
HAL Id: hal-00630577
https://hal.univ-brest.fr/hal-00630577v1

Submitted on 10 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equipping Software Engineering Apprentices with a
Repertoire of Practices
Vincent Ribaud, Philippe Saliou

To cite this version:
Vincent Ribaud, Philippe Saliou. Equipping Software Engineering Apprentices with a Repertoire of
Practices. International Journal On Advances in Software, 2010, 3 (1), pp.201-212. �hal-00630577�

https://hal.univ-brest.fr/hal-00630577v1
https://hal.archives-ouvertes.fr


Equipping Software Engineering Apprentices with a Repertoire of Practices 

Vincent Ribaud, Philippe Saliou 
Université de Bretagne Occidentale, LISyC - EA 3883 

Université Européenne de Bretagne 
Brest, France 

{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr 
 
 

Abstract—Argyris and Schön distinguish espoused theories - 
those which people speak about – from theory-in-use - those 
which can be inferred from action. In small software teams, 
developing reflective thinking about action is a vital necessity 
in coping with change. We address these issues in a Masters of 
Software Engineering, performed with an alternation between 
university and industry. University periods are dedicated to a 
long-term project performed in a reflective practicum. It aims 
to develop a repertoire of practices which helps young 
engineers deal with the ‘messiness’ of situations. Such a 
practicum provides students, working in groups, with the 
possibility of reflecting on action. We propose using the 
Course-of-Action framework to record observable aspects of 
the actor’s activity into semantic wikis. Two hypotheses are 
discussed (1) self-analysis and self-assessment help to reveal 
theories-in-use; (2) the Course-of-Action observatory helps 
maintain awareness of the repertoire. A case study of a 6-
apprentice team illustrates the observatory use and the 
reconstruction of apprentices’ activity. Primary conclusions 
are that self-observation and self-analysis of a software 
engineer’s activity help raise awareness of the initial structure 
of the repertoire. We are however unable to conclude that it 
helps reveal their theory-in-use (what governs an engineer’s 
behaviour) - usually tacit structures. 

Keywords-component; reflective practitioner, software 
engineering processes, Course-of-Action, semantic wiki. 

I. INTRODUCTION 

This paper is an extended and enhanced version of a 
paper presented at the ICCGI 2009 conference [1]. 

Small organizations – and small software teams 
especially – need to constantly adapt their task force to the 
products or services to be delivered. The software process 
community shares a tacit axiom that improving software 
processes automatically improves software products and 
contributes to the project success. Many efforts have been 
made to extensively define a set of processes and build 
assessment methods intended to verify to what extent 
defined processes are performed. 

Yet D. Schön [2] argued that experienced professionals 
deal with the ‘messiness’ of practice not by consulting the 
research knowledge base, but by engaging in ‘reflection-in-
action’: experiencing surprise in a new situation and 
responding to surprise through a kind of improvisation. To 
educate the reflective practitioner, Schön recommended 
looking at traditions of education for artistry – in art studios, 
or in conservatories of music and dance. Schön qualified 

these students as learning by doing in a reflective practicum. 
This analogy was used to provide a suitable educational 
environment for software design at CMU [3] or at MIT [4]. 

The notion of repertoire is very important in Schön’s 
approach. Practitioners build up a collection of ideas, 
examples, situations and actions. “A practitioner’s repertoire 
includes the whole of his experience insofar as it is 
accessible to him for understanding and action” [5, p.138].  

This hypothesis – coupled with the observation that 
students (and young engineers) are experiential, tending 
toward learning by doing rather than listening – led us to 
focus on the goal of providing software engineering 
graduates with a non-empty repertoire of practices,  together 
with an operational knowledge of software processes, 
activities and tasks. In 2002, we built an education system 
called 'Software Engineering by Immersion' entirely based 
on performing complete development cycles of a software 
project, and accomplished in three iterations. This 3-
iterations system can be summed up with the sentence: 'A 
first turn to learn by doing, a second turn to do autonomously 
what has been learned, and a last turn to work effectively in a 
business. A Process Reference Model - greatly simplified 
from the ISO/IEC 12207:1995 standard and its amendments 
[6] - was used as the initial structure of the repertoire. As 
realistic working situations were experienced, students were 
provided with progressive filling of their repertoires. 

In 2007, local employers in Brest requested employees in 
‘sandwich’ (or work placement) conditions, and we adapted 
the 'Software Engineering by Immersion' programme to run 
as a work placement course. In such a programme, some of 
the educational objectives and related assessments are 
devoted to periods in industry. The second and third 
iterations were good candidates to assign to industrial 
periods, and first iteration (at the university) and second 
iteration (in the industry) were organised into alternating 2-
week periods. We do however face the problems of relating 
the university-based and industry-based elements of the 
student’s experience and avoiding a situation in which 
learners are required to climb two ladders simultaneously. 

We decided to redesign the repertoire (including its 
construction and 'filling') in order to - as far as possible – 
meet the twin challenges of learning and producing within a 
small software project. Our current proposition is to use two 
theories of action, the former from Argyris and Schön [7] 
about theory-in-use and espoused theory and the latter - the 
Course-of-Action framework pioneered by Theureau and 
Pinsky [8]. The main idea is to provide young engineers and 



small projects with an observatory of their individual and 
collective activity (by observable, we mean what is 
presentable, accountable and commentable) and to instigate 
the reconstruction of a high-level view of the global Course-
of-Action from small and individual units of action. 

The nature of collected data is very different and subject 
to change, as is the semantic of the relationships between 
data. This addresses technical challenges related to content 
management. We choose to use semantic wikis as a 
lightweight authoring platform. As Maxwell [9, p.199] 
outlines “Our experience with and reflection on using wiki as 
a platform suggests that there is much to be gained from an 
approach which builds up from simple foundations rather 
than attempting to customize already-complex architecture”.  

Section 2 overviews theories of this introduction, their 
application to software engineering and some related work. 
In Section 3, we present courses-of-action for software 
apprentices. Observing the course of apprentices’ projects is 
discussed in Section 4. In Section 5, we present some data 
excerpts of a case study. We conclude the paper with a 
discussion and perspectives. 

II. RESEARCH ISSUES AND RELATED WORK 

We will present Argyris and Schön's theories of action as 
well as certain elements of the Course-of-Action framework. 
We will present two research hypotheses, and related work. 

A. Espoused theories and theories-in-use  

A starting point of Argyris and Schön's [7] theory (see 
Figure 1) is that people design action to achieve intended 
consequences, monitoring themselves in order to learn 
whether their actions are effective. They made a distinction 
between two contrasting theories of action: theories-in-use 
and espoused theories. “When someone is asked how he 
would behave under certain circumstances, the answer he 
usually gives is his espoused theory of action for that 
situation. This is the theory of action to which he gives 
allegiance, and which, upon request, he communicates to 
others. However, the theory that actually governs his actions 
is his theory-in-use” [7, pp.6-7].  

Our first observation is that, in the software engineering 
field, lifecycle processes standards such as the 12207 [10] 
and process assessment standards such as 15504 [11] or 
CMMI may constitute the espoused theory, since it is what 
engineers claim to follow. But what engineers do (and this 
action is designed - it does not 'just happen') may reveal a 
different theory-in-use. A young engineer is rarely aware of 
either their theory-in-use or of any inconsistency - although 
an experienced engineer may be. 

Theories-in-use can be made explicit by reflecting on 
action [7]. According to Schön, reflective thought takes place 
in a reflective practicum. Schön advocated traditions of 
education for artistry as exemplar through their reflective 
practicum. “[…] its main features are these. It’s a situation 
in which people learn by doing, […] where they learn by 
doing in a practicum which is really a virtual world. A 
virtual world in the sense that it represents the world of 
practice, but is not the world of practice […] in that world, 
students can run experiments cheaply and without great 

danger […] in interaction with someone who is in the role of 
coach” [12]. 

