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Abstract. Labile Fe(II) distributions were investigated in the
Sub-Tropical South Atlantic and the Southern Ocean during
the BONUS-GoodHope cruise from 34 to 57◦ S (February–
March 2008). Concentrations ranged from below the de-
tection limit (0.009 nM) to values as high as 0.125 nM. In
the surface mixed layer, labile Fe(II) concentrations were
always higher than the detection limit, with values higher
than 0.060 nM south of 47◦ S, representing between 39 %
and 63 % of dissolved Fe (DFe). Apparent biological pro-
duction of Fe(II) was evidenced. At intermediate depth, local
maxima were observed, with the highest values in the Sub-
Tropical domain at around 200 m, and represented more than
70 % of DFe. Remineralization processes were likely respon-
sible for those sub-surface maxima. Below 1500 m, concen-
trations were close to or below the detection limit, except at
two stations (at the vicinity of the Agulhas ridge and in the
north of the Weddell Sea Gyre) where values remained as
high as∼0.030–0.050 nM. Hydrothermal or sediment inputs
may provide Fe(II) to these deep waters. Fe(II) half life times
(t1/2) at 4◦C were measured in the upper and deep waters and
ranged from 2.9 to 11.3 min, and from 10.0 to 72.3 min, re-
spectively. Measured values compared quite well in the up-
per waters with theoretical values from two published mod-
els, but not in the deep waters. This may be due to the lack of
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knowledge for some parameters in the models and/or to or-
ganic complexation of Fe(II) that impact its oxidation rates.
This study helped to considerably increase the Fe(II) data set
in the Ocean and to better understand the Fe redox cycle.

1 Introduction

Iron (Fe) is an essential micronutrient for all marine organ-
isms, playing a key role in many metabolic processes, such
as photosynthesis, respiration, nitrate reduction, and nitrogen
fixation (Sunda, 1988–1989). Its low concentrations have
been suggested to limit primary production in more than
50 % of the ocean (Boyd and Ellwood, 2010). All natural
and artificial Fe fertilization experiments have unequivocally
showed the importance of Fe for the carbon cycle, particu-
larly for the growth and composition of the phytoplanktonic
community (Boyd et al., 2000; Coale et al., 1996, 2004; Ger-
vais et al., 2002; Tsuda et al., 2003; Boyd, 2004; Blain et
al., 2007; Pollard et al., 2007). Despite numerous studies
on Fe cycling over the last 25 years, many unknowns per-
sist, in particular because Fe chemistry in seawater is very
complex. Fe has been observed to occur in two redox states
(Fe(III) and Fe(II), Waite and Morel, 1984). In oxic sea-
water, the thermodynamically most stable state is Fe(III),
but is highly insoluble (0.011 nM in 0.7 NaCl solution, Liu
and Millero, 2002) and is rapidly hydrolyzed resulting in the
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formation of various Fe(III) oxyhydroxide (de Baar and de
Jong, 2001). These species, with Fe(OH)3 being the dom-
inant one in seawater at pH∼8, have the tendency to form
colloidal Fe (Kuma et al., 1996) which coagulate and form
particulate Fe (Johnson et al., 1997). In contrast to Fe(III),
Fe(II) is more soluble but is rapidly oxidized by oxygen (O2)

and hydrogen peroxide (H2O2) (Millero et al., 1987; Millero
and Sotolongo, 1989; Santana-Casiano et al., 2004, 2005;
Gonźalez-D́avila et al., 2005, 2006). Although Fe(II) in sea-
water is less stable than Fe(III), recent models of Fe acquisi-
tion by eukaryotic phytoplankton suggest that the reduction
of Fe(III) to Fe(II), with subsequent re-oxidation to Fe(III), is
a possible mechanism by which Fe is made more bioavailable
to phytoplankton (Shaked et al., 2004; Salmon et al., 2006;
Maldonado et al., 2006; Morel et al., 2008). Numerous stud-
ies have investigated the oxidation of Fe(II) by O2 and H2O2
in different aqueous solutions to understand the behavior of
Fe(II) in natural waters (Santana-Casiano et al., 2006 and ref-
erences herein). The most widely accepted mechanism to
describe Fe oxidation with O2 and H2O2 is the Haber-Weiss
mechanism, with reactions 1 or 3 limiting the overall oxida-
tion rate (King et al., 1995).

Fe(II) + O2 → Fe(III ) + O•−

2 (1)

2 H+
+ Fe(II) + O•−

2 → Fe(III ) + H2O2 (2)

Fe(II) + H2O2 → Fe(III ) + OH−
+HO• (3)

Fe(II) + HO•
→ Fe(III ) + OH− (4)

The rates for Eq. (1–4) strongly depend on the relative
concentrations of the individual Fe(II) species in solution,
mainly Fe2+, Fe(OH)+, Fe(OH)2, FeHCO+

3 , Fe(CO3)
2−

2 ,
and FeCO3(OH−) (Millero, 1989; King, 1998; Santana-
Casiano et al., 2006; Trapp and Millero, 2007), as well as
on the concentrations of O2 and H2O2, pH, temperature (T )

and salinity (S). In warm oxygenated seawater, the half-life
of Fe(II) can be as low as few seconds (King, 1998), whereas
in cold surface or suboxic waters it can be on the order of
hours to days (Croot et al., 2001; Croot et al., 2008; Hansard
et al., 2009, Moffett et al., 2007).

Several mechanisms provide Fe(II) in the dissolved phase
and are reviewed by Hansard et al. (2009). They consist
of in situ processes (both abiotic and biotic) and external
sources. The abiotic in situ processes are mainly photochem-
ical reactions. They include photoreduction of dissolved
Fe(III) (oxy)hydroxides and photoreduction or photolysis of
organic, colloidal and particulate Fe (Rich and Morel, 1990;
Wells et al., 1991; Kuma et al., 1992a, b; King et al., 1993;
Barbeau et al., 2001; Rijkenberg et al., 2006). Extracellular
reduction of Fe(III) by photochemically-produced superox-
ide or reductive dissolution of particulate Fe(III) may also
occur (Voelker and Sedlak, 1995; Rose and Waite, 2002,
2003, 2005; Kustka et al., 2005; Salmon et al., 2006). Bi-
otic in situ processes include bioreduction of organic Fe(III)

at cell surface (Maldonado and Price, 1999, 2001; Shaked
et al., 2004; Morel et al., 2008), reduction by biogenic su-
peroxide (Rose and Waite, 2002, 2003; Salmon et al., 2006),
as well as remineralization via microbial activity (Alldredge
and Cohen, 1987), cell lysis (Gobler et al., 2002), and graz-
ing (Hutchins and Bruland, 1994; Hutchins et al., 1995;
Sarthou et al., 2008). The external sources are atmospheric
inputs (Kieber et al., 2001; Journet et al., 2007; Ozsoy and
Saydam, 2001), sediment inputs (Elrod et al., 2004; Lohan
and Bruland, 2008), submarine groundwater discharge (Win-
dom et al., 2006), and hydrothermal vents (Coale et al., 1991;
Chin et al., 1994; Field and Sherrell, 2000; Statham et al.,
2005; Bennett et al., 2008). These sources supply Fe(II),
which can then be transported by advective and/or diffusive
mixing.

Although it is now evident that Fe(II) plays a key role
in Fe chemistry and bioavailability in the ocean, there are
relatively few open-ocean measurements of Fe(II) avail-
able due to the difficulty of measuring such an ephemeral
species at subnanomolar concentrations (Bruland and Rue,
2001). To our knowledge, the most comprehensive data set
of Fe(II) was published by Hansard et al. (2009) in the Pa-
cific Ocean along a zonal transect at 30◦ N and a merid-
ional one at 152◦ W, within the CLIVAR/CO2 Repeat Hy-
drography Program. In this paper, we present results of the
Bonus-GoodHope (BGH) cruise, carried out in February-
March 2008 during the International Polar Year in the Sub-
Tropical South Atlantic and the Southern Ocean. Fe(II) dis-
tributions as well as oxidation rates are presented and results
are discussed considering different production processes, in-
cluding: photoreduction, oxidation, biological production,
and different inputs, such atmospheric, sediment, and hy-
drothermal inputs, and/or advection and mixing.

