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Abstract

Background: Hydrothermal vents and cold seeps represent oases of life in the deep-sea

environment, but are also characterized by challenging physical and chemical conditions. The effect

of temperature fluctuations on vent organisms in their habitat has not been well explored, in

particular at a molecular level, most gene expression studies being conducted on coastal marine

species. In order to better understand the response of hydrothermal organisms to different

temperature regimes, differentially expressed genes (obtained by a subtractive suppression

hybridization approach) were identified in the mussel Bathymodiolus thermophilus and the annelid

Paralvinella pandorae irlandei to characterize the physiological processes involved when animals are

subjected to long term exposure (2 days) at two contrasting temperatures (10° versus 20°C), while

maintained at in situ pressures. To avoid a potential effect of pressure, the experimental animals

were initially thermally acclimated for 24 hours in a pressurized vessel.

Results: For each species, we produced two subtractive cDNA libraries (forward and reverse)

from sets of deep-sea mussels and annelids exposed together to a thermal challenge under

pressure. RNA extracted from the gills, adductor muscle, mantle and foot tissue were used for B.

thermophilus. For the annelid model, whole animals (small individuals) were used. For each of the

four libraries, we sequenced 200 clones, resulting in 78 and 83 unique sequences in mussels and

annelids (about 20% of the sequencing effort), respectively, with only half of them corresponding

to known genes. Real-time PCR was used to validate differentially expressed genes identified in the

corresponding libraries. Strong expression variations have been observed for some specific genes

such as the intracellular hemoglobin, the nidogen protein, and Rab7 in P. pandorae, and the SPARC

protein, cyclophilin, foot protein and adhesive plaque protein in B. thermophilus.

Conclusion: Our results indicate that mussels and worms are not responding in the same way to

temperature variations. While the results obtained for the mussel B. thermophilus seem to indicate

a metabolic depression (strong decrease in the level of mRNA expression of numerous genes)
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when temperature increased, the annelid P. pandorae mainly displayed a strong regulation of the

mRNA encoding subunits and linkers of respiratory pigments and some proteins involved in

membrane structure. In both cases, these regulations seem to be partly due to a possible cellular

oxidative stress induced by the simulated thermal environment (10°C to 20°C). This work will

serve as a starting point for studying the transcriptomic response of hydrothermal mussels and

annelids in future experiments in response to thermal stress at various conditions of duration and

temperature challenge.

Background
The distribution of terrestrial, as well as marine, organ-
isms is strongly influenced by environmental factors (var-
iation, gradient, intensity), and temperature was
identified as one of the most important. Temperature is
known to affect the spatial distribution of species accord-
ing to their thermal tolerance [1]. Environmental temper-
ature challenge has a direct impact on ectothermic marine
animals, and influences biological functions at all levels,
from molecules to whole organisms [2,3]. Variation and/
or gradients of temperature are considered as strong selec-
tive factors [4,5]. Numerous studies dealing with the effect
of temperature have been conducted on coastal marine
species at the molecular, physiological and protein levels
[6,7]. An elevation of temperature can increase reaction
rates and affect reaction equilibrium through higher
kinetic energy. In addition, high temperatures induce pro-
tein denaturation, resulting in complete and often irre-
versible loss of function [2].

Hydrothermal vents and cold seeps represent oases of life
in the deep-sea environment but are also characterized by
challenging environmental conditions, when compared
to the surrounding deep-sea. The hydrothermal fluid is
the result of chemical modifications of the deep-sea water
by interaction with the hot rocks (near the magma cham-
ber) during a long percolating period through the oceanic
crust. The resulting fluid is a hot water (up to 400°C),
often anoxic, acidic (pH 2), and containing high concen-
trations of methane, carbon dioxide, sulfide, heavy met-
als, and arsenic-containing compounds [8-10]. As it
comes out of the sea-floor, the hydrothermal fluid is cha-
otically mixed with the cold, more oxygenated deep-sea
water. Abiotic factors such as changes in fluid flow, tem-
perature and chemical composition affect species distri-
butions at vents [11-13]. The endemic hydrothermal vent
organisms live in the mixing zone according to their toler-
ance to – and requirements for- various factors (tempera-
ture, pH, O2 concentration...). However, the effect of
temperature variations on hydrothermal vent organisms
has not been well studied, particularly at the molecular
level. Available data on the vent mussel of genus Bathymo-
diolus are mainly focused on the effect of heavy metals and
oxidative stress on enzymatic activities [14] and specific
gene expression (e.g. metallothioneins) [15]. A few

immune system-relevant genes have also been described
[16], and a cDNA library from Bathymodiolus azoricus has
been partially sequenced [17]. Numerous studies also
described these mussels' symbiosis with chemoau-
totrophic bacteria, often at both the phylogenetic and the
biochemical levels [18-20]. HSP70, a typical thermal
stress marker, has also been studied in hydrothermal vent
species in response to temperature and other parameters.
The HSP70 gene has been characterized in the vent
shrimps Mirocaris fortunata and Rimicaris exoculata [21], in
the vent annelid Paralvinella grasslei [22], and variations in
HSP70 protein content were correlated to variations of
environmental parameters for the vent mussel B. azoricus
[23]. In Alvinellidae, a polychaete family endemic of
hydrothermal vents that includes the genera Alvinella and
Paralvinella, hemoglobins were largely studied at both the
molecular and the functional levels [24]. Recent studies
demonstrated the temperature preference of vent worm
species by incubating them along a thermal gradient rang-
ing from 15 to 60°C [25,26]. The existence of thermally
sensitive alleles was shown for some proteins in P. pando-
rae compared to other species living at higher tempera-
tures, such as A. pompejana, P. sulfincola or P. hessleri [27].
These data could be partly related to the species distribu-
tion in their respective habitats that mostly differ by their
temperature range.

The vent mussel B. thermophilus is found under a wide
range of environmental conditions on the East Pacific
Rise. It may occur with tubeworms in areas of active
hydrothermal flow where temperature and hydrogen
sulfide concentrations are high, as well as in areas of dif-
fuse flow, where the temperature and the concentration of
hydrogen sulfide are much lower [28]. Studies have
shown that B. thermophilus can quickly adapt to a wide
range of environmental conditions (especially chemical
changes) but usually lives between 4 and 14°C [29]. No
studies report a thorough characterization of P. pandorae
irlandei's habitat but this species is mainly found in the
cracks at the base of the tubes of the vestimentiferan tube-
worm Tevnia jerichonana [30] where it encounters temper-
atures ranging from 5 to 22°C [31]. Because temperature
highly fluctuates in time, a thermal regime of 20°C there-
fore represents an upper thermal condition for both spe-
cies whereas an average temperature of 10°C could be
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more related to their thermal preference. In this work, we
used a suppression subtractive hybridization (SSH)
approach to (1) verify if such a temperature challenge
induces a transcriptomic response, (2) characterize genes
and the physiological processes involved in response to
temperature variations, and (3) compare common and
specific responses attributable to these two highly-diver-
gent species.