A reflective practicum is intended to run experiments and 
develop reflection-on-action. In our practicum, we use 
organized processes to drive project and competencies 
building. Parallel to the engineering activities required by the 
project, apprentices are regularly required to self-analyze and 
self-assess their engineering practices. Our first hypothesis 
(H1) is that self-analysis and self-assessment helps an 
apprentice to reveal their theory-in-use. 

Previous and related work. The studio is the central 
training method in architecture schools and this analogy was 
used to provide a suitable educational environment for 
software [3] [4]. Our system is very close to Tomayko’s 
work, and most of his observations apply to our system: “The 
use of a well-established development process, a matrix 
organization, and one-to-one mentoring give the highest 
return on investment” [3, p.119].  

Hazzan and Tomayko present in [13] a course intended to 
develop reflective thinking about the education of software 
engineers - but theories of action are not evoked. 

Halloran [14] investigates the relationship between a 
software process assessment and improvement model and 
organizational learning. The paper points out the difference 
between 'engineer’s espoused theory' and their 'theory in use' 
but does not develop this idea, focusing instead on the use of 
organizational learning to promote a proactive approach to 
continuous improvement and learning procedures. 

Models of theory-in-use 
Argyris and Schön argued that, even though espoused theories vary 

widely, theories-in-use do not. They labelled the most prevalent theory-in-
use Model I and argued that this model inhibits learning. Model II favours it. 
This model looks to three elements. Governing variables are values that 
actors seek to satisfy [1]. Each governing variable can be thought of as a 
continuum with a preferred range (e.g. not too anxious, yet not too 
indifferent) that people are trying to keep in these acceptable limits. Actions 
strategies are sequences of moves used by actors in particular situations to 
satisfy governing variables [1], there are the moves and plans used by people 
to keep the governing variables in the preferred range (e.g. to use physical 
exercise to eliminate stress). Consequences happen as results of action. 
Consequences can be intended – those that the actor believes will result from 
the action and will satisfy governing variables (e.g. feeling better after 
sporting effort). Consequences can be unintended but they are designed 
because they depend on the theories-in-use of recipients as well as those of 
actors. 

Single and double-loop learning 
When the consequences of an action strategy are as the actor wanted, 

then the theory-in-use of that person is confirmed. If there is a mismatch 
between intention and outcomes, consequences are unintended. Argyris 
defines learning as the detection and correction of error. The first response to 
error is to search another action strategy (Model I). “Single-loop learning 
occurs when errors are corrected without altering the underlying governing 
variables” [2, p. 206]. An alternative is to question governing variables 
themselves (Model II), to subject them to critical scrutiny (e.g. to emphasize 
open inquiry into the anxiety rather than trying to suppress it). “Double-loop 
learning occurs when errors are corrected by changing the governing 
variables and then the actions” [2, p. 206]. Argyris and Schön argued that 
many people espouse double-loop learning, but are unable to produce it, and 
are unaware of it. 

References 
[1] C. Argyris, R. Putnam, and D. McLain Smith, “Action Science, 
Concepts, methods, and skills for research and intervention”, San Francisco: 
Jossey-Bass, 1985. 
[2] C. Argyris, “Double-Loop Learning, Teaching and Research”, Learning 
& Education, Vol. 1 (2), Dec. 2002, pp. 206-219. 

Figure 1.  Theory of Action by Chris Argyris and Donald Schön. 



B. Building their own repertoire 

The Course-of-Action theory, pioneered by Theureau and 
Pinsky [8], provides a framework for analysis of the 
collective organization of the multiple courses of action in a 
complex, autonomous and open system. A 'Course of Action' 
is: “what, in the observable activity of an agent in a defined 
state, actively engaged in a physically and socially defined 
environment and belonging to a defined culture, is pre-
reflexive or again significant to this agent, i.e. presentable, 
accountable and commentable by them at any time during its 
happening to an observer-interlocutor in favourable 
conditions” [15, p.7]. The course of action can be described 
from two complementary perspectives: from the point of 
view of its global dynamics - characterizing the units of the 
course of action and the relations of sequencing and 
embedding between these units, or from the point of view of 
its local dynamics, characterizing the underlying structure of 
the elementary units [15]. Given that we seek to establish a 
fairly high-level model of actions, we focus on the global 
point of view because it emphasizes the articulation of work 
situations and their co-ordination, and is better suited to 
process-level analysis. 

Argyris and Schön suggested that each member of an 
organization constructs his or her own representation or 
image of the theory-in-use of the whole [16, p.16]. What is 
intended is to connect the individual world of the practitioner 
up with the collective world of an organization. But, prior to 
this discussion, we need to understand how we perceive our 
internal structure. The notion of repertoire is a key aspect of 
Schön’s reflection in and on action. Practitioners build up a 
collection of ideas, examples, situations and actions. “When 
a practitioner makes sense of a situation he perceives to be 
unique, he [she] sees it as something already present in his 
[her] repertoire. […] It is, rather, to see the unfamiliar, 
unique situation as both similar to and different from the 
familiar one, without at first being able to say similar or 
different with respect to what. The familiar situation 
functions as a precedent, or a metaphor, or an exemplar for 
the unfamiliar one” [5, p.138].   

A coach may help both discover the existence of this 
repertoire, and fill it, with the assistance of reflective 
thought. Coaches often answer questions with questions, in 
most cases, simply rephrasing the question. Our proposal is 
that small projects should be provided with a device which 
will act as a mirror for their observable activity, and that 
privileged moments of self-observation in front of the mirror 
(without  adding too much extra work) should be seamlessly 
integrated in the course of the project. Our second hypothesis 
(H2) is that the Course-of-Action observatory helps maintain 
awareness of the repertoire, facilitating self-assessment and 
self-analysis. 

Previous and related work. Hazzan debates the 
reflective practitioner perspective in software engineering 
education and the studio as a teaching method [17], but does 
not address the subject of the practitioner’s repertoire.  

The 'Course-of-Action' research framework consists of 
several empirical and technological research programs [15] 
in various domains such as work analysis [18] or traffic 

control [19]. We are not aware of any uses of the Course-of-
Action framework in the software field. 

III.  SOFTWARE APPRENTICES' COURSES-OF-ACTION  

We will be monitoring the 'Software Engineering by 
Immersion' Masters programme, and we will present the 
Course-of-Action observatory and its application to a 
software project. 

A. The 'Software Engineering by Immersion' Masters 
Programme 

1) Structural aspects of our programme 
Our Masters Programme in Information Technology and 

Software Engineering is a 2-year programme, accessible to 
Bachelor graduates in Computing or 'back to school' 
software practitioners. For students enrolled in the Software 
Engineering by Immersion specialization, securing a 
'professionalization contract' is a compulsory requirement. 
During this 12-month contract, the work placement student is 
a full-time employee, although also attending university for 
certain periods. Strictly-speaking in France, 'apprenticeship 
learning' and 'apprentice' are terms reserved for a longer 
work placement system, but the sake of clarity, we use the 
term 'apprentice' in this paper. 

Competition for this type of contract is performed during 
the first 7-month intensive courses. The following 4-months 
are dedicated to an internship period. For the last year, 
periods at university have to fit into alternating 2-week 
periods. The year is divided into two periods, the former 
(from September to mid-May) with movement between 
university and company, and the latter (from mid-May to 
August) with a full-time period at the company. 