2 Materials and methods

2.1 Study area

Sampling and shipboard measurements were done aboard
R/V Marion Dufresnefrom 8 February to 24 March 2008
in the Atlantic sector of the Southern Ocean during the BGH
cruise. Figure 1 shows the cruise track together with the main
oceanographic fronts and domains crossed during the cruise,
from north to south: (i) the subtropical domain and the south-
ern subtropical front (S-STF), (ii) the Antarctic Circumpolar
Current (ACC) domain with 3 fronts crossed, the subantarc-
tic front (SAF), the polar front (PF) and the southern ACC
front (SACCF), and (iii) the eastern part of the Weddell Sea
gyre with the southern boundary (SBdy) separating this do-
main from the ACC. Twelve stations were sampled for Fe(II),
among which seven were sampled between 0 and 2000 m
(Large stations L1 to L7) and five between 0 to 4000 m (Su-
per stations S1 to S5). The position of each station is reported
in Fig. 1 and Table 1.

Biogeosciences, 8, 2461–2479, 2011 www.biogeosciences.net/8/2461/2011/



G. Sarthou et al.: Labile Fe(II) concentrations in the South Atlantic 2463

1/9 

 2 

 4 

 6 

 8 

 10 

 12 

 14 

 16 

 18 

 20 

 22 

 24 

 26 

 28 

 30 

 

 32 

 

 34 

Figure 1 

 36 

Fig. 1. Location of the stations sampled during the BONUS-
GoodHope cruise along with the three main oceanographic
provinces encountered (a larger scale of the studied area is given
in the inset map). The three domains crossed were the subtropi-
cal domain (stations L1, S1 and L2), the ACC domain (stations S2,
L3, L4, S3, L5, L6, S4 and L7) and the eastern part of the Wed-
dell Sea Gyre (station S5). Five fronts were crossed: the southern-
subtropical front (S-STF), the sub Antarctic front (SAF), the po-
lar front (PF), the southern ACC front (SACCF) and the southern
boundary (Sbdy).

2.2 Sample processing and analytical methods

Samples were collected using acid-cleaned 12 L Go-Flo bot-
tles. When not in use, the Go-Flo bottles were stored inside
a clean van with plastic bags covering the top and the bottom
including the spigots. On station, the Go-Flo bottles were
transferred to the sampling deck and mounted on a Kevlar
cable. Plastic bags were removed just after attachment to
the Kevlar cable. When the expected depths were reached,
bottles were tripped by a Teflon® messenger. Once back
on board, the bottles were directly transferred to the clean
van for sub-sampling. All sub-samples for Fe(II) measure-
ments were immediately collected in previously 60 mL acid-
cleaned high density brown polyethylene (HDPE) bottles.
The maximum time between sub-sampling time from the Go-
Flo bottle and analysis was 3 min. In order to minimize this
time, no filtration was carried out, thus avoiding an under-
estimation of Fe(II) concentrations due to rapid oxidation.
However, Fe(II) produced by fast-kinetic processes involving
lithogenic or biogenic particles, such as reductive dissolution
of particulate Fe(III) (Rich and Morel, 1990) or bioreduc-

tion of organic Fe(III) at cell surface (Maldonado and Price,
1999, 2001; Shaked et al., 2004; Morel et al., 2008) is mea-
sured and tends to overestimate Fe(II) concentrations. On
the other hand, the filtration step may cause some artifacts.
First, damage and explosion of the cells may cause release of
Fe(II) (Hutchins et al., 1993). Second, filtration-induced cell
stress can increase the production of superoxide (Godrant et
al., 2009). This reactive oxygen species is involved in the
redox Fe cycle, but it also initiates the three-step oxidation
of luminol (Ussher et al., 2005; Rose and Waite, 2001), thus
potentially inducing an overestimation of the Fe(II) concen-
trations in the dissolved phase. In the following, the term
“labile” Fe(II) is then used, since the measurement is oper-
ationally defined and the exact speciation of the measured
fraction is not known (Ussher et al., 2007).

Labile Fe(II) concentrations were determined by chemilu-
minescence flow injection analyses following the method of
King et al (1995) adapted by Croot and Laan (2002). As in
Croot and Laan (2002), there was no preconcentration prior
to reaction with luminol, allowing a minimal analytical time
(∼80–90 s). The percentage of labile Fe(II) was calculated
as the ratio of labile Fe(II) over the dissolved Fe concentra-
tion (i.e. (Fe(II)/DFe)*100). The instrument was calibrated
by standard addition using peak height measurements and
freshly prepared acidified Fe(II) standards added to a surface
(20–300 m) and a deep (300–2000 m) sample. Samples were
stored at 4◦C in the dark for 24 h to enable complete decay of
ambient Fe(II). Non-linear calibration curves were observed,
due to the kinetics of luminol oxidation and free-radical gen-
eration (Rose and Waite, 2001), and a polynomial 2nd de-
gree curve-fitting technique was used to quantify the results.
The blank was determined daily by running an aged seawa-
ter sample (4◦C for 24 h). It ranged from 0.014 to 0.072 nM
with a mean value of 0.036± 0.012 nM (n = 29). The detec-
tion limit calculated as three times the standard deviation of
the blank, ranged from 0.001 to 0.028 nM with a mean value
of 0.009± 0.006 nM (n = 29).

After each Fe(II) spike, the change in Fe(II) signal was
recorded over 10 min at 80–90 s intervals, and allowed
us to estimate Fe(II) oxidation rates, similar to Roy et
al. (2008). The oxidation rates may be overestimated by up to
∼10 % due to pH decrease after standard addition (∼0.1 pH
unit/standard addition). In addition to the samples used for
the calibrations, for the four super stations S2 to S5, analyses
were also performed with deeper samples (2300–3600 m).

2.3 Ancillary measurements

In addition to Fe(II), samples for dissolved Fe
(Fe(III)+Fe(II), DFe) and hydrogen peroxide (H2O2)

analyses were collected from the same Go-Flo bottles.
DFe samples were collected in acid-washed low density
polyethylene (LDPE) and H2O2 samples were collected
in high density brown polyethylene (HDPE) bottles.
DFe concentrations were determined by FIA with in-line
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Table 1. Location of the stations sampled during the cruise in relation to the domains and fronts crossed. Mixed layer depth observed from
the vertical profile of temperature for nearby CTD station, as well as day and time of sampling are indicated. Dates are in DD/MM/YYYY
format (D = day, M = month and Y = year).

Oceanographic Fronts Station Position MLD (m) Day of Time of
Domain crossed sampling sampling

Subtropical L1 34.43◦ S, 14.40◦ E 50–60 17/02/2008 10:50
S1 36.50◦ S, 13.10◦ E 40–50 20/02/2008 00:15
L2 41.18◦ S, 09.92◦ E 25 25/02/2008 23:15

S-STF 42.2◦ S
ACC S2 42.47◦ S, 08.93◦ E 50–80 27/02/2008 18:30

SAF 44.2◦ S
L3 44.88◦ S, 06.88◦ E 60–80 01/03/2008 17:45
L4 46.02◦ S, 05.87◦ E 80 03/03/2008 05:40
S3 47.55◦ S, 04.37◦ E 80-100 05/03/2008 15:50
L5 49.03◦ S, 02.84◦ E 100–110 07/03/2008 16:30

PF 50.2◦ S
L6 50.38◦ S, 01.33◦ E 60–80 09/03/2008 04:05

SACCF 51.5◦ S
S4 51.85◦ S, 00.00◦ E 120–150 10/03/2008 12:10
L7 55.23◦ S, 00.03◦ E 80–110 13/03/2008 22:30

Sbdy 55.5◦ S
Eastern part of the S5 57.55◦ S, 00.03◦ W 100 16/03/2008 16:00
Weddell Sea Gyre (EWSG)

preconcentration onto 8-HQ resin and chemiluminescence
detection (Obata et al., 1993; modified by Sarthou et al.,
2003). The comprehensive data set is published elsewhere
(Chever et al., 2010). H2O2 samples were analyzed on
board within 3 h of collection using a flow injection method
with chemiluminescent detection (Yuan and Shiller, 1999).
A comprehensive data set will be available elsewhere
(Bucciarelli et al., 2011). The other ancillary parameters
were measured from the closest (15–50 min) CTD cast.
in situ T and S were acquired from a CTD SEABIRD
SBE 911+ mounted in a Niskin-rosette. Oxygen (O2)

concentrations were measured on board by Winkler titration.
The pH was measured in total scale at a constantT of 25◦C
(pHT ,25) using an automated spectrophotometric technique
with m-cresol purple as indicator (González-D́avila et al.,
2003). A VINDTA 3C system (Mintrop et al., 2000), with
coulometer determination was used for the titration of the
total dissolved inorganic carbon (CT) after phosphoric acid
addition. Carbonate concentration were estimated from
pHT ,25, total alkalinity (potentiometrically titrated, Mintrop
et al., 2000) and CT, and computed by using CO2sys.xls v12
(Lewis and Wallace, 1998).