Results
Mussel SSH libraries sequencing results

The sequencing of 200 clones from the forward (individ-
uals incubated at 10°C versus individuals exposed at
20°C) SSH library, as well as from the reverse library
(individuals incubated at 20°C versus individuals
exposed at 10°C), allowed the identification of 78 unique
sequences for B. thermophilus (19% of the whole sequenc-
ing effort: other sequences are redundant). Table 1 shows
the unique sequences obtained in both SSH libraries with
the best E-values for the sequences when identified after
Blast analysis. The identified sequences indicate that tem-
perature regulates genes involved in various cell functions:
(1) cell cycle regulation, DNA repair, protein regulation
and transcription (8.5%), (2) mitochondrial respiratory
chain (4%), (3) metabolism (6.4%), (4) stress response
and detoxification (0.5%), (5) cell communication, mem-
brane receptors and immune system (10.2%), (6)
cytoskeleton production and maintenance (7.5%), (7)
ribosomal proteins (10%), (8) proteins of unknown func-
tion (0.5%) and (9) unknown sequences (52%). A higher
proportion (60%) of the genes identified in our libraries
were expressed in mussel exposed to 10°C and were
mainly involved in metabolism, stress response, transcrip-
tion and cytoskeleton.

Annelid SSH libraries sequencing results

The sequencing of 200 clones from the forward (individ-
uals incubated at 10°C versus individuals exposed at
20°C) SSH library, as well as from the reverse library
(individuals incubated at 20°C versus individuals
exposed at 10°C) allowed the identification of 83 differ-
ent gene sequences for P. pandorae (20% of the whole
sequencing effort: the other sequences are redundant).
Table 2 shows the unique sequences obtained in both SSH
libraries with the best E-values for the sequences when
identified after Blast analysis. The identified sequences
indicate that temperature regulates the expression of
genes involved in various cell functions: (1) respiratory
chain (9.6%), (2) sulfur and oxygen transport (8.4%), (3)
metabolism (2.4%), (4) cell communication, membrane
receptors and immune system (4.8%), (5) cytoskeleton
production and maintenance (3.6%), (6) ribosomal pro-
teins (8.4%), (7) proteins of unknown function (2.4%)
and (8) unknown sequences (60.4%). Interestingly, most
transcripts identified in the reverse subtractive library cor-

respond to genes involved in the respiratory chain and in
oxygen transport. A high proportion of unknown
sequences were also obtained limiting the identification
of new temperature-regulated putative candidate gene.

Relative expression level of some target genes

Levels of expression of 20 transcripts obtained in the B.
thermophilus library and 14 transcripts identified in the P.
pandorae library were quantified from pools of individuals
of each thermal condition by using real-time PCR. For all
the genes, we showed that the differential expression
observed for the genes corresponds to the library they
came from. In addition, stronger differential expressions
were observed in B. thermophilus for metabolic genes such
as S-adenosylhomocysteinase-hydrolase, arginine kinase
or Δ5-desaturase, and some genes such as secreted protein
acidic rich in cystein (SPARC, a basal membrane compo-
nent), elongation factor beta, actin and proteins related to
mussel mobility (foot protein and adhesive plaque matrix
protein) (Table 3). While it was identified in the reverse
library, the gene encoding the kalicludine did not display
a clear differential expression between the two experimen-
tal conditions. In P. pandorae, differences between levels
of expression of the two sets of experimented individuals
were higher than those observed in mussels. Some genes
also showed a very high level of expression in samples
exposed to 10°C as compared to those exposed at 20°C,
especially for the secreted nidogen domain protein, Rab7,
the intracellular hemoglobin and the ribosomal protein
S16 that were strongly inhibited in annelids exposed to
20°C. Almost all genes encoding subunits of hemoglob-
ins (except linker L2) displayed a coherent expression pat-
tern of up-regulation in annelids exposed to 20°C (Table
4).

Discussion
In the present paper, we described and analyzed gene
expression in two hydrothermal species in response to
two temperatures, one included in the range of tempera-
ture encountered by both species (10°C), and the other
near (for worms) or above (for mussels) their thermal
limit range (20°C). The following parts of the discussion
deal with the respective responses of these two species in
terms of differences and common features typifying their
ability to adapt different thermal regimes.

Unidentified sequences

Over 50% of the sequences for each species could not be
identified based on homologies. This may be due to the
limited amount of data available for invertebrates, or to
the SSH protocol itself that requires the use of a restriction
enzyme, possibly leaving only the UTRs for cloning. This
may explain that we did not obtain typical heat stress pro-
teins such as the inducible heat shock protein 70
(HSP70). This could also be due to the long term acclima-
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Table 1: Regulated genes identified in the SSH libraries of thermally challenged Bathymodiolus thermophilus with significant database 
matches (only sequences with E-value above 0.005 are shown).

Homolog (protein); Blastx value Homolog species Insert size 
(bp)

Accession 
number

SSH 
library

Cell cycle, DNA repair, protein regulation and transcription

Elongation factor 1 alpha; 1e-14 Mytilus galloprovincialis 428 GH196568 forward

Elongation factor beta; 2e-05 Strongylocentrotus purpuratus 153 GH196577 forward

Elongation factor-2; 9e-89 Hutchinsoniella macracantha 577 GH196570 forward

S-cyclophilin; 2e-14 Gallus gallus 384 GH196575 forward

H3 histone; 4e-43 Mus musculus 538 GH196576 reverse

Myc homolog; 7e-10 Crassostrea virginica 704 GH196563 reverse

Respiratory chain

Cytochrome c oxidase subunit II; 5e-32 Lampsilis ornata 424 GH196573 reverse

Cytochrome c oxidase subunit III; 1e-20 Arbacia lixula 260 GH196584 reverse

ATP synthase; 3e-21 Bos taurus 415 GH196588 reverse

Metabolism

S-adenosylhomocysteine hydrolase 2e-60 Branchiostoma belcheri 
tsingtaunese

505 GH196574 forward

Cytosolic Lactate/malate dehydrogenase; 2e-14 Caenorhabditis elegans 421 GH196590 forward

Arginine kinase; Octopus vulgaris 135 GH196579 forward

Anhydrase carbonic 2; 2e-02 Oncorhynchus mykiss 114 GH196567 forward

Delta-5-desaturase; 4e-25 Strongylocentrotus purpuratus 195 GH196582 forward

Stress response and detoxication

Glutathione peroxidase; 0.001 Bombyx mori 101 GH196562 forward

Heat Shock Protein 90; 4e-21 Tetraodon nigroviridis 156 GH196561 forward

Cell communication, membrane receptors, immune system

Kalicludine 1; 3e-16 Anemonia sulcata 406 GH196560 reverse

Techylectin-5A; 8e-29 Tachypleus tridentatus 337 GH196558 reverse

Electron-transfer-flavoprotein; 4e-57 Strongylocentrotus purpuratus 535 GH196557 reverse

Itm1 protein, 4e-27 Xenopus laevis 179 GH196556 reverse

C1q-like adipose specific protein; 2e-07 Salvelinus fontinalis 570 GH196594 reverse
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tion (about 2 days) offered to the animals leading to an
attenuation of the stress machinery with time. None of the
SSH libraries (mussel and annelid) indeed contained
mRNA coding for any HSP70s, that are involved in the
protection of other proteins from denaturation caused by
a variety of stressors [32,33]. Available data dealing with