2) Pedagogical objectives and organization 
Of the 43 processes of ISO/IEC 12207:2008 [10], we 

concentrate on the 19 that are related to the software 
development cycle, which we have reorganized into 3 
groups: 

- in the Software Project Management Process Group: 
6.3.1 Project Planning - 6.3.2 Project Assessment and 
Control, 7.2.2 Software Configuration Management, 7.2.3 
Software Quality Assurance; 

- in the Software Development Engineering Process 
Group: 6.4.1 Stakeholder Requirements Definition, 6.4.3 
System Architectural Design, 6.4.4 Implementation Process 
replaced by 7.1.1 Software Implementation Process (and its 
6 sub-processes: Requirement Analysis, Architectural 
Design, Detailed Design, Construction, Integration, 
Qualification), 7.2.4 and 7.2.5 Software Verification & 
Validation; 

- in the Software Development Support Process Group: 
6.2.1 Life Cycle Model Management, 6.2.2 Infrastructure 
Management, 6.4.7 Software Installation – 6.4.8 Software 
Acceptance Support, 7.2.1 Software Documentation 
Management. 

These 19 processes are renamed (and some are also 
merged) to give a breakdown of apprenticeships into 3 
software engineering process groups subdivided into 13 
software engineering processes, together with a set of 
apprenticeship scenes (roughly associated with software 



engineering activities) which provide the learning 
environment and define tasks. This hierarchical group 
process/process/scenes model, adapted from the ISO/IEC 
12207, is given in Tables I and III and is used as a reference 
framework for the learning objectives. 

From the university point of view, this division is the 
reference framework, in a diploma-awarding perspective. 
Group processes are course categories, processes are courses 
and scenes are sessions. 

TABLE I.  PROCESS BREAKDOWN 

Process Group Process 12207:2008 
Related Processes 

Software 
Project 
Management 

Project management 
Quality insurance 

Software configuration 
management 

6.3.1, 6.3.2 
7.2.3 
7.2.2 

 

Software 
Development 
Engineering 

Requirements capture 
Software analysis 

Technical architecture 
Software design 

Software construction 
Integration and validation 

6.4.1 
7.1.2 
6.4.3 

7.1.3, 7.1.4 
7.1.5, 7.1.6 

7.1.7, 7.2.4,  7.2.5 

Software 
Development 
Support 

Technical support 
Methods and tools support 

Documentation 
Installation and deployment 

6.2.2 
6.2.1 
7.2.1 

6.4.7, 6.4.8 
 
The main feature of the university periods is to learn 

software engineering by doing, without any computing 
course but with a long-term project as the foundation of all 
apprenticeships. Alternating employees are attending 
university over 9 periods of 2 consecutive weeks, and work 
in teams of 6 apprentices to build a complete information 
system. 

The rhythm is based on the lifecycle of a project, 
organized into stages. Each stage was arbitrarily sized to 2 
weeks, due to the constraints of alternation. The cycle is: 
Stage 0: Warm-up; Stage 1: Project set-up; Stage 2: 
Requirement capture; Stage 3: Requirement analysis; Stage 
4: Design; Stage 5: Software construction; Stage 6: Software 
construction; Stage 7: Integration and Verification; Stage 8: 
Qualification and Deployment. 

3) Competency Reference Model 
While apprentices are currently learning by doing 

software processes, process assessment will not measure a 
capability level but (in the best case scenario) a learning 
capability level. Because apprentices are building 
competencies, and because some reflective learning is 
required, we choose to promote self-assessment of personal 
abilities. In 2006, we set down the abilities (or competencies: 
“ the ability of a person to act in a pertinent way in a given 
situation in order to achieve specific purposes” [20]) that 
scenes are intended to develop. We tried to answer the 
questions 'What is the student able to do, once the scene is 
performed? What are the related knowledge topics?' This 
analysis gave us a set of abilities for each process (see 
examples in Table II). 

So we kept the 2-level breakdown of our reference 
framework - the first level being called competency areas 
(corresponding to process groups) and the second level 

competency families (corresponding to processes), and we 
positioned abilities and transversal competencies within 
these areas. Table II shows abilities and knowledge related to 
certain representative processes for each process group. 

TABLE II.  EXAMPLES OF COMPETENCY FAMILIES 

Abilities and Skills Knowledge Topics 

Project Management 

• To use an ISO 9001 development 
baseline  
• To apply a Project Plan, updating  
it if necessary 
• Planning and project progress 

* Software life-cycle model 
* Estimation and follow-up of 
development of components 
* Traceability and conformity 
* Project Plan 

Software Requirements Capture 

To mobilize specification methods 
and tools in a real project: 
• within an ISO 9001-style 

baseline 
• in relation to requirements 

traceability 
• to produce a Software 

Requirement Specification 

* Software Requirements 
Fundamentals: definition, 
functional and non-functional, 
quantification. 
* Requirements capture 
techniques: interviews, client 
meeting, statement of work, 
response to solicitation 
* Procedures, methods and tools 
for requirements specification. 
* Use cases. 

Software Design 

• To use design methods and tools 
(in relation with requirements) to 
produce design documents: system 
and software architecture and 
detailed design 
• To implement methods and 
modelling tools of various aspects 
of a system (architecture and 
decomposition software, data 
structure) 
• To implement J2EE development 
and technology of associated 
framework 
• To implement DBMS concepts, 
techniques and tools 

* Software Design 
Fundamentals: concepts and 
principles, design role in a 
development cycle, top-level 
and detailed design  
* Software decomposition 
configuration item, software 
component, software unit 
* Software architecture through 
different views: conceptual, 
dynamic, physical, data. 
* UML diagrams to describe 
static and dynamic views 
* Object-oriented design 

Methods and tools support 

• To know Software Engineering 
methods and techniques for the 
software life cycle 
• To install, adapt, integrate and 
maintain software tools 
• To assist engineers in software 
deployment 
• To perform a consulting mission, 
alone or in a group 

* Use case models and formats. 
* Analysis:  patterns and model 
transformation 
*Design:architectural prototype, 
generic design 
*Configuration management: 
tools and guides 
* CASE tools 

 
The complete breakdown (3 areas, 13 families, 48 

abilities and 11 transversal competencies) is called the 
competency reference model for our immersion system [21]. 

B. The Observatory of Apprentices' Courses-of-action 

1) The Course-of-Action observatory 
A short definition of a Course-of-Action is “the activity 

of one (or several) specific actor(s), engaged in a specific 
situation, belonging to a specific culture, which is significant 
for the latter, in other words, that can be related or 
commented by  (or them) at any moment” [18, p. 2]. 



The Course-of-Action analysis is based on an 
observatory which includes continuous observations of the 
behaviour of action and communication in a work situation 
as well as different traces of other elements such as 
interpretations, feelings, and judgments [18]. Although the 
data produced by these observations only gives access to the 
surface of interactions, it suffices for understanding the 
structural coupling between an agent and his or her situation. 

The Course-of-Action framework proposes data 
collection methods which include: observing and recording 
actors’ behaviour methods; methods to keep track of 
behavioural patterns; and methods of provoked and situated 
verbalization from actors. 

Self-confrontation is a prominent activity in terms of 
documenting the Course-of-Action. This takes the form of 
collecting verbal data whilst the activity is actually being 
carried out and/or in a self-confrontation situation (e.g. in the 
case of driving, the driver watches a film of their journey 
(which is systematically recorded) and comments on it to 
clarify their own actions and events [15]). 

Other kinds of verbalization, made by agents during 
activity analysis (called second degree self-confrontation 
verbalizations - to emphasize the fact that they are situated in 
the continuity of self-confrontation itself) are also 
implemented. Here the agents are placed in the position of 
observers and analysts, and their verbalizations, whilst not 
data, do nonetheless constitute their contributions to the 
analysis of their activity [15]. 

2) Link with field studies 
From the 'data collection techniques' point of view, 

Lethbridge, Sim, and Singer [22] provide a useful taxonomy. 
They classify techniques according to the degree of human 
contact required. We use several 'observational first degree 
techniques' [22] (with direct access to young engineers), 
including diaries, think-aloud protocols, observation, and 
participant observation. Because we focus on self-
interpretation by the actors, most recording is done manually 
by the actors themselves. From the taxonomy point of view, 
it may appear as a 'second degree technique' [22] (with 
indirect access to young engineers) because it does not 
require direct contact between participant and researcher. 

