N

N

Equipping Software Engineering Apprentices with a
Repertoire of Practices
Vincent Ribaud, Philippe Saliou

» To cite this version:

Vincent Ribaud, Philippe Saliou. Equipping Software Engineering Apprentices with a Repertoire of
Practices. International Journal On Advances in Software, 2010, 3 (1), pp.201-212. hal-00630577

HAL Id: hal-00630577
https://hal.univ-brest.fr /hal-00630577
Submitted on 10 Oct 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-brest.fr/hal-00630577
https://hal.archives-ouvertes.fr

Equipping Software Engineering Apprentices with a Repertoire of Practices

Vincent Ribaud, Philippe Saliou
Université de Bretagne Occidentale, LISyC - EA 3883
Université Européenne de Bretagne
Brest, France
{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract—Argyris and Schon distinguish espoused theories -
those which people speak about — from theory-in-use those
which can be inferred from action. In small softwae teams,
developing reflective thinking about action is a \al necessity
in coping with change. We address these issues ilMasters of
Software Engineering, performed with an alternationbetween
university and industry. University periods are dedcated to a
long-term project performed in a reflective practicum. It aims
to develop a repertoire of practices which helps ywmg
engineers deal with the ‘messiness’ of situationsSuch a
practicum provides students, working in groups, wih the
possibility of reflecting on action. We propose usig the
Course-of-Action framework to record observable aspcts of
the actor’s activity into semantic wikis. Two hypoheses are
discussed (1) self-analysis and self-assessmentpht reveal
theories-in-use; (2) the Course-of-Action observaty helps
maintain awareness of the repertoire. A case studgf a 6-
apprentice team illustrates the observatory use andthe
reconstruction of apprentices’ activity. Primary coclusions
are that self-observation and self-analysis of a #ware
engineer’s activity help raise awareness of the itial structure
of the repertoire. We are however unable to conclugl that it
helps reveal their theory-in-use (what governs anngineer’'s
behaviour) - usually tacit structures.
Keywords-component; reflective practitioner, softiea
engineering processes, Course-of-Action, semantiki.w

l. INTRODUCTION

these students as learning by doing in a reflegtragticum.
This analogy was used to provide a suitable edurtali
environment for software design at CMU [3] or atTM4].

The notion of repertoire is very important in Sclsdn
approach. Practitioners build up a collection okas,
examples, situations and actionA. gractitioner’s repertoire
includes the whole of his experience insofar asisit
accessible to him for understanding and actin p.138].

This hypothesis — coupled with the observation that
students (and young engineers) are experientiaklirig
toward learning by doing rather than listening € les to
focus on the goal of providing software engineering
graduates with a non-empty repertoire of practidegiether
with an operational knowledge of software processes
activities and tasks. In 2002, we built an educaggstem
called 'Software Engineering by Immersion' entirbhsed
on performing complete development cycles of avsnk
project, and accomplished in three iterations. TBis
iterations system can be summed up with the semtéAc
first turn to learn by doing, a second turn to dtbaomously
what has been learned, and a last turn to worktafédy in a
business. A Process Reference Model - greatly #iegl
from the ISO/IEC 12207:1995 standard and its amemdsn
[6] - was used as the initial structure of the regpee. As
realistic working situations were experienced, stusg were
provided with progressive filling of their reperntes.

In 2007, local employers in Brest requested empsye
‘sandwich’ (or work placement) conditions, and veajsted

This paper is an extended and enhanced version of the ‘Software Engineering by Immersion’ programmeun

paper presented at the ICCGI 2009 conference [1].
Small organizations — and small
especially — need to constantly adapt their taskefdo the
products or services to be delivered. The softwaoeess
community shares a tacit axiom that improving safev
processes automatically improves software prodactd
contributes to the project success. Many efforteehiaeen
made to extensively define a set of processes aid b

as a work placement course. In such a programnmee &

software teamdhe educational objectives and related assessmenats

devoted to periods in industry. The second andd thir
iterations were good candidates to assign to imidbst
periods, and first iteration (at the university)dasecond
iteration (in the industry) were organised intceataiting 2-
week periods. We do however face the problemslafimg
the university-based and industry-based elementshef

assessment methods intended to verify to what extegtudent's experience and avoiding a situation inicvh

defined processes are performed.