HSP70 in hydrothermal species were only obtained from
polychaetes, mussels and shrimps exposed to brief heat
shocks [21,22,34]. In previous studies, a positive correla-
tion between the levels of DNA strand breakage and
HSP70 expression in response to decompression stress
were also found by Pruski and Dixon [35]. In the shrimp

β-1,3-N-acetylglucosaminyltransferase 6; 5e-48 Homo sapiens 586 GH196571 reverse

Secreted protein, acidic, rich in cysteine SPARC; 2e-20 Artemia franciscana 523 GH196580 forward

Defensin; 1e-04 Haliotis discus hannai 105 GH196559 forward

Cytoskeleton production and maintenance

α-2-tubulin; 4e-27 Gecarcinus lateralis 348 GH196585 forward

Actin; 1e-35 Mytilus galloprovincialis 541 GH196578 forward

Adhesive plaque matrix protein; 6e-06 Mytilus galloprovincialis 291 GH196589 forward

Foot protein 2; 1e-6 Mytilus edulis 108 GH196581 forward

Pedal retractor muscle myosin; 6e-50 Mytilus galloprovincialis 426 GH196564 forward

Hemicentin; fibulin 6; 2e-14 Rattus norvegicus 304 GH196587 reverse

Ribosomal proteins

Ribosomal protein L3; 2e-55 Argopecten irradians 495 GH196591 forward

Ribosomal protein L4; 4e-80 Latimeria chalumnae 926 GH196586 forward

Ribosomal protein S14; 3e-04 Rattus norvegicus 256 GH196555 forward

Ribosomal protein S15; 1e-64 Argopecten irradians 465 GH196566 forward

Ribosomal protein S19; 2e-09 Chlamys farreri 362 GH196569 forward

Ribosomal protein S25; 1e-28 Crassostrea gigas 379 GH196583 forward

Ribosomal protein L15; 7e-16 Siniperca kneri 214 GH196565 reverse

QM protein; 7e-11 Apis mellifera 622 GH196572 reverse

Unknown function

CG33171-PC, isoform C; 4e-07 Drosophila melanogaster 615 GH196592 reverse

Repeat organellar protein-related; 1e-05 Plasmodium yoelii yoelii 765 GH196595 reverse

Unidentified sequences

39 sequences GH196596 to GH196632

Forward: genes over-expressed at 10°C versus 20°C;
Reverse: genes over-expressed at 20°C versus 10°C.

Table 1: Regulated genes identified in the SSH libraries of thermally challenged Bathymodiolus thermophilus with significant database 
matches (only sequences with E-value above 0.005 are shown). (Continued)
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Table 2: Regulated genes identified in the SSH libraries of thermal exposed Paralvinella pandorae irlandei with significant database 
matches (E-value above 0.005).

Homolog (protein); Blastx value Homolog Species Insert size (bp) Accession number SSH library

Respiratory chain

Cytochrome c oxidase subunit I; 1e-73 Littorina saxatilis 772 GH196478 reverse

Cytochrome oxidase subunit II; 1e-46 Lumbricus terrestris 715 GH196499 reverse

Cytochrome c oxidase subunit III; 2e-34 Albula glossodonta 457 GH196480 reverse

Cytochrome c oxidase polypeptide Va; 1e-20 Strongylocentrotus purpuratus 149 GH196490 reverse

Ubiquinol-cytochrome c reductase complex; 4e-23 Mus musculus 537 GH196502 reverse

Cytochrome b; 1e-23 Urechis caupo 258 GH196495 reverse

NADH dehydrogenase subunit 1; 4e-48 Urechis caupo 571 GH196493 reverse

NADH dehydrogenase subunit 6; 7e-05 Clymenella torquata 190 GH196501 reverse

Sulfur and oxygen transport

Hemoglobin A2c chain; 3e-31 Arenicola marina 569 GH196487 reverse

Hemoglobin B1 chain precursor; 4e-21 Arenicola marina 326 GH196479 reverse

Hemoglobin B2 chain; 1e-12 Arenicola marina 516 GH196491 reverse

Hemoglobin linker LY precursor; 5e-86 Riftia pachyptila 529 GH196505 reverse

Extracellular globin linker L1 precursor; 0.002 Alvinella pompejana 335 GH196504 reverse

Hemoglobin linker L2 precursor; 0.005 Alvinella pompejana 727 GH196483 forward

Intracellular hemoglobin; 5e-41 Alvinella pompejana 547 GH196492 forward

Metabolism

Trypsin; 6e-60 Litopenaeus vannamei 661 GH196494 reverse

S-adenosylhomocysteine hydrolase; 2e-66 Branchiostoma v 529 GH196476 forward

Cell communication, membrane receptors, immune system

Lipid binding protein 9; 5e-05 Caenorhabditis elegans 463 GH196481 forward

GTP-binding protein (rab7); 7e-89 Canis familiaris 641 GH196489 forward

Xylan endohydrolase isoenzyme, 6e-22 Arabidopsis thaliana 455 GH196472 reverse

Cyclophilin B; 4e-14 Gallus gallus 384 GH196477 reverse

Cytoskeleton production and maintenance

Chymotrysin; 4e-11 Lumbricus rubellus 230 GH196484 forward
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Rimicaris exoculata, regulation of HSP70 in response to
temperature was detected at the protein level [21], but no
data related to HSP70 gene regulation is available so far.

Is P. pandorae better adapted to higher temperature than 

B. thermophilus?

Metabolic adjustments in response to thermal challenges
are essential for aquatic ectotherms, whose body temper-
ature fluctuates over the full range of temperature in their
habitat [36]. Temperature can also influence metabolic
regulation, eliciting transition to anaerobiosis even in
oxygenated waters [37]. A high thermal sensitivity of
metabolism over the environmental range is associated to
increased long-term metabolic costs and with a lower tol-
erance to extreme temperatures. Classically, lowering met-
abolic rate and, thus energy saving is also considered as
one of the most important adaptations for hypoxia endur-
ance [38,39]. Adaptation to these conditions has resulted
in reduced growth rates, as well as reduced development
and metabolism [40]. Previous studies conducted on the
marine gastropod Littorina saxatilis showed that an acute
long-term temperature increase could disturb metabo-
lism, leading to progressive metabolic depression and
adverse changes in the cellular energy status due to its

transition to partial anaerobiosis [41]. Antarctic marine
species are also much less capable to survive elevated tem-
peratures [42] and calculated temperature envelopes for
these organisms were 2–4 times smaller than those for
temperate species [43]. Studies on the Mediterranean
mussel Mytilus galloprovincialis showed that a long accli-
mation of up to 30 days at high temperatures (18 to
30°C) leads to behavioral (increase of duration of valve
closure), metabolic (metabolic depression with a shift
from aerobic to anaerobic metabolism) and molecular
(increase in HSPs protein levels) responses [44]. Interest-
ingly, the deep-sea mussel B. thermophilus seems to share
some general features with organisms living in polar
oceans that are characterized by very stable low tempera-
tures, below 5°C. We first hypothesized that annelids
were able to cope with a larger range of temperature com-
pared to the mussels, because they were described as early
colonizers of new chimneys at hydrothermal vents [45],
and thus able to sustain highest temperatures, at least over
short periods of time. While few genes seem to be regu-
lated similarly between the two species (actin, mitochon-
drial cytochrome oxydase, S-adenosylhomocysteine
hydrolase), most cell functions are very dissimilar, sug-
gesting a different response of these organisms to temper-