Representative artefacts of the job are the outputs of 
software activities and tasks. The analysis of these artefacts 
falls in a 'third degree technique' [22] (without access to 
young engineers). 

3) What can be collected in the course of projects ? 
Recall the definition of the Course-of-Action in §III.B.1: 

what, in the observable activity of an agent […] is pre-
reflexive or significant to this agent, i.e. (i) presentable, (ii) 
accountable and (iii) commentable by them at any time 
whilst it is happening […]. 

We have three types of observation: (i) presentation, (ii) 
accounting, (iii) comment. Software workers do not achieve 
complex technical gestures, or do not have to progress 
through a detailed procedure. So (i) presentations to an 
observer are quite difficult to reproduce, and the presentable 
artefacts that are most notable and representative of the job 
are the outputs of software activities and tasks.  

Verbalization is widely used by the coach within the 
learning process to scaffold the apprentice’s activity: when 
students ask or when tutors consider it to be necessary, a 
dialogue between apprentice and tutor about what, why and 
how the apprentice is doing helps them to carry out the 
activity. Recording this dialogue would be too complicated; 
furthermore, it would probably compromise - and possibly 
even destroy - this learning process. 

We therefore focus on accounting and comments. 
Accounting will replace recordings of engineer behaviour. 
Products and documentary resources are the main objects of 
presentation, since they describe the activity's inputs and 
outputs. The 'historical' context of use of (i) resources and 
product production must also be recorded. This can be 
described in terms of events and processes, involving 
occurrences of agents (people) and artefacts (products and 
resources) meeting in space (in case of distributed 
collaboration) and time. In the first instance, we consider the 
individual courses of action of the various participants.  At 
the next stage, we look at collective action involving parts of 
several individual courses of action taking place 
synchronically or sequentially. We need to divide individual 
Course-of-Actions into smaller units, which we call 
Performed Activity. Each event of interest must be (ii) 
individually accounted for in an instance of Performed 
Activity in relation with the apprentice and artefacts 
involved. This provides a kind of project diary or journal, 
and is performed in a wiki by each apprentice as the project 
goes along. 

Provoked verbalizations are replaced with self-
confrontation interviews as a way of documenting the 
constraints and effects of the segment of the actor’s activity 
that is personally experienced. Even the smallest unit of 
collective Course-of-Action is called a Course-of-Action 
Unit, which organizes several individual Performed 
Activities. At the end of each 2-week university period, 
apprentices have to write a short report (individually, but 
also collectively if they worked on a group task) about what 
happened during the period (this is called a 'work diary' in 
the taxonomy of [22]). Apprentices may complete Performed 
Activity instances previously created, and must create 
Course-of-Action Unit instances for activities involving 
several individual Performed Activities.  

For the industrial periods, accounting is performed in a 
different way. As detailed in Section IV.B.5, young 
engineers must perform a complete self-assessment, 4 times 
per year, regarding the competency reference model 
described in §II.A.3 - which is acting as an ability model for 
their job as an engineer. In support of these periodic 
assessments, they have to record events of interest in a 
portfolio, associating events with significant artefacts they 
may have used or produced.  

With very few exceptions, we observed that information 
about academic and industrial periods are written in a 
descriptive style (what they do with linked artefacts, when 
and where) but gave little or no indication why and for what 
reason they did it. So, we can conclude that these reports are 
(ii) accounts and not (iii) comments. 

 



4) What can be commented ? 
We need a second-level of reporting intended to 

encourage comments and reflection-on-action. Final reports 
with in-class presentation could have been used, but we 
chose not do this in order to avoid introducing bias, since 
they are assessed with a mark. We found it more useful to 
trigger intermediary reports without any assessment. Of 
course, students will re-use analysis, writings and oral 
presentation in their final reports, as well as for required self-
assessments (and this may provide extra motivation to 
perform sound intermediary reports) but we minimize 
assessment bias. 

Among the self-confrontation methods used in the 
Course-of-Action framework, one is the so-called second 
level self-confrontation interview. It is performed after the 
self-confrontation interview proper. Its procedure is radically 
different, because its aim is not to collect empirical data 
about the actor’s experience at instant t, but to develop co-
operation in the analysis of the activity between the 
researcher and the actor [19]. We borrow this practice for 
reporting on industrial and academic periods. 

Every two months (corresponding to two industry 
periods of 2 weeks each), the academic period begins with a 
half-day during which each apprentice (12 in all) presents an 
intermediary report of their activities at work. Writing up a 
meeting report is assigned to two students, based on the 
individual reports provided by each apprentice. 

During academic periods where there is no industrial 
reporting, apprentices must perform a first-level analysis on 
the state of the software processes of their academic project. 
Each apprentice has to work on two or three processes (13 
are used in all), building an intermediary process element 
called Step-of-Action based on historical Course-of-Action 
Units related to a given process. This analysis is intended to 
produce a reconstruction of the global dynamic in terms of 
smaller units and the sequencing and embedding 
relationships between these units.  

IV. OBSERVING THE COURSE OF APPRENTICES’  PROJECTS 

We will survey the models used in the 'Software 
Engineering by Immersion' programme. We will present an 
enacted project that will be used as a case study. 

A. Process models 

1) Prescribed work 
Leplat [23] has identified a difference between prescribed 

task and effective task. The prescribed task is a task that a 
designer or an organizer wishes an operator to perform. 
What he/she really achieves is the effective task. 

It is a hard task to define things to do in a software 
projects, hence to provide a structured description of the 
prescribed tasks. Several standards were written with this 
goal. In our opinion, the process dimension of the ISO/IEC 
standard 15504:2004 [11] provides a complete view of the 
prescribed work to be done in a software project. 

ISO 15504 separates process and capability levels in two 
dimensions. In the process dimension, individual processes 
are described in terms of Process Title, Process Purpose, and 
Process Outcomes as defined in ISO/IEC 12207 (where each 

life cycle process is also divided into a set of activities; each 
activity is further divided into a set of tasks [10]). In 
addition, the process dimension provides: a) a set of base 
practices for the process, providing a definition of the tasks 
and activities needed to accomplish the process purpose and 
fulfil the process outcomes; b) a number of input and output 
work products related to one or more of its outcomes; and c) 
characteristics associated with each work product [11]. The 
capability dimension consists of six capability levels (Level 
0 reflects an incomplete process) and the process capability 
indicators for nine process attributes for levels 1 to 5. A 
process attribute is “a measurable characteristic of process 
capability applicable to any process” [11, p. 4]. Figure 2 
represents the two dimensions and a performance of process 
assessment. 

Id : string

Name : string

Charact. : string

Work Product

Id : string

Name : string

Description : string

AchievementId : string

Title : string

Process Group

Id : string

Title : string

Purpose : string

Process

Id : string

Title : string

Activity

Id : string

Form : string

Task

-HasPart*

-Has*

-Has*

Id : string

Title : string

Description : string

Base Practice

Id : string

Description : string

Outcome

-Has*

*

Associates

*

*

Is Generic Of

*

*

Output

*

*

Input

*
*

FullFill*

Id : string

Name : string

Description : string

Capability Level

Id : string

Name : string

Description : string

Outcomes : string

Process Attribute

1

Has0..2

Process Instance

Process

Instance

Rating
1

Instance Of

*

Id : string

Description : string

Process Perf. Char. : string

Resource Char. : string

Management Practice

1

Has*

Process Dimension Capability Dimension

*

Supports *

 
Figure 2.  12207 and 15504 Reference Models. Performing a process 

assessment yields a rating for each process attribute. A rating is a 
judgement of the degree of achievment (None, Partially, Largely, Fully) of 

the process attribute for the instance of the assessed process. 