Yet D. Schon [2] argued that experienced profesdion
deal with the ‘messiness’ of practice not by cotisglthe
research knowledge base, but by engaging in ‘rafledn-
action. experiencing surprise in a new situationd a
responding to surprise through a kind of improvisat To
educate the reflective practitioner, Schén recontedn
looking at traditions of education for artistryn-art studios,
or in conservatories of music and dance. Schonifpahl

learners are required to climb two ladders simelarsly.

We decided to redesign the repertoire (including it
construction and ‘filling’) in order to - as far pgssible —
meet the twin challenges of learning and produeiitin a
small software project. Our current propositioiasise two
theories of action, the former from Argyris and &cH7]
about theory-in-use and espoused theory and ttex kathe
Course-of-Action framework pioneered by Theureawd an
Pinsky [8]. The main idea is to provide young eegirs and

small projects with an observatory of their indivéd and

danger [...] in interaction with someone who is ie tiole of

collective activity (by observable, we mean what iscoach [12].

presentable, accountable and commentable) andstigate
the reconstruction of a high-level view of the glbourse-
of-Action from small and individual units of action

The nature of collected data is very different anbject
to change, as is the semantic of the relationshgis/een
data. This addresses technical challenges relatetrttent

A reflective practicum is intended to run experinseand
develop reflection-on-action. In our practicum, wese
organized processes to drive project and compe&®nci
building. Parallel to the engineering activitieguied by the
project, apprentices are regularly required to-ae#lyze and
self-assess their engineering practices. Our ffiystothesis

management. We choose to use semantic wikis as (B1) is that self-analysis and self-assessment shelp

lightweight authoring platform. As Maxwell [9, p.dP

apprentice to reveal their theory-in-use.

outlines ‘Our experience with and reflection on using wiki as Previous and related work. The studio is the central

a platform suggests that there is much to be gafred an
approach which builds up from simple foundationshea
than attempting to customize already-complex aectitre’.

Section 2 overviews theories of this introductitimeir
application to software engineering and some relaterk.
In Section 3, we present courses-of-action for veafe
apprentices. Observing the course of apprenticegégts is
discussed in Section 4. In Section 5, we presemiesdata
excerpts of a case study. We conclude the papdr avit
discussion and perspectives.

Il. RESEARCH ISSUES AND RELATED WORK

We will present Argyris and Schoén's theories ofcercas
well as certain elements of the Course-of-Actianfework.
We will present two research hypotheses, and cblaitgk.

A. Espoused theories and theories-in-use

training method in architecture schools and thisl@gy was
used to provide a suitable educational environmfent
software [3] [4]. Our system is very close to Tokag
work, and most of his observations apply to outesys “The
use of a well-established development process, &ixma
organization, and one-to-one mentoring give thehbgy
return on investmehf3, p.119].

Hazzan and Tomayko present in [13] a course intttmle
develop reflective thinking about the educationsoftware
engineers - but theories of action are not evoked.

Halloran [14] investigates the relationship betwesn
software process assessment and improvement madel a
organizational learning. The paper points out tHiier@énce
between 'engineer’s espoused theory' and theorithe use'
but does not develop this idea, focusing insteatheruse of
organizational learning to promote a proactive apph to
continuous improvement and learning procedures.

