heating Heating Recovery Heating Recovery
temperature medium medium medium medium D value Confidence

°C pH pH' aw aw' minutes  interva
95 7 7 1 1 29.52 +2.31
98 7 7 1 1 11.54 +0.78
100 7 7 1 1 5.61 +0.46
102 7 7 1 1 3.11 +0.19
100 6.85 7 1 1 5.57 +0.57
100 6.62 7 1 1 5.22 +0.60
100 6.41 7 1 1 3.99 +0.32
100 5.92 7 1 1 3.14 +0.22
100 5.21 7 1 1 1.61 +0.19
100 4.56 7 1 1 1.89 +0.16
100 7 7 1 1 7.53 +0.73
100 7 6.52 1 1 6.06 +0.54
100 7 6.07 1 1 3.92 +0.44
100 7 5.8 1 1 2.98 +0.33
100 7 55 1 1 3.59 +0.37
100 7 5.35 1 1 1.04 +0.14
100 7 7 1 1 5.78 +0.48
100 7 7 0.98 1 8.71 +1.39
100 7 7 0.96 1 13.32 +1.67
100 7 7 0.94 1 15.07 +1.66
100 7 7 0.92 1 19.10 +2.31
100 7 7 1 1 6.55 +0.53
100 7 7 1 0.99 6.93 +0.61
100 7 7 1 0.98 6.58 +0.49
100 7 7 1 0.97 6.44 +0.60
100 7 7 1 0.96 5.79 +0.38
100 7 7 1 0.95 4.90 +0.47

384

385

386

387 Tablel

388
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Values r

zr°C 7.09 0.999
ZoH 3.44 0.967
Z'pH 2 . 18

0.920
PH'opt 6.96
Zaw 0.156 0.979
Z'aw 0.092

0.989
aWopt 0.985

Table 2
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Fitting on the

whole set of data

D* minutes
logD*

zr °C

0.009

-2.02

7.32

3.48

1.55

0.153

0.088

6.78

0.983

0.990

Table3
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Heating time Tubes with observed growth  Calculated N value betu

minutes

20 min 2/2 54
25 min 2/2 11
30 min 1/2 2
35 min 1/2 0
40 min 0/2 0
45 min 0/2 0

403

404 Table4