2) Work scenes 
The 15504-5 standard provides software engineers with 

an exemplar model of a software project. Unfortunately, 
such an exemplar model is necessary but not sufficient for 
learning purposes. In our system, we have to organize the 
apprentices’ activity into small units of work called an 
apprenticeship/production scene. 

The apprenticeship/production scene is the reference 
context in which a part of the play happens: the scene aims 
for a unity of place, time and action; the scene is at once a 
situation in which people learn and do; a scenario of actions; 
a role distribution, and an area mobilizing resources and 
means. The different components of a scene, along with their 
articulation are depicted on a card. The card structure is 
standardized (see an example in Figure 3).  

The main elements of a card are the process group / 
process (here development / design) tied up with the work; 
the role to play (here, designer or architect) with team-mates' 
assignment; the work description (here, the detailed design); 
the products (deliverables) to deliver (here, a Software 
Design Document, SDD); the supplied pedagogical resources 
(here, a writing guide, real SDD samples and an analysis and 
design course); workload and lead-time information. 

 



No. 24 Date:  Origin :  Roles assignment 
Project:  SCENE CARD Designer 

Architect 
Solenn Arnaldi 
Aude Genoud 

Process group: SW development engineering  
Process: Software design 

Name: 
Detailed design  

WORK DESCRIPTION 
The goal of the software design activity is to establish a software 

design that effectively accommodates the software requirements. 
During card No. 20 'Preliminary design', software requirements have 
been transformed into software architecture and a top-level design for 
the external and internal interfaces. Now, the purpose of the 'Detailed 
design' is to: 
- Transform the top-level design into a detailed design for each 

software component.  Components are refined into lower software 
units that can be coded, compiled, and tested.  

- Establish traceability between the software requirements and the 
software designs. 
… 
The expected result will be materialized with a Software Design 

Document (SDD) in accordance with the project baseline. This 
document describes the position of each software unit in the software 
architecture and the functional, performance, and quality characteristics 
which each must address. The sections related to the DBMS will be on 
the responsibility of the card No. 25 'Database Server analysis, design 
and generation'.  

… 
Teaching resources can be helpful in writing the SDD: 

- Simplified writing guide for the software design document (TEMPO-
IGQ348). 

- SDD Examples: Techsas and Techdis. 
- Object-Oriented Analysis and Design Using UML - Ch. 10 ' 

… 
Products V. Milestone 

Software Design Document (SDD) A 8-3-2009 

Start date End date Workload 
7-30-2009 8-3-2009 5  5  

Figure 3.  Example of a scene card. 

3) Exemplar scenes 
Our fundamental problem is to prescribe the content of 

apprenticeship scenes, their objectives and their outcomes 
and to link scenes with SE processes (and their outcomes). 
Our modest proposition is to build scenes from previous 
scenes description, called exemplar scenes. Rather than 
being provided with an abstract definition of the prescribed 
situation and its prescribed tasks, the tutor has to design 
scenes from previous exemplar scenes and his/her own 
previous scenes (from past projects). Table III shows the 
complete breakdown for some processes. 

Although an intermediate level between process and task 
may exist (12207 activity), the hypothesis is made that it 
complicates the model - and that hypothetical activities are 
only presented so as to facilitate the link with the 12207. 

4) Competency Assessment Model 
Regarding the understanding of software processes that 

students are building, we were faced with a crucial issue. In 
the previous system (without work placement), students 
learned software processes by doing during the first iteration 
and reproduced these processes during the second one. Thus, 
links were easy to establish and a practical understanding of 
software processes occurred. Now, first iteration (focused on 
learning activities) and second iteration (focused on 
productive activities) are performed on different projects. 

The former is an apprenticeship project driven by the 
university and the latter is an industrial project driven by the 
companies with which students are placed. We need an 
assessment framework that is common to both projects and 
which allows apprentices to relate and cumulate experiences. 

TABLE III.  PROCESS BREAKDOWN AND EXEMPLAR SCENES 

12207 Process Hypothetical activity Scene 

Group Process 'Software Project Management' 

6.3.1, 
6.3.2 

Project 
Manage-

ment 

• Project tailoring 
• Project planning 
• Project progress 

Response to solicitation 
Project plan 
Project plan review 
Weekly progress meeting  
Project monitoring and control 

… 

Group Process 'Software Development Engineering' 

6.4.1 
Require-
ments 

Capture 

• Functional 
requirement capture 
• Technical 
requirement capture 
• Document 
requirements 
• Requirements 
review 

Retro-capture of requirements 
Functional requirements  
Technical feasibility study 
Document requirements 
Non-functional requirements  
Architectural feasibility study 
Requirements review 

7.1.3 
7.1.4 

Software 
design 

• Design tailoring 
• Architectural 
design 
• Detailed design 
• Database design 
• Design review 

Maintenance tasks 
Retro-engineering 
Architectural design  
Database analysis and design 
Detailed design 
Design review 

… 

Group Process 'Software Development Support' 

6.2.1 
Methods 
and tools 
support 

• Process 
establishment 
• Process 
improvement 
• Tools support  

Life cycle process modelling 
Project process modelling 
Process monitoring 
implementation 
Tool usage guide 

… 
 
Software companies use assessment of software 

processes for capability determination and process 
improvement [24]. Although we think that process 
assessment as defined in ISO/IEC 15504 or CMMI is beyond 
the reach of young engineers, we believe that a simplified 
Process Reference Model and a personal Process Assessment 
Model are required to provide a basis for the practice of 
software engineering. Furthermore, we think that these 
models may provide an initial structure of the repertoire. 

We observed that our apprenticeship scenes and work 
placement periods mobilized a similar set of apprentices’ 
competency. As mentioned in Section §III.A.3, each process 
is associated with a family of competencies constituted with 
a list of knowledge topics and a set of abilities or skills 
required to perform the process. We believe that a first step 
in competency assessment should be made by the engineer 
him/herself through a self-assessment of abilities at a 
maturity level. The assessment scale grows from 0 to 5; - 0 - 
Don’ know anything; - 1 - Smog: vague idea; - 2 - Notion: 
has notion, a general idea but insufficient to an operational 
undertaken; - 3 - User: is able to perform the ability with the 



help of an experienced colleague and has a first experience 
of its achievement; - 4 - Autonomous: is able to work 
autonomously; - 5 - Expert: is able to act as an expert to 
modify, enrich or develop the ability. 

Four times a year, each young engineer is required to 
auto-assess his/her maturity level for each ability of the 13 
competency families (as well as for each transversal 
competency). This periodic self-confrontation with the 
competency reference model is called a competency 
inventory and is performed while auto-analyzing the tasks 
performed and his/her achievement level with the abilities 
defined in the family. 

Periodic competency inventories are stored in a Content 
Management System (CMS). The CMS is hierarchically 
structured according to the group process / process 
decomposition.  This structure is also intended to store 
artefacts that may be of interest in illustrating the ability 
determination. When the apprentice needs to relate a task 
performed with a process’s ability, he/she has to write an 
entry associated with the process and may link this entry 
with artefacts stored. It constitutes a rudimentary portfolio, 
but is sufficient for our purposes. 

Our system reference models are presented in Figure 4. 

 
Figure 4.  A model of Process Reference Model -PRM- (on the left) and 

Competency Reference Model (on the right).  
Periodic inventories hold abilities self-assessments.  

5) Technical issues 
As the project moves forward, information is constantly 

updated - in content, and in structure too. Moreover, 
metadata management is required. In order to support these 
purposes, we propose a very simple architecture based on the 
use of several inter-linked semantic wikis. Semantic wiki is 
the most flexible tool in order to record and shape a 
structured content. 

The structural elements of these reference models do not 
change as projects go along and theirs events are recorded. In 
order to facilitate links between the project journal and these 
models PRM, information is stored into two semantic wikis 
and a Content Management System (CMS): 

• http://oysterz.univ-brest.fr/12207, the 12207 wiki is a 
hypertext reference of the ISO/IEC 12207:2008. 