A starting point of Argyris and Schon's [7] thedsee
Figure 1) is that people design action to achiextenided
consequences, monitoring themselves in order tonle
whether their actions are effective. They madessirdition
between two contrasting theories of actitimeories-in-use
and espoused theories'When someone is asked how h
would behave under certain circumstances, the ansee
usually gives is his espoused theory of action tfwat
situation. This is the theory of action to which dees
allegiance, and which, upon request, he commurscéte
others. However, the theory that actually goverissaations
is his theory-in-usg[7, pp.6-7].

Our first observation is that, in the software eegiring
field, lifecycle processes standards such as tf2971.210]
and process assessment standards such as 15504r[1
CMMI may constitute the espoused theory, since ivhat
engineers claim to follow. But what engineers dod(ahis
action is designed - it does not ‘just happen’) mesygal a
different theory-in-use. A young engineer is raralyare of
either their theory-in-use or of any inconsisten@jthough
an experienced engineer may be.

Theories-in-use can be made explicit by reflectorg
action [7]. According to Schén, reflective thouggites place
in a reflective practicum. Schoén advocated tradgicof
education for artistry as exemplar through theftentive

practicum. f...] its main features are these. It's a situatiof References

in which people learn by doing, [...] where they ledry
doing in a practicum which is really a virtual wdrl A
virtual world in the sense that it represents therlds of

Models of theory-in-use
Argyris and Schon argued that, even though espotrhssaties vary
widely, theories-in-use do not. They labelled theshprevalent theory-in
useModel land argued that this model inhibits learniktpdel Il favours it.
This model looks to three elemen@overning variablesare values tha
actors seek to satisfy [1]. Each governing variatae be thought of as h
econtinuum with a preferred range (e.g. not too @umi yet not tool
indifferent) that people are trying to keep in thesceptable limitsActions
strategiesare sequences of moves used by actors in partisitiletions to
satisfy governing variables [1], there are the nsosed plans used by peop
to keep the governing variables in the preferredjeale.g. to use physicd
exercise to eliminate stress). Consequences happemsults of action
Consequences can be intended — those that thebadtmres will result from)
the action and will satisfy governing variablesg(efeeling better aftel
sporting effort). Consequences can be unintendedtHay are designe
because they depend on the theories-in-use ofieatspas well as those qf
actors.

] Single and double-loop learning
When the consequences of an action strategy atfeeaactor wanted
then the theory-in-use of that person is confirmédhere is a mismatc
between intention and outcomes, consequences améenged. Argyris
defines learning as the detection and correctiarrof. The first response tp
error is to search another action strategy (MojelSingle-loop learning
occurs when errors are corrected without alterihg tinderlying governing
variables [2, p. 206]. An alternative is to question govieq variables
themselves (Model I1), to subject them to critisafutiny (e.g. to emphasiz|
open inquiry into the anxiety rather than tryingstgppress it). Double-loop
learning occurs when errors are corrected by chaggthe governing
variables and then the actidhg, p. 206]. Argyris and Schon argued thiat
many people espouse double-loop learning, butrable to produce it, angl
are unaware of it.

2\

= @

11}

[1] C. Argyris, R. Putnam, and D. McLain Smith, ‘an Science,
Concepts, methods, and skills for research andvriéon”, San Francisco
Jossey-Bass, 1985.

[2] C. Argyris, “Double-Loop Learning, Teaching aR&search”, Learning

practice, but is not the world of practice [...] ihat world,

& Education, Vol. 1 (2), Dec. 2002, pp. 206-219.

students can run experiments cheaply and withoetatgr

Figure 1. Theory of Action by Chris Argyris and Donald Schoén.

B. Building their own repertoire

The Course-of-Action theory, pioneered by Theuraad
Pinsky [8], provides a framework for analysis ofeth
collective organization of the multiple coursesacfion in a
complex, autonomous and open system. A '‘Coursetidmt
is: “what, in the observable activity of an agent inedirted
state, actively engaged in a physically and sogidkfined
environment and belonging to a defined culture pis-
reflexive or again significant to this agent, ipresentable,
accountable and commentable by them at any timaglits
happening to an observer-interlocutor

in favourable

control [19]. We are not aware of any uses of tber€e-of-
Action framework in the software field.