Secreted nidogen domain protein; 4e-08 Strongylocentrotus purpuratus 325 GH196473 forward

Actin A1; 2e-35 Haliotis iris 541 GH196475 forward

Ribosomal proteins

Ribosomal protein L5; 3e-58 Rattus norvegicus 423 GH196497 reverse

Ribosomal protein L28; 6e-07 Haliotis asinina 262 GH196486 reverse

Ribosomal protein L24; 1e-38 Danio rerio 439 GH196482 forward

Ribosomal protein S3; 3e-30 Crassostrea gigas 205 GH196474 forward

Ribosomal protein S16; 2e-41 Gallus gallus 337 GH196500 forward

Ribosomal protein SA; 8e-43 Xenopus tropicalis 514 GH196496 forward

Ribosomal protein P1; 2e-11 Drosophila yakuba 444 GH196498 forward

Unknown function

CG14235-PA, isoform A; 1e-27 Tribolium castaneum 483 GH196488 forward

CBG19860; 2e-08 Caenorhabditis briggsae 266 GH196485 reverse

Unidentified sequences

50 sequences GH196507 to GH196554

Forward: genes over-expressed at 10°C versus 20°C; Reverse: genes over- expressed at 20°C versus 10°C.

Table 2: Regulated genes identified in the SSH libraries of thermal exposed Paralvinella pandorae irlandei with significant database 
matches (E-value above 0.005). (Continued)
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ature. The genes that were identified in the mussel
libraries could indicate that this species tends to react as a
stenoecious species rather than an euryecious species (as
could be expected for organisms living in a highly fluctu-
ating environment). A general depression is indeed
observed in expression of Bathymodiolus genes involved in
transcription/translation, mobility, energetic metabolism,
and oxidative stress in response to temperature increase.
Conversely, genes involved in cell disorder and immune
system (ie myc-homolog, kalicludin...) are up-regulated at

the highest temperature. No similar pattern is observed in
P. pandorae, leading to the hypothesis that this species
could better adapt to high temperatures.

A long exposure at a temperature of 20°C (43 hours)
clearly appears to be a thermal physiological limit for B.
thermophilus that lives in colder habitats. As mussels
encounter short pulses of hot water under in situ condi-
tions, it seems that the duration of the heat exposure is
critical and probably more important than the tempera-

Table 3: mRNA expression of genes in B. thermophilus presented as a fold-change value with animals exposed at 10°C as a calibrator.

Genes Fold-change (calibration to 10°C)

Down-regulated at 20°C

Defensin 1192.69

Elongation Factor beta 4.59

Ribosomal protein L3 6.23

Foot protein 3.36

Pedal retractor muscle myosin 5.17

Adhesive plaque matrix protein 2.83

Actin 4.03

Secreted Protein, Acidic, Rich in Cystein (SPARC) 7.21

S-adenosylhomocysteine hydrolase 5.24

Cyclofilin S 4.35Δ5-desaturase 8.28

Carbonic anhydrase 2 11.39

Adenylate kinase 6.59

Gluthatione peroxidase 6.28

Cytosolic malate dehydrogenase 8.75

HSP90 6.23

BthermEST1 2.57

Up-regulated at 20°C

Kalicludine 1.06

Myc homolog 12.30

Techylectin 5A 6.63

Table 4: mRNA expression of genes in P. pandorae presented as a fold-change value with animals exposed at 10°C as a calibrator.

Genes Fold-change (calibration to 10°C)

Up-regulated at 20°C

Hemoglobin A2c 250

Hemoglobin B2 31.25

Linker L1 142.86

PpandEST2 13.33

Xylan endohydrolase 5.13

Down-regulated at 20°C

Intracellular Hemoglobin 1226.22

Linker L2 4.03

Secreted Nidogen domain protein 1278.29

S-adenosylhomocysteine hydrolase 35.51

Chymotrypsinogen 20.46

PpandEST1 1.53

Ribosomal protein S16 1640.59

Lipid binding protein 1.80

Rab 7 2469.49
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ture value itself. According to the experimental conditions
used for this study, it remains difficult to evaluate how
long B. thermophilus is really able to withstand a tempera-
ture of 20°C without severe physiological damage. Com-
plementary experiments such as the determination of
differential mortality kinetic in longer-term exposures and
at different ranges of temperatures have to be performed
in further studies to better understand the thermal resist-
ance/response/adaptation of this species. As all individu-
als survived for about 2 days (43-hour experiment), B.
thermophilus can deal with thermal stress for at least few
days but it is not clear whether they can then recover from
such stress.

The hypothesized limited adaptation of B. thermophilus to
high temperature is also supported by a decrease of
expression of nearly all genes identified in the mussels
exposed to 20°C, a pattern indicative of global metabolic
depression. Among these genes, there were many ribos-
omal proteins and some elongation factors, indicating
that the protein synthesis pathway was clearly involved in
response to temperature. However, different ribosomal
proteins are identified in both reverse and forward librar-
ies showing a complex regulatory process (or the absence
of regulation) in intra-molecular interactions in ribos-
omes. This result is commonly observed in transcriptomic
studies in mollusks in response to various environmental
parameters [46-49]. A higher number of ribosomal pro-
teins were however identified in the mussel forward
libraries suggesting a possible metabolic depression in
samples exposed to 20°C when compared to those
exposed at 10°C. In P. pandorae libraries, similar pattern
of down regulation at 20°C of 5 ribosomal proteins
among the 7 identified is observed.

More specifically, it is noteworthy that several genes of the
mussel energetic pathways were down-regulated. Among
them, arginine kinase (ArgK) and cytosolic malate dehy-
drogenase (cMDH) are found to be down regulated in
mussels exposed to 20°C. ArgK catalyzes the transfer of
phosphate between ATP and arginine (arginine phos-
phate + MgADP- + H+ ↔ arginine + MgATP2-), and plays a
critical role in cellular energy metabolism in invertebrates
[50]. It also serves as an energy reserve because it can read-
ily transfer phosphor-arginine to ATP when energy is
needed [51,52]. However, it was never found associated
with thermal stress. To our knowledge, no data on the
thermal regulation of mRNA expression of ArgK has been
reported to date. Its regulation has mostly been studied at
a protein level and this is the only phosphagen kinase
known in crustaceans and mollusks. ArgK is indeed regu-
lated in crustaceans and mollusks under hypoxia [53,54].
In the crustacean Marsupenaeus japonicus, the up-regula-
tion of ArgK under hypoxia may represent a provision for
oxygen recovery after a short period of hypoxia [54]. The

second metabolic enzyme is the cytosolic malate dehydro-
genase, which catalyzes the dehydrogenation of malate
(malate + NADP+ ↔ oxaloacetate + NADPH + H+). It plays
a major role in a number of metabolic pathways, includ-
ing the malate-aspartate (or NADH) shuttle and the ace-
tate shuttle active in lipogenesis, amino acid synthesis and
gluconeogenesis. cMDH is an interesting candidate gene
to study adaptation to temperature as this enzyme showed
differences in the effects of temperature on kinetic proper-
ties in shallow water species [7,55,56]. Even though no
cMDH mRNA expression has been reported in these stud-
ies, differences in protein properties strongly suggest a
clear involvement of this key gene in response to temper-
ature. The down-regulation of both ArgK and cMDH in B.
thermophilus could lead to a decrease of mitochondrial res-
piration, leading to a lower ATP production, and resulting
in the establishment of a global metabolic depression in
response to temperature.