3 Results

3.1 Hydrography

The hydrography of the area is detailed in Chever et
al. (2010), based on Gladyshev et al. (2008) and using the
S andT data measured during the BGH cruise (Fig. 2). The
subtropical domain (STZ) extended southward to the S-STF
(about 42◦ S, between station L2 and S2). Although station
S2 is located south of the S-STF, its surface waters exhibitS

andT signatures of subtropical waters. This station will be
considered in the following as a Sub-Tropical station. Fur-
ther south, the domain of the ACC extended to the Southern
Boundary (SBdy) (∼42◦ S to∼55◦ S, stations S2 to L7). The
SAF, PF and SACCF were found at∼44◦ S, 50◦ S, and 51◦ S,
respectively. South of the Sbdy (station S5), waters were en-
trained in the large scale cyclonic flow of the Weddell gyre.

Along the transect, several major water masses were sam-
pled. They are described elsewhere (Arhan et al., 2011; Spe-
ich et al., 2011) and briefly summarized here and on Fig. 2.
In the subtropical domain, the central water layer was mostly
occupied by waters of Indian Ocean origin (Boebel et al.,
2003). Below, the Antarctic Intermediate Water (AAIW), the
Upper Circumpolar Deep Water (UCDW), the diluted North
Atlantic Deep Water (NADW), and finally the Antarctic Bot-
tom Water (AABW) were observed. In the ACC, between
the SAF and PF, below the surface mixed layer (SML) were
located the AAIW, the Winter Waters (AAWW, marked by a
T minimum), the UCDW, and the Lower Circumpolar Deep
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Table 2. Labile Fe(II) concentrations and percentage of labile Fe(II) over dissolved Fe (DFe, Chever et al., 2010). Uncertainties on the
concentrations correspond to standard deviation of a same sample measured 3 times. EWSG = eastern part of the Weddell Sea Gyre. nd = not
determined, when no DFe data were available.

Domain Station Position Bottom Depth Fe(II) STD Fe(II)/DFe STD
depth (m) (m) (nM) (nM) (%) (%)

Subtropical L1 34.43◦ S, 14.40◦ E 4505 20 0.017 0.001 7.2 0.6
40 0.016 0.001 3.2 0.2
60 0.025 0.001 nd
80 0.063 0.003 30.1 1.8

200 0.076 0.004 10.2 0.5
700 0.033 0.002 2.8 0.2
800 0.049 0.002 7.7 0.5

1000 0.035 0.002 5.4 0.3
1200 0.017 0.001 2.7 0.2
2100 0.014 0.001 2.1 0.1

S1 36.50◦ S 13.10◦ E 4915 20 0.038 0.002 5.5 0.3
30 0.039 0.002 5.5 0.4
40 0.099 0.005 nd
70 0.107 0.005 nd

300 0.112 0.006 nd
500 0.107 0.005 nd
700 0.091 0.005 nd

1000 0.039 0.002 3.9 0.3
1200 0.029 0.001 3.1 0.2
1400 0.015 0.001 2.0 0.1
1600 0.009 0.000 1.3 0.3
2000 0.009 0.000 nd
2700 0.009 0.000 1.4 0.1
3050 0.009 0.000 1.0 0.0
3500 0.009 0.000 1.6 0.1
3800 0.009 0.000 0.8 0.0
4000 0.010 0.000 0.6 0.0

L2 41.18◦ S 09.92◦ E 4525 15 0.040 0.002 25.4 1.3
35 0.009 0.000 nd
45 0.009 0.000 1.5 0.2
95 0.094 0.005 32.3 3.1

300 0.102 0.005 nd
600 0.047 0.002 6.4 0.4
800 0.025 0.001 2.3 0.2

1200 0.022 0.001 2.7 0.2
1400 0.015 0.001 2.0 0.2
2100 0.009 0.000 1.0 0.1

Water (LCDW) with, north of the PF, an addition of diluted
South West NADW (SW-NADW, Whitworth III and Nowlin,
1987). Deeper, the AABW was observed against the north-
ern flank of the Mid Atlantic Ridge (MAR). Finally, south
of the SBdy, the near surface waters were thought to have
been in contact with the western continental margin of the
Antarctic Peninsula, while the deeper waters might have had
a more recent contact with the northern topographic limit of
the Weddell Basin (Orsi et al., 1993; Meredith et al., 2000;
Klatt et al., 2005).

3.2 Labile Fe(II) concentrations

Labile Fe(II) concentrations are reported in Table 2 and plot-
ted on Fig. 3a. Within the whole data set, concentrations
ranged from values below the detection limit to values as
high as 0.125 nM.

In the SML, labile Fe(II) concentrations were systemati-
cally higher than the detection limit. Over the whole tran-
sect, the mean value was equal to 0.039± 0.024 nM (n =

26, median value = 0.037) and concentrations ranged from
0.012 nM to 0.116 nM. Both the minimum and maximum

www.biogeosciences.net/8/2461/2011/ Biogeosciences, 8, 2461–2479, 2011
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Table 2. Continued.

Domain Station Position Bottom Depth Fe(II) STD Fe(II)/DFe STD
depth (m) (m) (nM) (nM) (%) (%)

ACC S2 42.47◦ S 08.93◦ E 4070 15 0.024 0.001 13.3 1.6
30 0.019 0.001 14.6 2.1
35 0.021 0.001 21.5 2.8
45 0.116 0.006 nd

196 0.125 0.007 70.4 5.8
314 0.105 0.006 62.3 4.9
461 0.102 0.006 nd
598 0.093 0.005 nd
809 0.088 0.005 20.2 1.3

1029 0.078 0.004 18.0 1.3
1250 0.071 0.004 15.5 1.1
1441 0.051 0.003 7.9 0.5
1764 0.032 0.002 5.0 0.3
2156 0.033 0.002 3.2 0.2
2548 0.027 0.001 3.4 0.2
2891 0.020 0.001 1.4 0.1
3234 0.025 0.001 3.2 0.3
3626 0.020 0.001 2.8 0.2
3940 0.023 0.001 3.7 0.2

L3 44.88◦ S, 06.88◦ E 4315 30 0.043 0.003 nd
100 0.019 0.002 9.3 1.7
150 0.017 0.002 14.4 2.7
270 0.023 0.002 11.6 1.4
400 0.016 0.002 4.7 0.7
600 0.013 0.001 3.1 0.4

1200 0.009 0.001 0.9 0.1
1400 0.009 0.001 1.1 0.1
2100 0.011 0.001 1.8 0.2

L4 46.02◦ S 05.87◦ E 4147 30 0.035 0.002 21.0 3.2
60 0.030 0.002 nd

100 0.046 0.002 22.3 2.3
150 0.023 0.001 10.1 1.1
270 0.029 0.001 10.4 0.7
480 0.024 0.001 6.3 0.7
800 0.018 0.001 5.3 0.3

1600 0.018 0.001 2.5 0.2
2050 0.016 0.001 2.1 0.2

S3 47.55◦ S 04.37◦ E 4480 20 0.065 0.003 40.2 7.0
30 0.066 0.003 38.7 2.8
40 0.032 0.002 nd
70 0.021 0.001 11.5 1.4

100 0.018 0.001 9.6 1.6
200 0.048 0.002 33.8 3.9
300 0.063 0.003 22.6 1.4
450 0.055 0.003 19.1 1.0
600 0.050 0.002 12.2 0.9
800 0.041 0.002 7.3 0.5

1070 0.037 0.002 5.6 0.4
1500 0.028 0.001 4.6 0.3
2020 0.018 0.001 1.6 0.1
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Table 2. Continued.