• http://oysterz.univ-brest.fr/company, the upper-level of 
the company wiki contains decompositions Processes group / 
Processes / Exemplar Activities and Stages / Scenes. 

• a CMS contains the periodic inventories together with 
related artefacts used as witness of the maturity level. 

B. Process enactment 

1) Questioning our hypotheses 
A case study, discussed below, will provide observations 

and information belonging to the different types discussed in 
§III.B (presentations, accounts and comments) and 
structured with the models of §IV.A (hierarchical group 
process/process/scenes model and competency reference 
model) enhanced of events’ modelling of the project-in-
action presented above. 

Self-recording of activity is materialized by adding new 
items either in the portfolio or in the wiki, which is acting as 
a journal. A measurement of each apprentice’s recording 
(from low to high) gives an indication that the apprentice is 
aware of the structure of his/her repertoire and able to use it 
to classify their experiences. It will provide an empirical 
verification of hypothesis H2: the Course-of-Action 
observatory may help to be aware of his/her repertoire. 

Once experiences are self-recorded, apprentices are 
periodically performing self-assessment and self-analysis. 
Comparing self-assessments of previous cohorts with those 
of our Study Team may provide an indication that the use of 
an observatory is influencing the maturity level reached by 
the team at study. 

The self-analysis of the Course-of-Action is providing a 
view of the enacted processes as they are reconstructed and 
perceived by the apprentices themselves. On the other hand, 
the project should follow processes as they are prescribed by 
the company’s tutor. A qualitative evaluation of the process 
reconstruction gives an indication of the gap between 
prescribed and enacted processes. It will provide an 
empirical verification of hypothesis H1: self-analysis and 
self-assessment helps an apprentice to reveal theory-in-use.   

2) An empirical case study 
This case study is based on the activity of a team of 6 

young software engineering apprentices, the former author as 
a participant-to-observe having a direct contact of the team 
members, sharing their environment and taking part in the 
activities of the team, the latter conducting formal 
assessments as they happen. This case study observes the 
whole course of the project. As pointed out by Singer and 
Vinson [25], apprentices’ consent is required. At the 
beginning of the project they were informed on the field 
study and its objectives, and they agreed to participate. 

The project is a semantic annotation tool. The main goal 
of the project is to provide a semantic annotation tool able to 
annotate Web resources, search in different modes, browse 
hierarchically or with facets, and manage RDF vocabularies. 
The project uses Jena (http://jena.sourceforge.net) an open-
source Semantic Web programmers’ toolkit as RDF API. 

3) Planning and monitoring the project 
The project enactment is based on the process models of 

the previous section, a Y-shaped life cycle that separates 
resolution of technical issues from resolution of feature 
issues [26] and a typical WBS (Work Breakdown Structure: 
“a deliverable-oriented hierarchical decomposition of the 
work to be executed by the project team to accomplish the 
project objectives and create the required deliverables. It 
organizes and defines the total scope of the project” [27]). 



The WBS has a structural and a temporal breakdown. 
Each process is achieved through scenes defined from 
exemplar activities. The WBS is temporally organized in 9 
stages of 2 weeks. The planning of each stage orchestrates 
several work scenes. Scenes will be performed by team 
members, and should produce artefacts. 

Information is recorded at mid-level of the company wiki 
(http://oysterz.univ-brest.fr/company). This mid-level 
structure acts as a simple but realistic model of a project: 
breakdown of the project stages into work scenes; allocation 
of persons to scenes; expected inputs and outputs. This mid-
level is filled with instances (wiki pages) corresponding to 
the project WBS and updated regularly. The structure of this 
mid-level is given in the right half of Figure 5. 

4) Recording the project progress 
We state in §III.B.3 that software artefacts produced by 

the team will serve as (i) presentations. As the project 
progresses, events of interest are recorded in a journal 
associated with significant artefacts they may have used or 
produced.  As described in III.B.3, each individual Course-
of-Action is accounted for, on a 2-3 days basis, in an 
instance of the smaller unit, called a Performed Activity. 
Apprentices create a wiki page for each individual activity 
performed during the stage, fill this page with a short 
description of activities performed, link this page with 
related other pages (scene, person, artefact), and upload 
artefacts. At the end of each 2-week period   apprentices 
account for individual and collective work in the finest grain 
of collective Course-of-Action, called a Course-of-Action 
Unit, which organizes several individual Performed 
Activities. This (ii) accounting provides a first-level of self-
confrontation, as required by the Course-of-Action 
observatory. 

 
Figure 5.  Representation of an enacted project. The lifecycle of a project 

is organized into stages, composed of scenes. During a scene, actors 
perform an SE activity inspired by an exemplar activity, yet contextual to 
the project. Input and output work products (artefacts) are linked to scene, 

activity and process.  Self-observing the action leads to a rebuilding of 
project processes into steps of Course-of-Action units. 

Every two months, apprentices perform a first-level 
Course-of-Action analysis on the state of the project’s 
software processes. Each apprentice works on few processes 
and builds intermediary process elements called Steps-of-
Action, based on historical Course-of-Action Units related to 
this process. 

All information is recorded in the lower-level of the 
company wiki (http://oysterz.univ-brest.fr/company). The 
structure of this lower-level is shown on the left side of 
Figure 5. 

5) Self-assessment 
An attempt must be made to relate the university and 

industrial phases of the student’s experience to one another. 
Fortunately, the competency assessment model of our system 
(which could be considered to be the learning objectives) is 
based on a simplified model of professional activities. So it 
may help apprentices to link up their competency building, 
thus avoiding their having to ‘climb two ladders 
simultaneously’ [28]. 

As stated at §IV.A.4, each apprentice is asked to self-
analyze the activities they carried out (during both university 
and industrial periods) four times in the course of the year, in 
line with the immersion system’s competency assessment 
model. Students assess their own maturity, on a scale of 0 to 
5, for each ability or transverse competency. 

In order to prepare the periodic competency assessments, 
apprentices use the CMS as a portfolio which hosts 
significant work and interesting artefacts. At any moment of 
the year, either in industry or at university, the apprentice 
may encounter a work situation, or perform a task which 
they perceived to be a significant experience. Within the 
competency reference model, they must identify one (or 
several) skills related to this experience, and then associate a 
new entry with a description of the experience, uploading 
artefacts that testify to this experience. 

6) Building their own repertoire 
The process models presented in Section IV.A are used 

throughout the year to structure the apprentices learning 
process in the reflective practicum at university (and partially 
in industry). The process models are also providing structure 
for the self-recording of apprentices’ Course-of-Action and 
periodic self-assessments of competencies. We believe that 
these models provide an initial structure for the repertoire, 
acting as knowledge paths towards recording and retrieval 
practices within the repertoire. 

V. EXCERPTS OF RECORDINGS AND ANALYSIS 

We give some quantitative facts about the case study and 
empirically question the research hypotheses of Section 2. 

A. Wiki accounting 

The project is now complete, and Table IV gives the 
number of instances (wiki pages) in each category: 
• 69 work scenes occurred,  
• students carried out 118 Performed Activities, 
• roughly 100 artefacts were produced. 

 



For each process, we have the quantity of: Work Scenes 
(SCE); Performed Activities (PAY: individual); Course-of-
Action Units (CAU: collective), and Steps (STE: higher-
level construct). The 6th column gives an indication of the 
quantity of Software Engineering Activities that may be 
envisaged in the process. The 7th and 8th columns report the 
12207 breakdown of related processes: number of activities 
(Act) in (the) process (es) and number of corresponding tasks 
(Tsk). The 9th and final column gives the number of Base 
Practices (BP) in the corresponding process from the 15504 
standard. 

TABLE IV.  QUANTITATIVE FACTS FROM  THE CASE STUDY. 

Process SCE PAY CAU STE 
SE 
Act. 