The cDNA coding for a HSP90 was found in the mussel
SSH libraries. However, HSP90 displayed a down-regula-
tion at 20°C when compared to 10°C suggesting that the
process of protein re-naturation was probably over.
HSP90 proteins have key roles in signal transduction, pro-
tein folding, protein degradation, and morphological evo-
lution [57-59]. HSP90 is up-regulated in response to heat
stress in Drosophila subobscura [60], the whitefly Bemisia
argentifoli [61], and the flesh fly, Sarcophaga crassipalpis
[62]. It is induced by thermal stress in the Goby fish but
could also decrease in expression to a normal level during
the acclimatization process [63]. In M. galloprovincialis,
both HSP70 and HSP90 protein expression were shown to
increase in response to long-term thermal challenge [44].

Does temperature generate a stronger oxidative stress in 

mussels than in annelids?

We identified several genes that are classically expressed in
response to oxidative stress in the mussel libraries but not
in the annelid libraries, suggesting a differential behavior
of both species. Two main hypotheses can explain the
presence of an oxidative stress: (1) a direct effect of tem-
perature changes on lipid composition or (2) variations of
the oxygen concentration during experiments. In the first
hypothesis, temperature directly affects cells by modifying
membrane composition through replacement of unsatu-
rated fatty acids at low temperatures towards saturated
fatty acids at high temperatures [64], and secondly by
inducing apoptosis via activation of the sphingomyelin
pathway that leads to the process of lipid peroxidation
[65]. Many biological structures, such as enzymes and
lipid bilayer membranes, depend on a particular degree of
molecular instability or fluidity, which is directly affected
by temperature. In the particular case of our experimented
hydrothermal species, lipids of cell membrane bilayers
must be both fluid and structurally coherent to form a
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functional membrane, a characteristic very sensitive to
temperature change [2]. Lipid peroxyl radicals (LPO) are
the result of a reaction between lipid and oxygen and are
known to damage cells by changing the fluidity and per-
meability of the membrane and/or by directly damaging
DNA and other intracellular molecules, such as proteins
[66]. As a consequence of the lipid peroxidation process,
superoxide anion radicals can be produced. Lipid peroxi-
dation has been studied in hydrothermal vent mussels
and high levels of LPO were detected in B. azoricus in
response to a strong effect of environmental heavy metal
concentrations [67]. Recently, heavy metal stresses, such
as copper exposure, or changes in hydrostatic pressure
were also shown to produce LPO in B. azoricus [68]. Fatty
acid desaturases are very important during the process of
fatty acid metabolism that contributes to the structural
and functional maintenance of biological membranes in
living organisms. The down-regulation of Δ5-desaturase
mRNA expression of B. thermophilus exposed to 20°C is
consistent with a modification of membrane lipid con-
tent. We also identified a gene encoding SPARC, which is
more expressed in mussels incubated at 10°C when com-
pared to those exposed to 20°C. SPARC is classically
known to modulate cellular interaction with the extracel-
lular matrix through interactions with proteins such as
laminins and collagen [69,70]. SPARC was also shown to
be up-regulated in response to heat-shock and other
stresses [71,72]. SPARC also possesses a chaperone-like
activity in vitro suggesting its involvement in stress
response [73]. Its down-regulation at 20°C is coherent
with results observed by previous authors and could
reflect a strong disorder in membrane composition due to
the high temperature.

In the second hypothesis, the generation of reactive oxy-
gen species (ROS) as side products of electron transfer
during aerobic metabolism [74] can explain the regula-
tion of genes encoding protective proteins in mussels.
Here, oxidative stress can be due to the experimental con-
ditions used where sea-water was at a low-oxygen concen-
tration (below 120 μM) associated with a consumption by
animals and the effect of temperature. In the presence of
low oxygen concentration or anoxic conditions, organ-
isms use anaerobic metabolism and annelids and mol-
lusks are able to use more efficient mitochondrial
pathways of fermentation [75-77]. Under normal physio-
logical conditions, anaerobic metabolism produces free
radicals, and cells tend to maintain a balance between
generation and neutralization of ROS. When organisms
are subjected to xenobiotics, temperature increase or
anoxia events, the generation of ROS can exceed the scav-
enging capacity [78]. All organisms possess their own cel-
lular antioxidant defense system, composed of both
enzymatic (superoxide dismutase, catalase and glutath-
ione peroxidases) and non-enzymatic (glutathione, vita-

mins...) components. Glutathione peroxidases (GPx),
that have protective roles against oxidative stress, have
been identified in B. thermophilus libraries suggesting an
oxidative stress as a direct or indirect result of temperature
challenge. Surprisingly, GPx expression is lower in mus-
sels exposed to 20°C than those exposed to 10°C despite
the fact that oxidative stress is supposed to be stronger at
20°C, supporting the idea that B. thermophilus is no longer
able to regulate expression of oxidative stress related
genes. We also identified a gene encoding a myc homolog
which is up-regulated at 20°C compared to 10°C-exposed
mussels. This protein belongs to a transcription factor
family and is involved in the cell division control. Myc
and its binding partners regulate the expression of a large
number of genes that regulate diverse functions, including
protein synthesis, apoptosis, and DNA and energy metab-
olism [79-81]. Generally speaking, over-expression of a
myc-homolog enhances apoptosis by acting as a transcrip-
tion repressor [82,83]. In bivalves, c-myc has previously
been shown to be up-regulated by hypoxia [49] and
hydrocarbon stresses [46]. Identification of c-myc in mus-
sel exposed to 20°C seems to be indicative of the very
poor biological condition of the 20°C-exposed individu-
als and thus in accordance with the hypothesis of a low
tolerance of B. thermophilus to extended exposure to high
temperature.