We will be monitoring the 'Software Engineering by
Immersion' Masters programme, and we will preséet t
Course-of-Action observatory and its application o
software project.

SOFTWAREAPPRENTICESCOURSESOFACTION

A. The 'Software Engineering by Immersion' Masters
Programme

conditiong [15, p.7]. The course of action can be described 1) Structural aspects of our programme

from two complementary perspectives: from the paft
view of its global dynamics - characterizing thetsiof the

Our Masters Programme in Information Technology and
Software Engineering is a 2-year programme, adgessd

course of action and the relations of sequencing anBachelor graduates in Computing or ‘back to school

embedding between these units, or from the poinief of
its local dynamics, characterizing the underlyitrgcture of
the elementary units [15]. Given that we seek taldish a
fairly high-level model of actions, we focus on tbal
point of view because it emphasizes the articutatibwork
situations and their co-ordination, and is betteitesl to
process-level analysis.

software practitioners. For students enrolled m Hoftware
Engineering by Immersion specialization, securing a
‘professionalization contract' is a compulsory fesquent.
During this 12-month contract, the work placemeutisnt is
a full-time employee, although also attending ursitg for
certain periods. Strictly-speaking in France, 'apficeship
learning' and ‘apprentice' are terms reserved fdonger

Argyris and Schén suggested that each member of aMork placement system, but the sake of clarity,use the

organization constructs his or her own represantatr

image of the theory-in-use of the whole [16, p.Mhat is
intended is to connect the individual world of gractitioner
up with the collective world of an organization.tBprior to

this discussion, we need to understand how we percar

internal structure. The notion of repertoire isey laspect of
Schon’s reflection in and on action. Practitionewdd up a
collection of ideas, examples, situations and astidWhen
a practitioner makes sense of a situation he peesto be
unique, he [she] sees it as something already piteisehis

[her] repertoire. [...] It is, rather, to see the warhiliar,

unique situation as both similar to and differern the
familiar one, without at first being able to saym#iar or

different with respect to what. The familiar sitoat
functions as a precedent, or a metaphor, or an g@karnior

the unfamiliar on&[5, p.138].

term 'apprentice' in this paper.

Competition for this type of contract is perfornahating
the first 7-month intensive courses. The follow#gnonths
are dedicated to an internship period. For the Yestr,
periods at university have to fit into alternatigweek
periods. The year is divided into two periods, thamer
(from September to mid-May) with movement between
university and company, and the latter (from midyMa
August) with a full-time period at the company.

2) Pedagogical objectives and organization

Of the 43 processes of ISO/IEC 12207:2008 [10], we
concentrate on the 19 that are related to the aoftw
development cycle, which we have reorganized into 3
groups:

- in the Software Project ManagemeRtrocess Group:
6.3.1 Project Planning - 6.3.2 Project Assessmerd a

A coach may help both discover the existence of thiControl, 7.2.2 Software Configuration Managemeng.¥

repertoire, and fill it, with the assistance of leefive

thought. Coaches often answer questions with curestin

most cases, simply rephrasing the question. Oysgsa is
that small projects should be provided with a dewidhich

will act as a mirror for their observable activignd that
privileged moments of self-observation in frontleé mirror

(without adding too much extra work) should bensieasly
integrated in the course of the project. Our sedoymbthesis
(H2) is that the Course-of-Action observatory hefpantain

awareness of the repertoire, facilitating self-asseent and
self-analysis.