Act  Tsk BP 

Project 
management 

13 22 13 5 5 7 14 15 

Quality 
insurance 

2 2 1 2 2 4 16 8 

Configuration 
management 

2 2 2 3 3 6 6 10 

Requirements 
capture 

10 18 10 3 5 5 12 6 

Software 
analysis 

2 2 2 2 2 1 3 6 

Technical 
architecture 

7 10 5 3 4 2 2 - 

Software 
design 

7 9 5 4 4 2 15 12 

Software 
construction 

8 16 4 3 5 1 5 4 

Integration - 
validation 

8 12 5 4 5 6 20 20 

Technical 
support 

8 16 2 2 2 3 4 6 

Methods and 
tools support 

3 3 3 3 2 - - 6 

Documen -
tation 

2 4 2 2 2 4 7 8 

Installation  - 
deployment 

1 2 2 1 2 2 5 6 

 
Students report on their activity at the end of each 2-

week stage. Where an activity has extended beyond a single 
stage (e.g. technical support or coding), students adopt a 
simple strategy: creating one single mid-level structure 
(Course-of-Action Unit), and linking it to individual low-
level units (Performed Activity) belonging to different 
stages. 

B. Self-Recording 

In order to evaluate the impact of the Course-of-Action 
observatory, we measure the use of the portfolio associated 
with the competency assessment model. We compare the two 
teams of the 2008-2009 cohort: a Control Team – which 
does not record its activity in an observatory – and Study 
Team. Each team comprises 6 apprentices. 

For each process of the Process Reference Model, and for 
each apprentice, we measured the number of associated 
entries in the portfolio. Table V shows, for each team, the 
minimum, maximum and average number of entries. 

For the Study Team, the average for each process is 
significantly higher than that of the other team. Remember 
that each apprentice of the Study Team has to report their 
activity in the observatory after each period at the university. 
Comparison of Repertoire Use Between a Control Team and 
the Study Team . 

TABLE V.  COMPARISON OF REPERTOIRE USE BETWEEN A CONTROL 
TEAM AND THE STUDY TEAM . 

 08-09 Control Team 08-09 Study Team 

Process Min. Max. Avg. Min. Max. Avg. 

Project Management 0 4 2.33 1 5 2.5 

Quality Insurance 0 2 1 0 3 1.16 

Configuration Management 2 3 2.5 2 5 3.5 

Requirements Capture 0 7 3.83 2 8 4.66 

Software Analysis 1 4 3 1 8 3.83 

Technical Architecture 1 5 2.83 1 7 3.83 

Software Design 3 6 4.5 3 8 5.83 

Software Construction 1 7 4.16 3 8 5.33 

Integration - Validation 1 4 2 1 5 3 

Technical Support 2 4 2.66 2 10 3.33 

Methods and Tools Support 1 4 2.16 2 8 3.83 

Documentation 1 6 2.83 1 8 4 

Installation  - deployment 2 6 3.16 2 7 4 

 
It is plausible to think that this periodic self-confrontation 

helps them to be aware of the Process Reference Model that 
structures the repertoire and facilitates filling the repertoire. 

We may reasonably argue that our hypothesis H2 is well-
grounded: the Course-of-Action observatory helps an 
apprentice to be more aware of the repertoire. 

C. Self-assessment 

A comparison of the different systems can be drawn from 
personal competencies follow-up. For the 13 competency 
families, Table V presents three self-assessment averages (in 
September, February and May) for the 2006-2007 cohort 
(previous system: no work placement), the 2007-2008 cohort 
(new system: with work placement), and the 2008-2009 case 
study team (current system: with work placement and 
observatory). Each cohort comprises 2 teams of 6 students. 

All families make steady, and roughly equivalent, 
progress - with or without work placements (and with or 
without observatory). Due to the small number of students in 
cohorts, and the paucity of our statistical knowledge, no 
statistical comparison was performed. However, there is no 
evidence to indicate that the observatory helps understand 
software processes and reveal theories-in-use. 

Some small differences can be pointed out: the 08-09 
team-members assess themselves at a lower level than 
previous cohorts, except in terms of Project Management. 



This may indicate that building the observatory, and 
reconstructing processes, have enforced this competency. 

TABLE VI.  TECHNICAL COMPETENCIES: PERSONAL FOLLOW-UP FOR 
THE 2006-2007, 2007-2008 COHORTS, AND 2008-2009 STUDY TEAM  

 06-07 Cohort 07-08 Cohort 08-09 Team 

Competency 
family 9/6 2/7 5/7 9/7 2/8 5/8 9/8 2/9 S 5/9 S 

Project 
Management 

1.5 2.8 3.4 1.3 2.7 2.9 
1.2 2.3 1 3.5 3 

Quality 
Insurance 

1.1 2.4 2.8 1.4 2.3 2.4 
1 1.1 2 1.5 2 

Configuration 
Management 

1.2 1.8 2.9 1.6 2.9 3.0 
1.2 1.6 2 2.7 3 

Requirements 
Capture 

2.1 3.2 3.6 1.8 2.8 3.0 
2 2.3 2 3.2 2 

Software 
Analysis 

3.6 3.7 3.9 2.4 3.0 3.3 
2 2.1 2 2.7 3 

Technical 
Architecture 

1.4 2.4 3.0 2.0 2.8 2.9 
1.4 2.1 2 2.7 3 

Software    
Design 

2.8 3.2 3.5 2.3 3.1 3.6 
1.8 2.1 2 3 4 

Software 
construction 

2.7 2.7 3.1 2.5 2.9 3.4 
2.2 2.5 2 3 2 

Integration -
Validation 

1.2 1.3 2.7 1.3 2.0 3.2 
1.2 1.8 2 2.3 3 

Technical 
support 

2.3 3.0 3.4 2.4 3.1 3.5 
1.4 1.9 2 2.3 2 

Methods and 
tools support 

1.7 2.6 3.2 2.0 2.5 2.9 
1.2 1.8 1 2.5 3 

Documen-   
tation 

2.8 3.3 3.5 3.1 3.3 3.7 
2.4 2.5 2 2.8 2 

Installation -
Deployment 

2.4 3.3 3.5 2.9 3.3 3.7 
1.6 2.6 3 3.2 3 

 
Even though we were unable to confirm our hypothesis 

H1, we believe that relating the project observatory to the 
personal follow-up of competencies may improve 
apprentices' overall understanding of processes. A brief 
example: the complete Software Requirements Capture 
Process was performed in 10 scenes, spread over several 
sequences. Looking at the individual progress of an 
apprentice regarding this process, we note that her self-
assessment stayed at a low maturity level of 2 - Notions - 
despite the fact that she had participated in several 
requirements-related scenes and observed her team-mates 
performing other related scenes. It is only after her 
participation in the Software Specification Requirements 
Document update that she assessed herself at level 4 - 
Autonomous – and finally perceived that the different 
Course-of-Action units related to requirements were related 
to the same field. 

D. Process reconstruction 

We concentrate on reconstruction by the students of 
higher-level Course-of-Action from the smaller units. 

In Table VI, column S represents the average of the 
student carrying out reconstruction for this process (between 
February and May) - but there is no evidence that this work 
improved their understanding of the reconstructed process. 

Analysis should be correlated with the participation (and 
commitment) of students into scenes that are tied to the 
process. Further work is required. 

In Table IV, the number of 12207 tasks (and 15504 Base 
Practices as well) give an indication as to the density of the 
process. The higher these numbers are, the greater the 
complexity - it should therefore lead to a process 
reconstruction involving a higher number of Steps-of-Action 
related to a roughly equivalent number of Software 
Engineering Activities. A difference between the 5th column 
(STE) and 6th column (SE Act.) - e.g.  Requirements capture 
- may indicate that the reconstruction failed. 