A gene that is involved in adenosine metabolism, and that
has previously been shown to be regulated in response to
hypoxia, has also been found in both mussel and annelid
libraries. This enzyme called S-adenosylhomocysteinase
hydrolase (SAHH, EC 3.3.1.1) catalyses the reversible
hydrolysis of S-adenosylhomocysteine to form homo-
cysteine and adenosine [84]. AdenosineMethionine/Ade-
nosineHomocysteine turnover is believed to play a critical
role in methionine metabolism and the regulation of bio-
logical methylation processes. Tissue hypoxia induces a
variety of functional changes, including enhanced tran-
scriptional activity associated with high transmethylation
activity (e.g. mRNA cap methylation) in the nucleus. Dis-
turbance in DNA methylation pattern has previously been
observed in response to various stressors, such as heavy
metals, as a consequence of toxicity [85,86]. In both our
species, the mRNA expression of this gene is lower in ani-
mals exposed to 20°C than to 10°C. This regulation of
SAHH mRNA expression supports the hypothesis of a
response to a direct or indirect oxidative stress. Presence of
SAHH in response to temperature also illustrates the
importance of methylation processes as a response to tem-
perature increase. Generally speaking, a strong DNA
methylation leads to a decrease or an inactivation of gene
expression. Methylation processes regulation could be an
interesting type of response to temperature in hydrother-
mal species.
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Specific responses to temperature in mussels and annelids

In the mussel libraries, we interestingly identified three
down-regulated genes at 20°C that are involved in foot
activity (foot protein and pedal retractor muscle myosin)
and byssus activity (adhesive plaque matrix protein).
These results are in sharp contrast with previous studies
performed on the brackish-water mussel, Mytilopsis leu-
cophaeata that showed an increase in foot activity index
and byssus thread production in response to thermal chal-
lenge [87]. Authors demonstrated that both foot activity
and byssus production were higher when temperature
increased from 4 to 20°C, remained stable between 20
and 28°C, and then strongly decreased beyond 28°C.
This species commonly lives in a range of temperatures
comprised between 4°C (winter) and 20°C (summer).
Mussels of the genus Bathymodiolus are able to change
location when the conditions are not adequate [88]. This
can be viewed as an escape response in the presence of
stress factors. They also probably use this mobility to opti-
mize their position in the hydrothermal fluid in order to
acquire the sulfide (and/or methane for some species)
they need to feed their symbionts. The decrease of the
expression of genes encoding proteins related to mobility
in mussels exposed at 20°C, again reflects the poor phys-
iological condition of these individuals, since mussels
usually live in colder waters (4 to 14°C).

In the annelid SSH libraries, we identified several genes
encoding various extracellular globin chains (B1, A2 and
B2), one intracellular globin and also three linkers called
linker L1, linker L2 and linker LY. These results illustrate a
strong involvement of respiratory pigment in general and
in particular of the hexagonal bilayer hemoglobin (HBL-
Hb) in response to temperature in this species. In Alvinel-
lidae, respiratory gas transport is performed by the blood
and the coelomic fluid, and three main types of globins
are present: non-circulating in the cytoplasm, circulating
and intracellular in the coelom, and extracellular in the
vascular system [24]. Earlier work reported the tempera-
ture effect on both the function and the stability of Hbs in
the annelid Alvinella pompejana, under atmospheric pres-
sure and for temperatures ranging from 10°C to 40°C.
These Hbs are able to maintain a capacity to reversibly
bind oxygen in vitro over this range. At 50°C, the Hbs are
oxidized and aggregated during the de-oxygenation and
the re-oxygenation [89]. These results are in agreement
with the hypothesis that annelids, even if they are able to
withstand a strong thermal stress [25], are nonetheless
unable to sustain high temperature for a long time [24].
Because P. pandorae lives in a relatively cold environment
compared to other Paralvinella species, such as P. sulfin-
cola, and probably do not experience very high tempera-
tures, the involvement of Hbs in temperature response
could be the result of several processes and not only
driven by Hb thermostability properties. We observed a
strong increase of mRNA encoding extracellular Hb subu-

nits in individuals exposed to 20°C and conversely, a
decrease of intracellular subunit mRNA expression. It has
been suggested that extracellular Hbs were preferentially
involved in oxygen uptake and transport, while intracellu-
lar Hbs acted as an oxygen reserve for the worm and
potentially returned oxygen to the extracellular Hb [90].
Because oxygen availability decreases with temperature,
Paralvinella increased their extracellular Hb production to
optimize the oxygen uptake and transport. At the same
time the intracellular Hb was down-regulated, possibly to
avoid the release of O2 to the tissue since the worms expe-
rienced hot temperature but not hypoxia). We also
observed an opposite regulation in the expression of link-
ers L1 and L2 in P. pandorae in response to thermal stress
suggesting a possible rearrangement of the linker compo-
sition of the HBL-Hb molecule under temperature-
induced oxidative stress. Very few studies have dealt with
the linker function and regulation at a transcriptional
level. In the Earthworm Lumbricus terrestris, linkers have
been shown to exhibit a superoxide dismutase activity
conferring a protection against superoxide ions for HBL-
Hb molecules [91]. Linkers of the thermally-stressed
alvinellids may therefore have been mobilized as an active
defense against newly-produced ROS.

In the P. pandorae library, we also identified one gene
encoding a secreted nidogen domain protein that showed
a strong down-regulation at 20°C. Secreted nidogen
domain protein, also known as entactin, belongs to base-
ment membrane proteins. These membranes are made of
type IV collagens and laminins, both of which exist as var-
ious isoforms in animals [92,93]. These proteins are cell-
adhesive and form networks that confer mechanical sta-
bility to the basement membranes. Other ubiquitous
basement membrane components are the proteoglycan
perlecan and nidogen/entactin. Previous in vitro experi-
ments showed that recombinant nidogen-1 interacted
through different binding sites with the three main base-
ment membrane components (laminin, collagen IV, and
perlecan), and mediated the formation of ternary com-
plexes between laminin and collagen IV [94]. These
results therefore suggest that secreted nidogen domain
protein is a key component of alvinellid basement mem-
branes assembly, connecting the laminin and collagen
networks, and integrating other basement membrane
components as previously reported by Timpl and Brown
[93]. We suggest that temperature (and/or pressure) above
normal could induce strong changes in the membrane
composition of the worms and therefore increase interac-
tions between secreted nidogen domain protein, collagen
and other membrane protein in order to readjust poros-
ity/permeability. Other proteins that are thought to par-
tially play a role in membrane component modeling have
also been characterized. We identified a Ras-associated
binding 7 (Rab 7) protein belonging to the Rab family.
These are small GTPases of the Ras superfamily that con-
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tinuously cycle between the cytosol and different mem-
branes. The Rab family appears to be essential for the
regulation of intracellular membrane traffic in mamma-
lian cells. Rab proteins are anchored to the cytoplasmic
surface of specific intracellular membrane compartments
via the geranyl-geranyl group that is post-translationally
added to the C-terminal cysteines and is important for
their function [95]. Each Rab protein regulates one (or
more) specific step of intracellular membrane traffic in
eukaryotic cells, probably by assembling the general teth-
ering/docking/fusion machinery [96]. Moreover, several
lines of evidence suggest an involvement of Rab proteins
in actin- and microtubule- based processes [97]. Rab7, a
member of the Rab family small G proteins, has been
shown to regulate intracellular vesicle traffic to late endo-

some/lysosome and lysosome biogenesis, but the exact
roles of Rab7 are still undetermined [98,99]. Accumulat-
ing evidence suggests that each Rab protein has multiple
target proteins that function in the exocytic/endocytic
pathway. Because no studies showing how temperature
could affect Rab 7 expression, its down regulation
observed in P. pandorae by temperature remains difficult
to explain but could be associated with results observed
for nidogen protein.