Previous and related work. Hazzan debates the
reflective practitioner perspective in software ieegring
education and the studio as a teaching method plifjdoes
not address the subject of the practitioner’s tejrer

The 'Course-of-Action’ research framework consdts
several empirical and technological research progrfl5]
in various domains such as work analysis [18] afitr

Software Quality Assurance;

- in the Software Development Engineerirgrocess
Group: 6.4.1 Stakeholder Requirements Definitiord.3
System Architectural Design, 6.4.4 Implementationcess
replaced by 7.1.1 Software Implementation Procasd {ts
6 sub-processes: Requirement Analysis, Architectura
Design, Detailed Design, Construction, Integration,
Quialification), 7.2.4 and 7.2.5 Software Verificati &
Validation;

- in the Software Development Suppdtocess Group:
6.2.1 Life Cycle Model Management, 6.2.2 Infrastnue
Management, 6.4.7 Software Installation — 6.4.8t\vGoe
Acceptance Support, 7.2.1 Software Documentation
Management.

These 19 processes are renamed (and some are also

merged) to give a breakdown of apprenticeships Bito
software engineering process groups subdivided ifo
software engineering processes, together with a ofet
apprenticeship scenes (roughly associated withwaodt

engineering activities) which provide the

learning competency families (corresponding to processes), vee

environment and define tasks. This hierarchicalugro positioned abilities and transversal competencigthiw
process/process/scenes model, adapted from thdHSO/ these areas. Table Il shows abilities and knowledlgted to

12207, is given in Tables | and Il and is used asference
framework for the learning objectives.
From the university point of view, this division the

TABLE II.

certain representative processes for each procesp.g

EXAMPLES OF COMPETENCY FAMILIES

reference framework, in a diploma-awarding perspect

Abilities and Skills

‘ Knowledge Topics

Group processes are course categories, processesuses

Project Management

and scenes are sessions.

* To use an ISO 9001 developme|
baseline

« To apply a Project Plan, updatin
it if necessary

 Planning and project progress

nt* Software life-cycle model

* Estimation and follow-up ofi
g development of components

* Traceability and conformity

* Project Plan

Software Requir

ements Capture

To mobilize specification methods
and tools in a real project:

within an ISO 9001-style
baseline

in relation to requirements
traceability

to produce a Software
Requirement Specification

* Software Requirement:
Fundamentals: definition
functional and non-functional
guantification.

* Requirements capturt
techniques: interviews, clien
meeting, statement of work
response to solicitatio
* Procedures, methods and tog
for requirements specification.

* Use cases.

TABLE I. PROCESSBREAKDOWN
12207:2008
Process Group Process Related Processes
Software PrOJec_t management 6.3.1,6.3.2
Proiect Quality insurance 7.2.3
! Software configuration 7.2.2
Management
management
Requirements capture 6.4.1
Software analysis 7.1.2
gg%irem ent Technical architecture 6.4.3
En inegrin Software design 713,714
9 9 Software construction 7.15,7.1.6
Integration and validatic 71.7724,72L
Technical support 6.2.2
Software Methods and tools support 6.2.1
Development ;
Support chumentatlon 7.21
Installation and deployment 6.4.7,6.4.8

Software

The main feature of the university periods is tarhe
software engineering by doing, without any computin
course but with a long-term project as the fourmtatf all
apprenticeships. Alternating employees are attgndin
university over 9 periods of 2 consecutive weeks| work
in teams of 6 apprentices to build a complete médion
system.

The rhythm is based on the lifecycle of a project,
organized into stages. Each stage was arbitradbdsto 2
weeks, due to the constraints of alternation. Tydecis:

Stage 0: Warm-up; Stage 1. Project set-up; Stage 2:

Requirement capture; Stage 3: Requirement anal@sige

* To use design methods and too
(in relation with requirements) to
produce design documents: syste
and software architecture and
detailed design

¢ To implement methods and
modelling tools of various aspectg
of a system (architecture and
decomposition software, data
structure)

» To implement J2EE developme
and technology of associated
framework

« To implement DBMS concepts,
techniques and tools

Design

S Software Design
mFundamentals: concepts af
principles, design role in

development cycle, top-leve
and detailed design

* Software decomposition
configuration item, software

component, software unit

* Software architecture throug
different views: conceptual
dynamic, physical, data.