Domain Station Position Bottom Depth Fe(II) STD Fe(II)/DFe STD
depth (m) (m) (nM) (nM) (%) (%)

2500 0.015 0.001 1.9 0.2
3000 0.010 0.001 1.7 0.1
3500 0.009 0.000 1.2 0.1
3980 0.010 0.001 1.3 0.1

L5 49.03◦ S 02.84◦ E 4025 40 0.018 0.001 12.6 1.4
80 0.060 0.001 nd

150 0.065 0.002 49.2 1.7
170 0.087 0.002 nd
250 0.055 0.002 25.6 1.2
350 0.048 0.003 13.6 1.4
700 0.036 0.004 6.0 1.0

1000 0.039 0.003 7.7 0.7
1600 0.026 0.003 5.5 0.8
2200 0.023 0.001 3.2 0.2

L6 50.38◦ S 01.33◦ E 3576 30 0.039 0.002 15.8 1.8
60 0.047 0.002 nd

100 0.021 0.001 9.6 1.5
135 0.015 0.001 nd
180 0.018 0.001 8.4 0.8
300 0.018 0.001 4.3 1.0
600 0.014 0.001 1.6 0.1
850 0.012 0.001 2.8 0.2

1600 0.010 0.000 2.3 0.2
2100 0.011 0.001 1.0 0.1

S4 51.85◦ S 00.00◦ E 2632 30 0.116 0.006 63.5 4.6
60 0.081 0.004 nd

130 0.060 0.003 44.4 4.8
160 0.064 0.003 50.6 4.9
180 0.054 0.003 29.4 1.8
250 0.066 0.003 34.5 2.6
300 0.050 0.003 24.9 2.7
350 0.060 0.003 29.6 1.9
400 0.047 0.002 21.9 1.6
500 0.057 0.003 12.8 0.7
700 0.035 0.002 8.3 0.5
900 0.049 0.002 nd

1117 0.026 0.001 5.6 0.3
1950 0.021 0.001 nd
2300 0.012 0.001 nd
2500 0.009 0.000 1.1 0.1

L7 55.23◦ S 00.03◦ E 2770 30 0.016 0.001 14.6 1.0
60 0.012 0.001 18.7 2.1

100 0.017 0.001 26.0 3.7
120 0.024 0.001 26.1 2.4
200 0.037 0.002 17.4 1.1
300 0.031 0.002 8.3 0.5
650 0.020 0.001 4.5 0.2

1000 0.012 0.001 2.5 0.2
1500 0.019 0.001 4.0 0.3
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Table 2. Continued.

Domain Station Position Bottom Depth Fe(II) STD Fe(II)/DFe STD
depth (m) (m) (nM) (nM) (%) (%)

EWSG S5 57.55◦ S 00.03◦ W 3932 30 0.063 0.003 43.5 8.4
60 0.042 0.002 29.2 2.5

120 0.017 0.001 5.6 0.6
140 0.018 0.001 16.3 3.4
190 0.014 0.001 10.7 1.0
250 0.025 0.001 15.0 1.8
350 0.011 0.001 7.9 0.7
550 0.014 0.001 8.6 1.0
750 0.021 0.001 2.9 0.5
800 0.024 0.001 7.1 0.5

1250 0.009 0.000 2.2 0.1
1700 0.009 0.000 3.5 0.2
2150 0.035 0.002 12.2 0.7
2600 0.036 0.002 10.0 0.9
3050 0.047 0.002 11.2 0.6
3500 0.050 0.003 13.1 0.8
3840 0.044 0.002 8.5 0.8

values were observed in the ACC (Station L7, 60 m, and
station S4, 30 m, respectively). The highest percentages of
Fe(II) relative to DFe (40–64 %, Fig. 3b) were found at three
stations south of 47◦ S (S3, S4, and S5) and were associated
with values of Fe(II) higher than 0.060 nM. At the other sta-
tions, percentages were lower, ranging from 3 % to 25%.

At intermediate depth (between the SML and 1500 m),
values ranged from below the detection limit to 0.125 nM
(Station S2, 196 m). The maxima observed around 200–
300 m, more pronounced in the sub-tropical zone, corre-
sponded to percentages of labile Fe(II) relative to DFe of
30 % to70%. Elsewhere, percentages varied between less
than 1 % and 26%.

Below 1500 m, labile Fe(II) concentrations were gen-
erally close to or below the detection limit (mean value
0.010± 0.002 nM, n = 11), representing less than 4 % of
DFe. Exceptions were noted at station S2, where values were
around 0.030 nM at∼ 2000 m, and at station S5 where values
ranged from 0.035 to 0.050 nM below 2100 m,

3.3 Fe(II) oxidation rates

The natural logarithm transformation of Fe(II) chemilumi-
nescence over time showed linear decreases in signal for
all surface and deep samples and spike additions, indicat-
ing a pseudo first-order kinetics for Fe(II) oxidation during
the timescale monitored (Fig. 4). The pseudo-first order
rate constantskox at 4◦C were experimentally determined
as the slope of the ln-transformed chemiluminescence signal
vs. time. The half-lives (t1/2) were then calculated ast1/2 =
ln(2)/kox, for the four Fe(II) spikes (Fig. 5, Table 3). These
measured half-lives of Fe(II) at (sub-)nanomolar concentra-

tions will be compared to theoretical values derived from
model predictions.

In the upper waters (20–300 m), values ranged from 2.9 to
11.3 min and increased significantly with latitude (linear re-
gression,r2

= 0.65, slope = 0.3 min/◦ S, P < 0.01, n = 12).
The mean value of all data was equal to 6.7± 2.6 min (me-
dian value 6.7 min). In the deep waters (300–2000 m),t1/2
varied between 10.0 and 72.3 min, and no significant rela-
tionship was observed with latitude (linear regression,P =

0.57). The mean value of all the deep-water data was equal
to 37.0± 19.7 min (median value 35.2 min). On average, the
measuredt1/2 was 6 times higher in deep waters than in the
upper waters. At the four super stations where two different
depths were sampled below 300 m, values were not signifi-
cantly different (paired t-test,P = 0.6, n = 4).

4 Discussion

4.1 Comparison with previously reported Fe(II) data

There are relatively few Fe(II) data reported in the literature
(Table 4). Previous studies have been either generally geo-
graphically restricted, except the one carried out by Hansard
et al. (2009), or focused on particular areas, such as the sub-
oxic zones, or performed during artificial Fe experiments in
the Southern Ocean or the Subarctic Pacific.

For the open ocean, measurements were done in the Pa-
cific Ocean (Hansard et al., 2009; O’Sullivan et al., 1991),
the Atlantic Ocean (Bowie et al., 2002; Boye et al., 2003,
2006), and the Southern Ocean (Croot et al., 2007). These
studies typically found Fe(II) concentrations ranging from
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Figure 2 
Fig. 2. Vertical distribution of salinity(a), theta(b), and oxygen
(c) measured along the transect from the north (left) to the south
(right) of the section. Water masses are indicated: AAIW: Antarc-
tic Intermediate Water. This water mass is coming from the Indian
Ocean through the Agulhas Current (I-AAIW) north of∼37◦ S and
from the Atlantic sector (A-AAIW) south of 37◦ S (Gordon et al.,
1992). NADW: North Atlantic Deep Water. The highest salin-
ity values close to the African continental slope reflect advection
by a southeastward deep boundary current (SE-NADW, Arhan et
al., 2003). LCDW: Lower Circumpolar Deep Water and AABW:
Antarctic Bottom Water.

the detection limit to∼0.050–0.080 nM, with higher concen-
trations in the surface waters, due to photoproduction pro-
cesses, or in water masses influenced by continental mar-
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Fig. 3. Vertical section of (a) labile Fe(II) in nM and
(b) %Fe(II)/DFe from the north (left) to the south (right) of the sec-
tion. DFe data are from Chever et al. (2010).

gins. Indeed, studies carried out in continental or shelf wa-
ters showed concentrations up to 0.3–0.5 nM (Boye et al.,
2006; Hansard et al., 2009), and even 3 nM (Waite et al.,
1995). These high concentrations were likely due to trans-
port of sediment-derived Fe and/or diffusion of Fe(II) di-
rectly from pore waters. These processes were even more
pronounced in Fe-rich coastal environments, where values of
Fe(II) were found to reach 40 nM (Hong and Kester, 1986).
In suboxic zones, low oxygen concentrations slow the ox-
idation of Fe(II) and maxima of Fe(II) (0.2–0.6 nM) were
associated with the oxygen minima and/or nitrite maxima
(Hopkison and Barbeau, 2007; Moffett et al., 2007). Dur-
ing the artificial Fe fertilization experiments, concentrations
of Fe(II) were shown to remain elevated (>0.2 nM and up to
1 nM) for several days after enrichment (Croot et al., 2001,
2005, 2008; Croot and Laan, 2002), due to a potential com-
bination of slow oxidation rate or possibly due to organic
complexation of Fe(II) (Roy et al., 2008).