Conclusion
Our results indicate that the mussels and the worms did
not cope with temperature in the same way. While the
mussel B. thermophilus seems to show a general metabolic
depression (strong decrease of mRNA expression for

Table 5: Primer sequences used in real-time PCR expression analysis for B. thermophilus SSH libraries validation

Genes Primer sequences

Elongation factor beta For: 5' GATCTTAAAAGTAAAGCTGGTCAGCAAGC 3'

Rev: 5' AACAAATCAAAATCATCATCATCACCGCC 3'

Ribosomal protein L3 For: 5' AGATATATCGTATTGGAGAGGGATACCACACC 3'

Rev: 5' GCTGTTGCATCCTTCTTCAATGGACCCAT 3'

Foot protein For: 5' AATAATGGTAAATGTGTTGCTAATGGCTA 3'

Rev: 5' CCGTATCCCCTTCTACAACATCTACCGCC 3'

Pedal retractor myosin For: 5' AGAACCGACGAATTGGAAGAGGCCAAGAG 3'

Rev: 5' AACAATTCAGCAGAGTAACTGCGGGCCTC 3'

Adhesive plaque matrix For: 5' AAAAGATGTGAAGTAAACAGATGCAGCCCA 3'

Rev: 5' CCGTATCCCCTTCTACAACATCTGCCGCC 3'

Actin For: 5' ACGCGGGTCAGGGTCGGACGTAGCCACGC 3'

Rev: 5' ATGGAGATCAGACGGAGATGGTCCTCCTC 3'

Adenosylhomocysteinase For: 5' GTAAATCTTGGTTGTGCTCATGGTCATCC 3'

Rev: 5' GATTTGAATGGTCCTTCTTTAGGTAGACC 3'

Cyclophilin S For: 5' TTGAATAAAGCCAGATGGATGGATGGAAA 3'

Rev:5' AAATCTTCATCGCTAGCTGCTTGTGCTTC 3'

Arginine kinase For: 5' ATGGGTGAAGTAGCAGAATTGTGGGCTAA 3'

Rev: 5' TCACATGCATACAATCCGACTCCGCT 3'

Glutathione peroxidase For: 5' ATGGGCATAAACTTGGGAGACATTTT 3'

Rev: 5' CCTAATTCTGTTGTACAAACAGGGGTATA 3'

BthermEST1 For: 5' AGTGACTTCACAACTGCCCGTATGTGGAA 3'

Rev:5' TTGGTGCACATCATCAAGAAGGAGAGTAT 3'

Kalicludine For: 5' CCATGCAATGAAGATTGTCTTTTGCCAAA 3'

Rev: 5' TTTGGCAAAAGACAATCTTCATTGCATGG 3'

Defensin For: 5' ATGTTCAAAGTAACTTTGTTCTTCGTTGG 3'

Rev: 5' TACGATCTGCAGTGACACACGTTATG 3'

SPARC For: 5' AACGCAGACGACCACCGTACAGACGC 3'

Rev: 5' TATGCATCACACTTGTCTGTAATGTCAACC 3'Δ5-desaturase For: 5' AACGACTGGTTTACAGGGCATCTAAA 3'

Rev: 5' TTTAGATGCCCTGTAAACCAGTCGTT 3'

Carbonic anhydrase-2 For: 5' GATGACAAGGAAGGATCTGAGCACACTCT 3'

Rev: 5' AGAGTGTGCTCAGATCCTTCCTTGTCATC 3'

HSP90 For: 5' ATGCCTGAACCTGAAACAACTATGGATGA 3'

Rev: 5' GAATACATCTGGGAATCTGCAGCTGGTGG 3'

Myc homolog For: 5' TCTGTTTATGATGCCTGGGTCACTCC 3'

Rev: 5' GGAGTGACCCAGGCATCATAAACAGA 3'

Cytosolic malate dehydrogenase For: 5' ATGGCAGTTCCTTCAGATGGATCTTA 3'

Rev: 5' CAATACACAAAAACAGACACTGTATACAT 3'

Techylectin 5A For: 5' GGATATCAGGGTAATGCAGGAGATGC 3'

Rev: 5' GCATCTCCTGCATTACCCTGATATCC 3'
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numerous genes), possibly due to maladaptation and cell
disorders when temperature increased, the annelid P. pan-
dorae mainlydisplayed a strong regulation of the mRNA
encoding subunits and linkers of respiratory pigments
and some proteins involved in membrane constitution. In
both cases, these regulations seem to be partly due to a
possible cellular oxidative stress induced by temperature
increase (10°C to 20°C). The large number of unknown
sequences makes definitive conclusions difficult. The data
collected may contain a number of candidate genes regu-
lated by temperature that require annotation and func-
tional characterization before meaningful interpretation
of temperature adaptation of both P. pandorae and B. ther-
mophilus is possible. New tools, such as microarrays will
help evaluate the expression and characterization of these
genes. This work will serve as a starting point for studying
the transcriptomic response of hydrothermal mussels and
annelids in future experiments in response to thermal
stress at various conditions of exposure duration and ther-
mal level.

Methods
Animal sampling and treatment

Specimens of both the hydrothermal vent mussel Bathy-
modiolus thermophilus (67.8 ± 30 mm in length) and the

annelid worm Paralvinella pandorae irlandei (≤ 10 mm in
length) were collected together from the Oasis site
(17°25.42S, 113°12.28W) on the East Pacific Rise during
the BIOSPEEDO cruise [100] by using the telemanipu-
lated arm of the submersible Nautile. The individuals
were collected in a cold zone associated with weak diffuse
flow (< 10°C). Once on board the ship, animals were
immediately transferred from the insulated collection
basket to the pressurized aquaria IPOCAMP™ (Incubateur
Pressurisé pour l'Observation et la Culture d'Animaux
Marins Profonds [101]) under an in situ pressure of 260
bars. Indeed, several studies showed that experiments
conducted on mussels at atmospheric pressure lead to a
global increase of stress parameters (lipid peroxidation,
anti-oxidant enzymes activity, DNA damage) and to a lim-
itation of stress response capacity [14,23,102]. One group
of 5 mussels and 20 worms was placed at 10°C, and
another group at 20°C, inside two different pressure ves-
sels for 43 hours. The pressure vessels were operated in a
flow-through mode (20 L/hour) for the first 3 hours, and
then isolated. Every 15 hours, seawater was re-circulated
for 3 hours, until the end of the incubation. When in flow-
through configuration, the pressure aquaria were fed with
sea-water aerated with a low-oxygen (8%) air mixture.
Therefore, oxygen levels during the experiments were at a

Table 6: Primer sequences used in real-time PCR expression analysis for P. pandorae irlandei SSH libraries validation.