* UML diagrams to describe
static and dynamic views

* Object-oriented design

t

Methods and

tools support

4: Design; Stage 5: Software construction; Stageoftware
construction; Stage 7: Integration and Verificati®tage 8:
Qualification and Deployment.
3) Competency Reference Model

While apprentices are currently learning by doing
software processes, process assessment will natuneea
capability level but (in the best case scenaridganing
capability level. Because apprentices are building

* To know Software Engineering
methods and techniques for the
software life cycle

* To install, adapt, integrate and
maintain software tools

« To assist engineers in software
deployment

« To perform a consulting mission
alone or in a group

* Analysis: patterns and mode

transformation

*Design:architectural prototype

generic design

*Configuration

tools and guides
' * CASE tools

competencies, and because some reflective learising
required, we choose to promote self-assessmentrgbpal
abilities. In 2006, we set down the abilities (ompetencies:
“the ability of a person to act in a pertinent waya given
situation in order to achieve specific purpds¢20]) that
scenes are intended to develop. We tried to angker
questions 'What is the student able to do, oncestbee is
performed? What are the related knowledge topithis
analysis gave us a set of abilities for each psodsse
examples in Table).

So we kept the 2-level breakdown of our referenc
framework - the first level being called competerargas
(corresponding to process groups) and the secowel le

The complete breakdown (3 areas, 13 families, 48
abilities and 11 transversal competencies) is dallee
competency reference model for our immersion sy$gd

1) The Course-of-Action observatory
A short definition of a Course-of-Action igHe activity

* Use case models and formats.

management:

5
b

nd

Y

i

B. The Observatory of Apprentices' Courses-of-action

of one (or several) specific actor(s), engaged ispacific
situation, belonging to a specific culture, whishsignificant
Qor the latter, in other words, that can be related
commented by (or them) at any morh§lig, p. 2].

The Course-of-Action analysis
observatory which includes continuous observatiohshe
behaviour of action and communication in a workiaibn
as well as different traces of other elements sash
interpretations, feelings, and judgments [18]. Aitgh the
data produced by these observations only givessadoethe
surface of interactions, it suffices for understagdthe
structural coupling between an agent and his ositgation.

The Course-of-Action framework proposes
collection methods which include: observing andording

is based on an

data

Verbalization is widely used by the coach withire th
learning process to scaffold the apprentice’s dgtiwhen
students ask or when tutors consider it to be acgsa
dialogue between apprentice and tutor about whiay, and
how the apprentice is doing helps them to carry tbet
activity. Recording this dialogue would be too cdicgied;
furthermore, it would probably compromise - and giloly
even destroy - this learning process.

We therefore focus on accounting and comments.
Accounting will replace recordings of engineer babar.

actors’ behaviour methods; methods to keep track dProducts and documentary resources are the madctelyf

behavioural patterns; and methods of provoked #&neted
verbalization from actors.

Self-confrontation is a prominent activity in terno$
documenting the Course-of-Action. This takes themfaf
collecting verbal data whilst the activity is adtyabeing
carried out and/or in a self-confrontation situat{e.g. in the
case of driving, the driver watches a film of thgiurney
(which is systematically recorded) and commentsitaio
clarify their own actions and events [15]).

Other kinds of verbalization, made by agents duringseveral

activity analysis (called second degree self-cari&tion
verbalizations - to emphasize the fact that theysituated in
the continuity of self-confrontation itself) are sal
implemented. Here the agents are placed in theiqosf
observers and analysts, and their verbalizatiorslstvnot
data, do nonetheless constitute their contributitmgthe
analysis of their activity [15].