Our values are within these reported ranges, although most
of the previous studies measured Fe(II) in the dissolved
phase. As already mentioned in Sect 2.2, omitting the fil-
tration may underestimate or overestimate the Fe(II) signal,
but the good consistency between our data set and previous
ones suggests that any bias is minimal. Our range of concen-
trations was also reasonably consistent with that of Hansard
et al. (2009). In that study, samples were acidified to pH
6 to minimize Fe(II) oxidation prior to analysis. A concern
was that the acidification step may result in a measurement of
“readily reducible Fe(III)” rather than actual Fe(II); however,
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Figure 4 

Fig. 4. Natural logarithm transformation of the chemiluminescent
integral vs. time for Fe(II) spikes (0.25–1 nM) in a surface sample
(a) and a deep one(b). See text for more details.

the similarity between the two data sets suggests that the
method of Hansard et al. (2009) adequately corrected for any
Fe(III) reduction that may have been caused by pH adjust-
ment.

4.2 Spatial and vertical distribution of labile Fe(II)
during the BGH cruise

In contrast to DFe concentrations (Chever et al., 2010), no
systematic decrease in labile Fe(II) concentrations was ob-
served from the north to the south of the section. The high
values of DFe in the STZ were suggested to be due to di-
rect dust deposition coming from Patagonia and/or to lateral
advection of Indian Ocean water masses enriched by dust in-
puts. Another potential source of DFe was the African con-
tinental margin both in the SML and deeper waters (Chever
et al., 2010). The mean advective time of these waters, es-
timated from the AVISO Mean Absolute Dynamic Topogra-
phy (Ducet et al., 2000) for both the specific cruise period
(2007–2008) and for the entire satellite time series (i.e., from
1992 to 2008), was equal to 1–3 months. Given the very
short half-life time of Fe(II) in surface and deep waters (3–
72 min), this delay is likely to be too long to preserve the sig-
nal of a potential enrichment of water masses by the African

5/9 

0

2

4

6

8

10

12

14

16

L1 S1 L2 S2 L3 L4 S3 L5 L6 S4 L7 S5
Station #

Fe
(II

) h
al

f-l
ife

 ti
m

e 
(m

in
)

Upper waters

 66 
(a) 

0

10

20

30

40

50

60

70

80

90

100

L1 S1 L2 S2 L3 L4 S3 L5 L6 S4 L7 S5
Station #

Fe
(II

) h
al

f-l
ife

 ti
m

e 
(m

in
)

Upper waters
Deep waters

 68 
(b) 

0

10

20

30

40

50

60

70

80

90

100

S2 S3 S4 S5
Station #

Fe
(II

) h
al

f-l
ife

 ti
m

e 
(m

in
)

0-300 m
300-2000 m

Below 2000 m

 70 
(c) 

 72 

Figure 5 Fig. 5. Measured Fe(II) half-lifes at 4◦C in minutes for(a) sur-
face waters (20–300 m),(b) both surface and deep waters (300–
2000 m), and(c) surface, 300–2000 m deep and 2300–3600 m deep
waters. The bars represent the mean value calculated from the four
Fe spikes and the error bars the standard deviation.

continental margin, unless stabilization of Fe(II) by organic
complexation occurs (Roy et al., 2008). In the following, we
will examine in more detail the depth profiles of labile Fe(II)
and discuss the potential sources of Fe(II) in our studied area.

4.2.1 Surface mixed layer (SML)

Diurnal variation in Fe redox speciation in the SML has been
observed in numerous studies (e.g. Hong and Kester, 1986;
Johnson et al., 1994; O’Sullivan et al., 1991; Waite et al.,
1995; Bowie et al., 2002; Roy et al., 2008). In our study,
5 stations were sampled at night (S1, L2, L4, L6 and L7)
and 7 stations were sampled during the day (L1, S2, L3,
S3, L5, S4 and S5). The daytime and nighttime mean val-
ues were not significantly different (0.044± 0.029 nM and
0.033± 0.012 nM, respectively, student’s t-test,P = 0.39).
Unexpectedly, daytime values were negatively correlated to

Biogeosciences, 8, 2461–2479, 2011 www.biogeosciences.net/8/2461/2011/



G. Sarthou et al.: Labile Fe(II) concentrations in the South Atlantic 2471

Table 3. Theoretical values of Fe(II) half lifes (in min) for surface and deep water samples at 4◦C using models of Fe(II) oxidation kinetics
(Santana-Casiano et al., 2005: Model I; Trapp and Millero, 2007: Model II; see Supplement). The ionic strength has been calculated from
salinity using the equationI = (19.9201*S)/(1000–1.00488*S) (Millero, 1995).

Theoretical values Measured
Stations Latitude (◦ S) I (M) [O2] [H2O2] pH [CO2−

3 ] Model I Model II values
(µM) (nM) (µM) t1/2 (min) t1/2 (min) t1/2 (min)

Upper waters

L1 34.43 0.74 233.7 27.0 8.09 216.1 7.5 5.5 2.9
S1 36.50 0.73 245.4 19.6 8.12 209.1 7.7 5.6 2.9
L2 41.18 0.71 251.3 2.4 7.99 110.3 18.4 13.6 3.8
S2 42.47 0.71 273.5 2.1 8.04 117.9 15.4 11.4 7.6
L3 44.88 0.70 293.2 8.07 128.0 12.6 9.7 6.4
L4 46.02 0.70 300.9 21.5 8.07 125.0 11.3 9.0 6.2
S3 47.55 0.70 311.3 15.1 8.08 119.8 12.0 9.4 9.0
L5 49.03 0.70 313.5 19.8 8.07 120.0 11.6 9.2 8.3
L6 50.38 0.70 326.2 22.6 8.08 112.1 12.2 9.6 5.9
S4 51.85 0.69 340.7 9.0 8.05 106.1 13.4 10.4 8.8
L7 55.23 0.70 349.2 31.1 8.06 98.8 13.1 10.3 7.0
S5 57.55 0.70 353.3 31.5 8.06 93.9 14.1 10.9 11.3

Deep waters

S1 36.50 0.72 218.0 7.93 90.5 91.1 20.4 43.8
L2 41.18 0.71 187.7 1.1 7.85 74.6 127.0 30.8 63.4
S2 42.47 0.71 185.4 7.86 75.3 132.6 31.0 11.8
S2 42.47 0.72 227.8 7.88 91.3 85.6 19.2 14.6
L3 44.88 0.71 185.5 7.85 76.2 130.5 30.5 10.0
L4 46.02 0.72 187.0 7.87 85.5 114.8 26.1 39.2
S3 47.55 0.71 181.2 7.86 74.5 137.6 32.3 36.7
S3 47.55 0.72 218.7 7.84 81.7 101.3 23.3 37.6
L5 49.03 0.71 180.5 1.4 7.85 77.6 125.5 30.3 28.2
S4 51.85 0.71 183.9 7.88 79.5 126.7 29.2 33.6
S4 51.85 0.72 218.5 7.87 84.0 98.8 22.6 40.5
L7 55.23 0.72 201.9 6.3 7.92 84.4 89.9 23.4 30.9
S5 57.55 0.72 209.1 7.91 76.8 115.8 26.8 72.3
S5 57.55 0.72 252.4 7.85 79.7 89.8 20.8 47.2