Genes Primer sequences

Intracellular hemoglobin For: 5' CTTGCCGATAACATTACTGCTGTTCGAGG 3'

Rev: 5' TCGGCATCACCCGCCTTCTCCGCTACGTC 3'

Hemoglobin A2c For: 5' GTTCTGATCATAATCGCTGTCTGTCTGG 3'

Rev: 5' TGTAGAAGCTGGGCATTCAGCGTGTCGGG 3'

Linker L1 For: 5' ATCATGGCAGGCCTGGTGGCACTCGCCAT 3'

Rev: 5' TCTGATCCGTCATGACAGTCGTTAGCACC 3'

Linker L2 For: 5' ATGGTTGACGATGAGATGGACTTGATGGA 3'

Rev: 5' ATCTTATAGCTGTCTATAGTAACCCG 3'

Hemoglobin B2 For: 5' CTGGATCATCTCGGCCGTCAGCATGTTGT 3'

Rev: 5' GTGTGGTCGAGACGCGTTGCTCGGTCCGC 3'

PpandEST 2 For: 5' CAACCATGTGCCTACTTTACCTTGTTCAG 3'

Rev: 5' AAGAACAGCTGCTGCAGAATATCTCCCAC 3'

Xylan endohydrolase For: 5' GAGATGGAAGAGAGAAATCCAGATTGGCT 3'

Rev: 5' AGTTTCGCCTTCGAGTCACCGCTGTAGGC 3'

Rab 7 For: 5' CTTATTCAAGCTAGCCCACGAGATCCAGA 3'

Rev: 5' CAACTCTCCGCTGAAGTCTTCGCCCGGTC 3'

Adenosylhomocysteinase For: 5' ATTGTGTGCAATATTGGACATTTTGACTGTGA 3'

Rev: 5' AGACCTAAATAGCCAGCCTGGTCATCTGA 3'

Chymotrypsin For: 5' ACAGAGGTCGAATACGAGGTGATGACAAT 3'

Rev: 5' ATGCCACCTGAGCTAAGAGTTCCCCATCC 3'

PpandEST 1 For: 5' GAAGCTGACCTAGCTTACGCCGGTCTGAA 3'

Rev:5' TAGGGCTCGAGCGGCCGCCCGGGCAG 3'

Ribosomal protein S16 For: 5' GCTGTTGCTCACTGCAAACAGGGCAAAGGT 3'

Rev: 5' TTGATCTCTTTCTTTGATGCTTCGTCGTC 3'

Nidogen secreted domain protein For: 5' CAATGCAAGTATTGGCCATGGCATGGTAG 3'

Rev: 5' ACCCAGCGTCCTGCTTTGGCGACGTTACT 3'

Lipid binding protein For: 5' TTCAACATGTCTCAATTGAATGGGAAATGGAA 3'

Rev: 5' TCCAGGCCCGTTTCGTTCACCTCGATACG 3'
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maximum value of about 120 μM during circulation peri-
ods, and obviously decreased when the vessels were iso-
lated, due to oxygen consumption by experimented
animals. No mortality was observed at the end of the
experiments, and samples of mussels (pool of gills, foot,
mantle, adductor muscle) and worms (whole organisms)
were collected and immediately frozen in liquid nitrogen
until use.

RNA extraction

Total RNA was extracted from the gill, adductor muscle,
mantle and foot of 5 thermally-challenged mussels, and 6
whole worms with the Trizol Reagent according to the
manufacturer's instructions. Total RNAs extracted from
the different tissues were pooled and poly(A+) mRNA was
isolated using the PolyATtract®mRNA Isolation System
(Promega, Madison, WI, USA) according to the manufac-
turer's instructions.

Suppression subtractive hybridization

Both forward (individuals incubated at 10°C versus indi-
viduals incubated at 20°C) and reverse (individuals incu-
bated at 20°C versus individuals incubated at 10°C)
subtracted libraries were produced from 2 μg of mRNA
extracted from experimented mussels and worms. First
and second strand cDNA synthesis, RsaI endonuclease
enzyme digestion, adapter ligation, hybridization, and
PCR amplification were performed as described in the
PCR-select cDNA subtraction kit manual (Clontech, Palo
Alto, CA, USA).

Cloning and sequencing

The differentially expressed PCR products were ligated
into a pGEM-T vector (Promega, Madison, WI, USA) and
200 white colonies per library were cultured in LB
medium supplemented with 100 mg/L ampicillin. Plas-
mids were then extracted using an alkaline lysis plasmid
minipreparation, and sequenced using the Big Dye Termi-
nator V3.1 Kit (Perkins-Elmer) and run on an AB3100
sequencer (Applied Biosystems Perkins-Elmer).

Sequence analysis and homology search

Chromatograms obtained after sequencing were treated
with the Seqclean software (TGIR, the Institute for
Genomic Research, Rockville, MD, USA) to remove vector
and adaptors sequences. Cluster and contigs were then
formed on each library sequence set. BLAST analyses of
the sequences were performed on the NCBI server. The
sequences were analyzed for homology with known
sequences in databases using the BlastX and BlastN pro-
grams http://www.ncbi.nlm.nih.gov/BLAST/.

Validation of differential expression by real-time PCR

A validation step of the differentially expressed genes
identified in B. thermophilus and P. pandorae SSH libraries

was carried out using real-time PCR and total RNA sam-
ples used for the SSH construction. For each sample, 5 μg
of total RNA were submitted to reverse transcription using
oligo-dT anchor primer (5'-GAC CAC GCG TAT CGA TGT
CGA CT(16)V-3') and M-MLV reverse transcriptase
(Promega, Madison, WI, USA). Amplification of 20 genes
isolated in the SSH libraries was carried out on the cDNA
from both 10 and 20°C exposed mussel samples and 14
genes were amplified on pool of cDNA from samples of
annelid exposed to both 10 and 20°C. The real-time PCR
assay was performed in triplicate with 4 μL cDNA (1/20
dilution) in a final volume of 10 μL using the Chromo 4™
System (BioRad). The concentrations of the reaction com-
ponents were as follows: 1× ABsolute™ QPCR SYBR®

Green mix (ABgene, UK) and 70 nM of each primer
(Tables 5 and 6). The 18S ribosomal DNA was amplified
as an endogenous PCR control, under the same amplifica-
tion conditions using sense (5'-AAG GGC AGG AAA AGA
AAC TAA C-3') and antisense (5'-GTT TCC CTC TAA GTG
GTT TCA C-3') primers. The amplification was carried out
as follows: initial enzyme activation at 94°C for 15 min,
then 45 cycles of 94°C for 15 sec and 60°C for 1 min. A
dissociation curve was generated and PCR efficiency (E)
was estimated for each primer pair by using a serial dilu-
tion of reverse transcription products. Standard curves
were generated for each primer pair and E was calculated
using the formula E = 10(-1/slope)-1. All primer pairs tested
generated a single peak in the dissociation curve with a
PCR efficiency estimated between 95 and 100%. Relative
quantification (RQ) of each gene expression was calcu-
lated according to comparative CT method using the for-
mula: RQ = exponential (2-ΔΔCT) with ΔΔCT = ΔCT(10°C)
- ΔCT(20°C) and ΔCT(10°C) = CT(gene X in the 10°C
sample) – CT(18S) and ΔCT(20°C) = CT(gene X in the
20°C sample) – CT(18S); 18S ribosomal DNA being used
as the endogenous control.
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