R. K. Chumney and D. M. Adams, Spores to Surface Active Antibiotics and to Sodium Chloride and Sodium Nitrite, Journal of Applied Bacteriology, vol.41, issue.1, pp.55-63, 1980.
DOI : 10.1111/j.1365-2672.1980.tb01043.x

S. Condon, A. Palop, J. Raso, and F. Sala, Influence of the incubation temperature after heat treatment upon the estimated heat resistance values of spores of Bacillus subtilis, Letters in Applied Microbiology, vol.13, issue.2, pp.149-152, 1996.
DOI : 10.1111/j.1365-2621.1992.tb11310.x

A. M. Cook and M. R. Brown, Spores: Effects of Storage and pH of the Recovery Medium, Journal of Applied Bacteriology, vol.24, issue.3, pp.361-364, 1965.
DOI : 10.1111/j.1365-2672.1965.tb02164.x

J. E. Corry, The Effect of Sugars and Polyols on the Heat Resistance of Salmonellae, Journal of Applied Bacteriology, vol.3, issue.10, pp.31-43, 1974.
DOI : 10.1111/j.1365-2672.1974.tb00412.x

J. E. Corry, The Effect of Water Activity on the Heat Resistance of Bacteria, Water 283 Relations of Foods, pp.325-337, 1975.
DOI : 10.1016/B978-0-12-223150-6.50023-7

O. Couvert, I. Leguérinel, and P. Mafart, Modelling the overall effect of pH on the apparent heat resistance of Bacillus cereus spores, International Journal of Food Microbiology, vol.49, issue.1-2, pp.57-52, 1999.
DOI : 10.1016/S0168-1605(99)00052-5

URL : https://hal.archives-ouvertes.fr/hal-00560865

F. E. Feeherry, B. T. Munsey, and D. B. Rowley, Thermal inactivation and injury 287 of Bacillus stearothermophilus spores, Appl. Environ. Microbiol, vol.53, pp.365-370, 1987.

J. M. Goepfert, I. K. Iskander, and C. H. Amundson, Relation of the heat 295 resistance of Salmonellae to the water activity of the environment, Appl. Microbiol, vol.19, pp.429-296, 1970.

B. J. Härnulv, M. Johansson, and B. G. Snygg, Heat resistance of Bacillus 298 stearothermophilus spores at different water activities, J. Food Sci, vol.42, pp.91-93, 1977.

B. J. Härnulv and B. G. Snygg, Spores at Various Water Activities, Journal of Applied Bacteriology, vol.21, issue.4, pp.615-624, 1972.
DOI : 10.1111/j.1365-2672.1972.tb03743.x

V. K. Juneja and B. S. Eblen, Influence of Sodium Chloride on Thermal Inactivation and Recovery of Nonproteolytic Clostridium botulinum Type B Strain KAP B5 Spores, Journal of Food Protection, vol.58, issue.7, pp.813-816, 1995.
DOI : 10.4315/0362-028X-58.7.813

M. Lopez, M. Mazas, I. Gonzalez, J. Gonzalez, and A. Bernardo, Thermal resistance of Bacillus stearothermophilus spores in different heating systems containing some approved food additives, Letters in Applied Microbiology, vol.6, issue.10, pp.187-191, 1996.
DOI : 10.1111/j.1472-765X.1996.tb00061.x

P. Mafart and I. Leguérinel, Modelling the heat stress and the recovery of bacterial spores, International Journal of Food Microbiology, vol.37, issue.2-3, pp.131-135, 1997.
DOI : 10.1016/S0168-1605(97)00061-5

P. Mafart and I. Leguérinel, Modeling Combined Effects of Temperature and pH on Heat Resistance of Spores by a Linear-Bigelow Equation, Journal of Food Science, vol.19, issue.1, pp.6-8, 1998.
DOI : 10.1007/BF01584196

H. Pivnick and C. Thacker, Effect of Sodium Chloride and pH on Initiation of Growth by Heat-Damaged Spores of Clostridium Botulinum, Canadian Institute of Food Technology Journal, vol.3, issue.2, pp.70-320, 1970.
DOI : 10.1016/S0008-3860(70)74274-8

J. Pfeiffer and H. G. Kessler, Effect of relative humidity of hot air on the heat resistance of Bacillus cereus spores, Journal of Applied Bacteriology, vol.64, issue.2, pp.121-128, 1994.
DOI : 10.1111/j.1365-2672.1994.tb03054.x

O. Reichart, Modelling the destruction of Escherichia coli on the base of reaction kinetics, International Journal of Food Microbiology, vol.23, issue.3-4, pp.449-465, 1994.
DOI : 10.1016/0168-1605(94)90169-4

T. A. Roberts, R. J. Gilbert, and M. Ingram, The effect of sodium chloride on 326 heat resistance and recovery of heated spores of Clostridium sporogenes PA3679, J, 1966.

T. Sanchez, M. Rodrigo, M. J. Ocio, P. S. Fernandez, and A. Martinez, Growth and Heat Resistance of Clostridium SporogenesPA 3679 Spores Heated and Recovered in Acidified Media, Journal of Food Protection, vol.58, issue.6, pp.656-660, 1995.
DOI : 10.4315/0362-028X-58.6.656

M. H. Santos and J. T. Zarzo, Evaluation of citric acid and GDL in the recovery 332 at different pH levels of Bacillus cereus spores subjected to HTST treatment conditions, Int. J, 1996.

T. A. Sofos, ANTIMICROBIAL EFFECTS OF SODIUM AND OTHER IONS IN FOODS: A REVIEW, Journal of Food Safety, vol.39, issue.5, p.335, 1983.
DOI : 10.1007/BF00508794

H. Sugiyama, Studies on factors affecting the heat resistance of spores of 337, 1951.

E. U. Tuncan and S. E. Martin, Combined Effects of Salts and Temperature on the Thermal Destruction of Staphylococcus aureus MF-31, Journal of Food Science, vol.26, issue.3, pp.833-836, 1990.
DOI : 10.1111/j.1365-2621.1981.tb04542.x

T. Verrips and R. Van-rhee, Effects of egg yolk and salt on Micrococcocea heat 344 resistance, Appl. Environ. Microbiol, vol.45, pp.1-5, 1983.

J. A. Viljoen, Heat resistance studies:2. The protective effect of sodium chloride on 346 bacterial spores heated in pea liquor, J. Infect. Diseas, vol.39, pp.286-290, 1926.

K. Young and P. M. Foegeding, Acetic, lactic and citric acids and pH inhibition 348 of Listeria monocytogenes Scott A and the effect of intracellular pH, J. Appl. Bacteriol, vol.349515, issue.520, p.47, 1993.

W. Bogusla and . Zerek, Effects of baltic fishes freshness on thermal resistance of 352, 1978.