the SML-integrated solar radiation (ANOVA,F = 9.12,P <

0.01, E. Key, personal communication, 2011). A parameter
that appeared to control the labile Fe(II) values in our data set
was the time at which samples were taken. Indeed, maximum
values of labile Fe(II) as well as %Fe(II)/DFe were observed
for the three stations (S3, S4 and S5) sampled between 12:00
and 16:00 (Universal Time, Fig. 6). This is consistent with
photochemical reactions producing Fe(II) in the SML (Rich
and Morel, 1990; Wells et al., 1991; Kuma et al., 1992a,
b; King et al., 1993; Barbeau et al., 2001; Rijkenberg et
al., 2006; Voelker and Sedlak, 1995; Rose and Waite, 2002,
2003; Kustka et al., 2005; Rose et al., 2005; Roy et al., 2008).
However, at these stations, the time between the tripping of
the Go-Flo bottles (removing the sample from the influence
of light) and analysis (30–40 min) was greater than the mea-
sured half-life times of Fe(II) (9–11 min). Under these cir-
cumstances, unrealistically high intial Fe(II) concentrations

would be predicted (3–4 times DFe), suggesting that other
source mechanisms (e.g. biological production) may be oper-
ating. Daily biological Fe(II) production cycles might over-
lap with photochemical ones, since higher photosynthetic ef-
ficiencies have been observed to occur around noon (Leg-
endre et al., 1988). Moreover, one metabolic pathway for
biological production of superoxide, an active oxygen redox
intermediate capable of reducing Fe(III), appears to be asso-
ciated with increased irradiance (Marshall et al., 2001).

Biological superoxide production rates were recently mea-
sured in oceanic and coastal waters of the Gulf of Alaska,
with values as high as 0.3 nM min−1 (Hansard et al., 2010).
Considering our labile Fe(II) data and measuredt1/2, and
assuming steady-state, the calculated Fe(II) production rate
was about 0.002–0.013 nM min−1. Although inducing a po-
tential overestimation of the labile Fe(II) measurement, the
production rates of superoxide were thus likely sufficient to
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Table 4. Fe(II) concentration ranges in previous published studies.

Latitude/
Longitude

Environments/
Experiments

Depth
range (m)

[Fe(II)]
range

Reference

33.43◦ S–57.55◦ S/
14.40◦ E–00.03◦ W

Open Ocean
South Atlantic/Southern Ocean

15–4000 m 0.09–0.125 nM This study

30◦ N/135◦ E–118◦ W
14◦ S–56◦ N/152◦ W

Open Ocean Pacific Ocean and
northern Philippine Sea

13–1010 m <0.012–0.28 nM
<0.012–0.76 nM

Hansard et al. (2009)

3.0◦ S–9.1◦ N/140◦ W Open Ocean
Equatorial Pacific

0–100 m <0.12–0.53 nM O’Sullivan et al.( 1991)

178.72◦ E/46.24◦ S Open Ocean, South West Pacific,
FeCycle experiment.

2 m Up to 0.046 nM
(during night-time)

Croot et al. (2007)

23◦18′S–24◦48′S/
8◦39′ E–9◦59′ E

Open Ocean, South Atlantic 1–2 m <0.012–0.045 nM Bowie et al. (2002)

50◦92′ S–51◦25′ S/
143◦38′ E–143◦03′ E

Open Ocean, Southern Ocean,
Subantarctic Front

1–2 m <0.012–0.029 nM Bowie et al. (2002)

42–51◦ N/23◦ E–2◦ W Eastern North Atlantic,
European continental shelf
and English Channel

2 m <0.16 nM
(oceanic waters)
Up to 0.25 nM
(shelf waters)
0.5–1.8 nM
(coastal waters).

Boye et al. (2003)

37–42◦ N/23◦ W Eastern North Atlantic 0–2000 m <0.1–0.55 nM Boye et al. (2006)

46◦ N–52.4◦ N/
8◦ W–4.3◦ E

European continental margin.
Open Ocean and shelf waters

3–4000 m <0.012 nM –> 0.2 nM Ussher et al. (2007)

9.02◦ S–12.27◦ S/
127.43◦ E–144.19◦ E

Northern Australian shelf waters 2–3 m Up to 3 nM Waite et al. (1995)

31.53◦ N–56.50◦ N/
0.39◦ E–0.83◦ E

Northern North Sea 0–70 m Up to 1.2 nM Gledhill and van den
Berg (1995)

9.5◦ S–10.9◦ S/
78.1◦ W–79.1◦ W

Suboxic zone, near the coast
of Peru

0–2300 m Up to 40 nM Hong and Kester
(1986)

17◦ N–23.5◦ N/
57◦ E–74◦ E

Suboxic zone, Arabian Sea 0–1000 m Up to 0.6 nM Moffett et al. (2007)

15◦ N–18◦ N/
105◦ W–115◦ W

Oxic-suboxic zone, Eastern
Tropical North Pacific

0–300 m Up to 0.15 nM Hopkison and
Barbeau (2007)

61◦ S/140◦ E Southern Ocean SOIREE
fertilization experiment

2–3 m Up to 1 nM Croot et al. (2001)

48◦ S/21◦ E Southern Ocean EISENEX
fertilization experiment

0–100 m Up to 1 nM Croot and Laan (2002);
Croot et al. (2005)

56.2◦ S–66◦ S/172◦ W Southern Ocean SOFEX
fertilization experiment

2–3 m Up to 0.3 nM
in patch

Croot et al. (2008)

50◦ S/2◦ E Southern Ocean EIFEX
fertilization experiment

2–3 m Up to 0.8 nM
in patch

Croot et al. (2008)

46.7◦ N/165.8◦ E Sub-Arctic Pacific Ocean SEEDS
II fertilization experiment

0–80 m Up to> 0.2 nM
in patch

Roy et al. (2008)
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Figure 6 Fig. 6. Percentage of labile Fe(II) relative to dissolved Fe concen-
trations in the surface mixed layer for all the stations vs. the time at
which sampling was done.

drive Fe(II) production. If a biological production exists in
the surface waters, that would explain our values higher than
the detection limit even at stations sampled at night. This
night time observation of Fe(II) at pM levels was already
done during the FeCycle experiment in the HNLC waters of
the South West Pacific (Croot et al., 2007). These authors es-
timated that∼26 % of the inorganic Fe(II) biologically pro-
duced would be organically complexed and the rest would be
oxidized.

During the ANT XXIV/3 cruise (10 February–14 April
2008), maxima of DFe and dissolved manganese (Mn) were
observed in the surface waters in the Bouvet region at 54–
55◦ S (Klunder et al., 2011; Middag et al., 2011), and were
ascribed to recent deposition of aeolian dust originating from
South America. At our L7 station (∼55◦ S), however, no sur-
face maximum of labile Fe(II) was observed, neither clear
surface maxima of DFe in the Bouvet region (Chever et al.,
2010). This may be due to the fact that our sampling was
performed three weeks later than theirs and/or to our lower
sampling resolution, missing some of the key features they
observed in the Bouvet region. At station S4 (∼52◦ S), where
we observed the highest value of labile Fe(II) in the SML,
a combination of atmospheric inputs, biological production
and photochemical processes (see above) might explain this
high value.