From the tutor’s point of view, steps creation was 
haphazard. Simple processes, such as Design, have been 
correctly reconstructed. But, since a large number of BP 
(Base Practices) in Table IV indicate a complex process 
which may be oversimplified in the practicum (e.g. 
Configuration Management or V&V), the reconstruction was  
correct regarding the simplified process but it is partly 
inaccurate. For complex processes involving many scenes, 
reconstruction may fail - probably because apprentices are 
unable to perceive an abstract view of the process. This is 
what happened during the Software Requirement Process, 
where students were not able to create the Steps that would 
establish significant links with smaller units, nor inter-wikis 
links with the corresponding 12207. 

VI. CONCLUSION AND FUTURE WORK 

Argyris and Schön make a distinction between the two 
contrasting theories of action: theories-in-use and espoused 
theories. We proposed to adapt the Course-of-Action 
framework to observe software engineering apprentices’ 
activity in the course of their final year. Two hypotheses are 
discussed: (1) that self-analysis and self-assessment help 
reveal theories-in-use, and (2) that the Course-of-Action 
observatory helps raise awareness of the repertoire. As a case 
study, the activity of a team of 6 young software engineers 
accompanied with two participants-to-observe is currently 
recorded in the observatory. 

Observations are presentations (software artefacts), 
accounting (events in the project diary or a portfolio) and 
comments (steps reconstruction and activity reports). This 
self-observation builds a hierarchy of SE processes used as a 
structure for young engineers’ repertoires. Four times a year, 
apprentices self-confront the work they did, self-assessing 
against a personal ability model.  

Current progress with this work suggests that the process 
models (a personal Process Assessment Model and a 
simplified Process Reference Model) may form an initial 
structure of the repertoire, and that the observatory helps 
apprentices to be aware of their own experiences. 

Further work is required to consider how the Course-of-
Action analysis fits in with Reflection-in-Action and how it 
impacts the software engineering apprentices’ ability to cope 
with innovation and change. 



ACKNOWLEDGMENT 

The authors wish to thank François-Xavier Bru, Gaëlle 
Frappin, Ludovic Legrand, Estéban Merrer, Sylvain Piteau, 
and Guillaume Salou for their participation in this work. 

REFERENCES 
[1] V. Ribaud, and P.Saliou, “Revealing Software Engineering 

Theory-in-Use through the Observation of Software Engineering 
Apprentices' Course-of-Action”, in Proceedings of 2009 Fourth 
International Multi-Conference on Computing in the Global 
Information Technology, New York: IEEE Press, pp. 202-210, 
2009. 

[2] D. Schön, D., “Educating the Reflective Practioner: Toward a New 
Design for Teaching and Learning In the Professions”, San 
Fransisco: Jossey-Bass, 1987. 

[3] J. E. Tomayko, “Carnegie Mellon's software development studio: a 
five year retrospective” in Proceedings of the 9th Conference on 
Software Engineering Education, New York: IEEE Computer 
Society Press, pp. 119-129, 1996. 

[4] S. Kuhn, “The software design studio: an exploration”, IEEE 
Software, Volume 15 (2),  March-April 1998, pp. 65-71. 

[5] D. Schön, “The Reflective Practitioner”, New York: Basic Books, 
1983. 

[6] ISO/IEC 12207:1995, AMD 1:2002, AMD 2:2004, “Information 
technology -- Software life cycle processes”, Geneva: International 
Organization for Standardization (ISO), 1995, 2002, 2004. 

[7] C. Argyris, and D. Schön, “Theory in practice: Increasing 
professional effectiveness”, San Fransisco: Jossey-Bass, 1974. 

[8] L. Pinsky, and J. Theureau, “ Activite cognitive et action dans le 
travail, Tome 1: les mots, l'ordinateur, l'operatrice”, Collection de 
Physiologie du Travail et Ergonomie, vol. 73,  Paris:  CNAM., 
1982. 

[9] J. W. Maxwell, “Using Wiki as a Multi-Mode Publishing 
Platform”, in Proceedings of the 25th annual ACM international 
conference on Design of communication, New York: ACM, 
pp.196-200, 2001 

[10] ISO/IEC 12207:2008, “Information technology -- Software life 
cycle processes”. Geneva: International Organization for 
Standardization (ISO), 2008. 

[11] ISO/IEC 15504:2004, “Information technology -- Process 
assessment”. Geneva: International Organization for 
Standardization (ISO), 2004. 

[12] D. Schön, “Educating the Reflective Practitioner” in Meeting of 
the American Educational Research Association, 1987. 

[13] O. Hazzan, and J.E. Tomayko, “Reflection processes in the 
teaching and learning of human aspects of software engineering”, 
in Proceedings of 17th Conference on Software Engineering 

Education and Training, New York: IEEE Press, pp. 32- 38, 2004, 
doi:10.1109/CSEE.2004.1276507 

[14] P. Halloran, “Organisational Learning from the Perspective of a 
Software Process Assessment & Improvement Program” in: 32nd 
Hawaii International Conference on System Sciences. New York: 
IEEE Press, 1999. 

[15] J. Theureau, “Course-of-Action analysis & Course-of-Action 
centered design” in: Hollnagel E. (ed.), Handbook of Cognitive 
Task Design, New Haven: Lawrence Erlbaum Ass., 2003 

[16] C. Argyris, and D. Schön, “Organizational learning: A theory of 
action perspective”, Reading: Addison Wesley, 1978 

[17] O. Hazzan, “The reflective practitioner perspective in software 
engineering education”, Journal of Systems and Software, Vol.  63 
(3),   September 2002, pp. 161 – 171, ISSN:0164-1212 

[18] J. Theureau, G. Filippi, and I. Gaillard, “From semio-logical 
analysis to design: the case of traffic control”  in Colloquium 
"Work activity in the perspective of organization and design", 
Paris: M.S.H., 1992 

[19] J. Theureau, and G. Filippi, “Analysing cooperative work in an 
urban traffic control room for the design of a coordination support 
system, chapter 4” in: Luff, P., Hindmarsh, J., Heath, C. (eds.) 
Workplace studies, Cambridge Univ. Press, 2000, pp. 68-91. 

[20] P. Meirieu, “Si la compétence n’existait pas, il faudrait l’inventer” 
in IUFM de Paris Collège des CPE, 2005, (accessed April 2009) 
http://cpe.paris.iufm.fr/spip.php?article1150  

[21] V. Ribaud, and P. Saliou, “Towards an ability model for software 
engineering apprenticeship”. Italics, Innovation in Teaching And 
Learning in Information and Computer Sciences, Vol.6 (3), July 
2007, pp. 97-107. 

[22] T. C. Lethbridge, S. E. Sim, and J. Singer. “Studying Software 
Engineers: Data Collection Techniques for Software Field 
Studies”, Empirical Software Engineering , vol. 10 (3), July 2005, 
pp. 311 – 341, doi:10.1007/s10664-005-1290-x 

[23] J. Leplat, “Regards sur l'activité en situation de travail - 
Contribution à la psychologie ergonomique”, Paris: Presses 
Universitaires de France, 1997. 

[24] Software Process Improvement and Capability dEtermination 
(SPICE), Software Process Assessment - Version 1.00, 
http://www.sqi.gu.edu.au/spice/docs/baseline, 1995 

[25] J. Singer, and N. G. Vinson, “Ethical issues in empirical studies of 
software engineering”, IEEE Transactions on Software 
Engineering, Vol. 28  (12), Dec 2002, pp. 1171- 1180, 
doi:10.1109/TSE.2002.1158289 

[26] P. Roques, and F. Vallée, “UML en action”, Paris: Eyrolles, 2002. 

[27] ISO/IEC FCD 24765, “Systems and software engineering – 
Vocabulary”. Geneva: International Organization for 
Standardization (ISO), 2009. 

[28] J. Topping, Sandwich courses, Phys. Educ. Vol. 141 (10), 1975, 
pp. 141-143, doi:http://iopscience.iop.org/0031-9120/10/3/003 

 