4.2.2 Intermediate depths (between the SML and
1500 m)

In the STZ (stations L1, S1, L2, and S2), large sub-surface
maxima of labile Fe(II) centered at 200–300 m were ob-
served. Concentrations started to increase just at or below the
maximum of chlorophyll-a (Ras and Clautres, personal com-
munication, 2011) and high values were observed as deep
as 700 m (0.09 nM, station S1). Although generally lower
than in the STZ (0.076–0.125 nM), sub-surface maxima were
also observed in the ACC (0.023–0.087 nM) and north of the
Weddell Gyre (0.025 nM) at depth between 60 and 300 m.
As discussed above, due to the relatively long transport time
between the African continental margin and the stations in
the STZ, an input of Fe(II) from water masses enriched by

the African continental margin is unlikely, unless organic
complexation stabilized Fe(II) (Roy et al., 2008). Observed
trends in labile Fe(II) compare well with depth profiles of
dissolved Mn in the same sector of the Southern Ocean dur-
ing the ANT XXIV/3 expedition (Middag et al., 2011). Sub-
surface maxima of Mn were identified at depths of around
150 m and coincided with a gradient in the potential density
anomaly (σθ ). A similar relationship was observed for the
234Th/238U ratio in the subsurface, with a steep increase to-
wards values near or over 1 at the pycnocline (Rutgers van
der Loeff. et al., 2011). This trend in234Th/238U ratio indi-
cates small scale remineralisation of sinking material (Cai et
al., 2008, Maiti et al., 2010). During the BGH cruise, high
resolution depth profiles were also obtained for234Th/238U
ratio and a more detailed data set will be available from
the surface to 1000 m depth (Planchon et al., 2011). Ex-
cept at station L6, our labile Fe(II) maxima also coincided
with increases in234Th/238U ratios in the subsurface (Fig. 7).
234Th/238U ratios ranging from 1 to maximum 1.3 clearly
indicated fast and intense remineralization of sinking mate-
rial in the mesopelagic zone (100–600 m), which was fur-
ther confirmed by parallel biogenic particulate barium data
(Baxs, Fig. 7, Planchon et al., 2011). Baxs is believed to
represent a sensitive tracer of organic matter breakdown in
the mesopelagic zone, since the breakdown of aggregates re-
leases barite crystals and maintains a Baxs maximum occur-
ring generally in the 100–600 m depth region (Dehairs et al.,
1992). Therefore, a likely source of labile Fe(II) in the sub-
surface might be remineralization/disaggregation of biogenic
particles settling from above. Moreover, the very large sub-
surface maxima in the STZ were consistent with a bloom in
a senescent stage (Ras and Claustre, personal communica-
tion, 2011). The value of %Fe(II)/DFe at these depths can
be as high as 50–70 %, suggesting that biogenic Fe is mainly
regenerated as Fe(II) species, as already observed in other
studies (Hutchins and Bruland, 1994; Sarthou et al., 2008).

In the southern part of our transect (stations L6, S4, L7,
S5, Fig. 8), the winter waters were strongly visible on theT

data and were associated with local minima of labile Fe(II)
concentrations. Although the formation of the winter wa-
ters is on a seasonal time-scale and labile Fe(II) is a tran-
sient element, biological activity is lower in the winter water
and the lower concentrations of labile Fe(II) in these water
masses may reflect processes involving a biological source
of Fe(II) in the surface waters and confirm results observed
in the SML.

4.2.3 Below 1500 m

Only two stations showed labile Fe(II) concentrations higher
than the detection limit below 1500 m. Station S2 was lo-
cated at the vicinity of the Agulhas Ridge and local maxima
of DFe were observed there (Chever et al., 2010), suggesting
hydrothermal or sediment inputs (Elrod et al., 2004; Boyle
and Jenkins, 2008; Bennett et al., 2008; Tagliabue et al.,

www.biogeosciences.net/8/2461/2011/ Biogeosciences, 8, 2461–2479, 2011
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Fig. 7. Vertical profiles of234Th/238U, labile Fe(II) and Baxs at
station S2. Baxs is the biogenic particulate Ba calculated by sub-
tracting the lithogenic Ba from total particulate Ba.

2010). %Fe(II)/DFe was not very high (1.4–5 %) and Fe(II)
half-life was the lowest of the section (Fig. 3b), suggesting
that Fe(II) is continuously provided to the deep waters but
reoxidized quite fast. During the ANT XXIV/3 expedition,
Klunder et al. (2011) and Middag et al. (2011) evidenced hy-
drothermal inputs of Fe and Mn in the Bouvet region (52–
56◦ S). The hydrothermal signal was not clearly seen on our
DFe (Chever et al., 2010) nor on our labile Fe(II) data, likely
due to a lower resolution of our sampling. At station S5,
concentrations of labile Fe(II) as high as 0.050 nM were ob-
served at 3500 m, with %Fe(II)/DFe equal to 13 %. Along
the zero meridian, DFe concentrations in the deep waters
north of the Weddell Gyre (0.47± 0.16 nM,n = 98, Klun-
der et al., 2010, and 0.42± 0.07,n = 4, Chever et al., 2010)
were higher than south of the Weddell Gyre (0.33± 0.14 nM,
n = 98, Klunder et al., 2010). North of the Weddell Sea Gyre,
the deep waters flow eastward, and might have had a recent
contact with the northern limit of the Weddell Basin (Orsi et
al., 1993; Meredith et al., 2000; Klatt et al., 2005), flowing
along the North Weddell Ridge. A local reductive dissolu-
tion of particles coming from the slope sediments of the ridge
may explain the high values of labile Fe(II) at this station.

4.2.4 Oxidation rates

The Fe(II) half-life values in the surface waters were similar
to previous values estimated in natural surface seawater at
near-ambient concentrations (6–28 min, Croot et al., 2008).
Our values were higher in the deep than in the surface waters.
To our knowledge, our study is the first to measure Fe(II) ox-
idation rates in natural deep seawater at near-ambient con-
centrations. The deep values were never as high as the ones
estimated by Hansard et al. (2009, up to 690 min) in the Pa-
cific Ocean. However, their [O2] at ∼1000 m were as low
as 13 µM, whereas [O2] was never lower than 100 µM along

8/9 

 86 
 

Figure 8 88 

Fig. 8. Vertical profiles in the upper 1500 m of labile Fe(II) andT at
the 4 stations south of the PF where the AAWW were clearly seen.

the BGH transect. The overall oxidation rate of Fe(II) is a
function of oxidant concentrations (e.g. oxygen, hydrogen
peroxide, superoxide, etc., González-D́avila et al., 2006),
T , pH, as well as Fe(II) chemical speciation (mainly Fe2+,
Fe(OH)+, Fe(OH)2, FeCO3, Fe(CO3)

2−

2 , Fe(CO3)(OH)−,
Millero, 1989; King, 1998; Santana-Casiano et al., 2006;
Trapp and Millero, 2007). To compare our data with theo-
retical ones, we used two published models of Fe(II) oxida-
tion kinetics and in situ physical-chemical conditions (Model
I: Santana-Casiano et al., 2005; Model II: Trapp and Millero,
2007; see Supplement for detailed calculations). Theoret-
ical values are given in Table 3. The two models differ
in the equations used for the calculations of the oxidation
rate constants of the individual species for oxidation by oxy-
gen (see Supplement). Moreover, Model I considers the
Fe(CO3)(OH)− species, as well as the oxidation by the su-
peroxide. None of the two models considers organic matter
effects, and differences in oxidation rates among samples are
only related toT , pH,S, and carbonate effects.

In the upper waters, for Model I, the Fe(II) half-life
times ranged from 7.5 to 18.4 min, with a mean value of
12.4± 3.0 min. For Model II, values ranged from 5.5 to
13.6 min, with a mean value of 9.5± 2.3 min. The ranges
of variations of the two theoretical data sets were simi-
lar, although a paired-t test showed that the two data sets
were significantly different (P < 0.01, n = 12), with val-
ues from Model I always higher than values from Model II
(up to 5 min). The measuredt1/2 (2.9–11.3 min, mean value
6.7± 2.6 min) showed systematically lower values than the
theoretical ones of both models (by up to 10–15 min at sta-
tion L2), except at station S5 where the measured value was
slightly higher than the Model II one. A much larger dif-
ference was observed in the deep waters between the two
models. The Model I values ranged from 86 to 138 min
(mean value 112± 19 min), whereas the Model II ones were
about 4 times lower, ranging from 19 to 32 min (mean value
26± 5 min). This difference may come from the uncer-
tainties in the model parameterization and/or on superoxide
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concentrations which could vary at depth more than oxygen
concentration (see Supplement). However, what both mod-
els indicated was that in the deep waters, the half life times
were almost constant (less than a factor of two) compared
to the measured values which varied by a factor of 7 (10–
72 min). Indeed, in the deep waters, the pH andT ranges of
variation are relatively small, inducing a small range of vari-
ation of theoretical values. The largest range of variation of
the measured values could be induced by a change in oxygen
concentrations. Indeed, oxygen may have been consumed by
micro-organisms in the sample during the 24 h storage or in-
crease if an oxygen contamination occurred. Also, when the
oxidation rates were measured at 4◦C, the deep samples and
some of the surface samples were heated while most of the
surface samples were cooled. These differences can affect
the intermediate species and equilibrium processes. More-
over, after heating, changes in pH due to CO2 dissolution-
exchange can modify the Fe(II) speciation.

Another explanation for the variability of the measured
t1/2 and the discrepancy between measured and theoretical
is organic complexation. Although dissolved Fe(III) is now
well known to be strongly bound by organic chelators in sea-
water (Gledhill and van den Berg, 1994; Rue and Bruland,
1997; Gerringa et al., 2006, 2008; Thuróczy et al., 2010),
organic complexation of Fe(II) has been suggested but never
directly measured (Croot et al., 2007, 2008; Roy et al., 2008).
In the Subarctic Pacific, Roy et al. (2008) observed a signif-
icant difference between the measured Fe(II) oxidation rates
in natural surface water and the ones in UV-treated surface
water, which strongly suggested that organic ligands influ-
enced Fe(II) speciation in seawater. As for Fe(III) species,
the Fe(II) organic speciation may help to maintain Fe(II) in
the dissolved phase. However, numerous studies on the effect
of Fe organic complexation on the oxidation kinetics have
showed that organic complexation can either increase or de-
crease the Fe(II) oxidation rates (Rijkenberg et al., 2006 and
references herein). Variability of organic compounds within
the water column could thus induce variability in the ob-
served oxidation rates.

5 Conclusions

Concentrations of labile Fe(II) in the surface waters were sys-
tematically higher than the detection limit of our analytical
method. The highest values were observed where sampling
was done between 12:00 and 16:00, suggesting a biologi-
cal production of Fe(II) in the SML linked to photosynthesis.
South of the section, local minima coinciding with the Winter
Waters confirm that direct biological reduction of Fe(III) may
occur in the SML. This would explain why our nighttime sur-
face samples have concentrations higher than the detection
limit. At intermediate depths, sub-surface maxima were ob-
served all along the section, although more pronounced in
the STZ. A bloom at a senescent stage in the STZ, together

with a good consistency between the maxima of labile Fe(II)
and the increase in234Th/238U towards values over 1 sug-
gested that Fe remineralization occurred at those depths and
that Fe was mainly regenerated as Fe(II) species. In the deep
waters, labile Fe(II) concentrations were higher than the de-
tection limit at two stations: one located at the vicinity of the
Agulhas ridge and another one in the north of the Weddell
Gyre. Here we propose that this was likely due to hydrother-
mal and/or sediment inputs. Fe(II) oxidation rates were mea-
sured in the surface and deep waters. Our study is the first
one, to our knowledge, to measure Fe(II) oxidation rates in
natural deep seawater at near-ambient concentrations. In the
deep waters,t1/2 values were on average 6 times higher than
in the surface waters. The comparison of our measuredt1/2
with theoretical ones using two different models suggested
that organic complexation may strongly influence the oxida-
tion rates, although more studies are needed to better con-
strain the organic speciation of Fe(II) and its influence on the
half-lives of Fe(II). The global data set of Fe(II) also needs
to be increased and this will be done in the framework of the
GEOTRACES programme and the associated cruises.

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/8/2461/2011/
bg-8-2461-2011-supplement.pdf.
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F.: Dynamics of biogenic particles in the Southern Ocean as re-
vealed by234Th activity, POC and biogenic Ba along Greenwich
Meridian, Biogeosciences, in prep., 2011.

Pollard, R., Sanders, R., Lucasa, M., and Statham, P.: The Crozet
Natural Iron Bloom and Export Experiment (CROZEX), Deep
Sea Res. Pt. II, 54(18–20), 1905–1914, 2007.

Rich, H. W. and Morel, F. M. M.: Availability of well-defined iron
colloids to the marine diatom Thalassiosira weissflogii, Limnol.
Oceanogr., 35(3), 652-662, 1990.

Rijkenberg, M. J. A., Gerringa, L. J. A., Carolus, V. E., Velze-
boer, I., and de Baar, H. J. W.: Enhancement and inhibition of
iron photoreduction by individual ligands in open ocean seawa-
ter, Geochim. Cosmochim. Ac., 70, 2790–2805, 2006.

Rose, A. L. and Waite, T. D.: Chemiluminescence of luminol in
the persence of iron(II) and oxygen: Oxidation mechanism and
implications for its analytical use, Anal. Chem., 73, 5909–5920,
2001.

Rose, A. L. and Waite, T. D.: Kinetic model for Fe(II) oxidation in
seawater in the absence and presence of natural organic matter,
Environ. Sci.Technol., 36, 433–444, 2002.

Rose, A. L. and Waite, T. D.: Predicting iron speciation in coastal
waters from the kinetics of sunlight-mediated iron redox cycling,
Aquat. Sci., 65, 375–383, 2003.

Rose, A. L., Salmon, T. P., Lukondeh, T., Neilan, B. A., and Waite,
T. D.: Use of Superoxide as an Electron Shuttle for Iron Acqui-
sition by the Marine CyanobacteriumLyngbya majuscula, En-
viron. Sci. Tech., 39(10), 3708–3715,doi:10.1021/es048766c,
2005.

Roy, E. G., Wells, M. L., and King, D. W.: Persistence of
iron(II) in surface waters of the western subarctic Pacific, Lim-
nol. Oceanogr., 53, 89–98, 2008.

Rue, E. L. and Bruland, K. W.: The role of organic complexation
on ambient iron chemistry in the equatorial Pacific Ocean and

Biogeosciences, 8, 2461–2479, 2011 www.biogeosciences.net/8/2461/2011/

http://dx.doi.org/10.1029/2010GL044063
http://dx.doi.org/10.1021/es048766c


G. Sarthou et al.: Labile Fe(II) concentrations in the South Atlantic 2479

the response of a mesoscale iron addition experiment, Limnol.
Oceanogr., 42(5), 901–910, 1997.

Rutgers van der Loeff., M. M., Cai, P. H., Stimac, I., Bracher, A.,
Middag, R., Klunder, M. B., and Van Heuven, S.:234Th in sur-
face waters: distribution of particle export flux across the Antarc-
tic Circumpolar Current and in the Weddell Sea during the GEO-
TRACES expedition ZERO and DRAKE, Deep-Sea Res. Pt. II,
in press,doi:10.1016/j.dsr2.2011.02.004, 2011.

Salmon, T. P., Rose, A. L., Neilan, B. A., and Waite, T. D.: The FeL
model of iron acquisition: Nondissociative reduction of ferric
complexes in the marine environment, Limnol. Oceanogr., 51(4),
1744–1754, 2006.

Santana-Casiano, J. M., Gonzalez-Davila, M., and Millero, F. J.:
The oxidation of Fe(II) in NaCl-HCO−3 and seawater solutions
in the presence of phthalate and salicylate ions: a kinetic model,
Mar. Chem., 85(1–2), 27–40, 2004.

Santana-Casiano, J. M., Gonzalez-Davila, M., and Millero, F. J.:
Oxidation of nanomolar levels of Fe(II) with oxygen in natural
waters, Environ. Sci. Techn., 39, 2073–2079, 2005.

Santana-Casiano, J. M., Gonzalez-Davila, M., and Millero, F. J.:
The role of Fe(II) species on the oxidation of Fe(II) in natural
waters in the presence of O2 and H2O2, Mar. Chem., 99, 70–82,
2006.

Sarthou, G., Baker, A. R., Blain, S., Achterberg, E. P., Boye, M.,
Bowie, A. R., Croot, P. L., Laan, P., de Baar, H. J. W., Jick-
ells, T. D., and Worsfold, P. J.: Atmospheric iron deposition and
sea-surface dissolved iron concentrations in the eastern Atlantic
Ocean, Deep Sea Res. Pt. I, 50(10–11), 1339–1352, 2003.

Sarthou, G., Vincent, D., Christaki, U., Obernosterer, I., Timmer-
mans, K. R., and Brussaard, C. P. D.: The fate of biogenic iron
during a phytoplankton bloom induced by natural fertilization:
impact of copepod grazing, Deep Sea Res. Pt. II, 55, 734–751,
2008.

Shaked, Y., Kustka, A. B., Morel, F. M. M., and Erel, Y.: Simulta-
neous determination of iron reduction and uptake by phytoplank-
ton, Limnol. Oceanogr. Meth., 2, 137–145, 2004.

Speich, S., Arhan, M., Gladyshev, S., Perrot, X., Fine, R., Boyé, M.,
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