2) Link with field studies

From the 'data collection techniques' point of view

Lethbridge, Sim, and Singer [22] provide a usedxbnomy.
They classify techniques according to the degrebuafian
contact required. We use several 'observationstl fiegree
techniques' [22] (with direct access to young eeefn),
including diaries, think-aloud protocols, obseroati and
participant observation.
interpretation by the actors, most recording isedoranually

by the actors themselves. From the taxonomy pdirtev,

it may appear as a 'second degree technique' [2i#h (
indirect access to young engineers) because it doés
require direct contact between participant andareser.

Representative artefacts of the job are the outpfits
software activities and tasks. The analysis ofehmsefacts
falls in a 'third degree technique' [22] (withoutcass to
young engineers).

3) What can be collected in the course of projects ?

Recall the definition of the Course-of-Action inligB.1:
what, in the observable activity of an agent [...]pise-
reflexive or significant to this agent, i.e. (i)egentable, (i)
accountable and (iii) commentable by them at amyeti
whilst it is happening [...].

We have three types of observation: (i) presentafio
accounting, (iii) comment. Software workers do achieve
complex technical gestures, or do not have to psgr
through a detailed procedure. So (i) presentatimnsan
observer are quite difficult to reproduce, and ghesentable
artefacts that are most notable and representafitiee job
are the outputs of software activities and tasks.

presentation, since they describe the activitypute and
outputs. The 'historical' context of use of (i)aexes and
product production must also be recorded. This ban
described in terms of events and processes, imglvi
occurrences of agents (people) and artefacts (ptecand
resources) meeting in space (in case of distributed
collaboration) and time. In the first instance, eamsider the
individual courses of action of the various paptoits. At
the next stage, we look at collective action inutgvparts of
individual courses of action taking place
synchronically or sequentially. We need to dividdividual
Course-of-Actions into smaller units, which we call
Performed Activity. Each event of interest must (i¢
individually accounted for in an instance of Penfed
Activity in relation with the apprentice and artefa
involved. This provides a kind of project diary journal,
and is performed in a wiki by each apprentice aspttoject
goes along.

Provoked verbalizations are replaced with self-
confrontation interviews as a way of documenting th
constraints and effects of the segment of the ‘actmtivity
that is personally experienced. Even the smalledt of
collective Course-of-Action is called a Course-aftian
Unit, which organizes several individual Performed

Because we focus on selfActivities. At the end of each 2-week universityripd,

apprentices have to write a short report (indiviguebut
also collectively if they worked on a group taskpat what
happened during the period (this is called a 'wdigey' in
the taxonomy of [22]). Apprentices may completefé&tened
Activity instances previously created, and mustatge
Course-of-Action Unit instances for activities imviag
several individual Performed Activities.

For the industrial periods, accounting is perforniec
different way. As detailed in Section IV.B.5, young
engineers must perform a complete self-assessehdimes
per year, regarding the competency reference model
described in 8I1.A.3 - which is acting as an abpititodel for
their job as an engineer. In support of these pario
assessments, they have to record events of intereat
portfolio, associating events with significant fatds they
may have used or produced.

With very few exceptions, we observed that infoliorat
about academic and industrial periods are writtenai
descriptive style (what they do with linked arté§aovhen
and where) but gave little or no indication why dadwhat
reason they did it. So, we can conclude that theyserts are
(ii) accounts and not (iii) comments.

4) What can be commented ?

We need a second-level of reporting intended
encourage comments and reflection-on-action. Hieabrts
with in-class presentation could have been used,w®i
chose not do this in order to avoid introducingsbisince
they are assessed with a mark. We found it mor&uluse
trigger intermediary reports without any assessm@it
course, students will re-use analysis, writings aordl
presentation in their final reports, as well asréaquired self-
assessments (and this may provide extra motivaton

life cycle process is also divided into a set didties; each
taactivity is further divided into a set of tasks JLOIn
addition, the process dimension provides: a) aofdiase
practices for the process, providing a definitidrtte tasks
and activities needed to accomplish the procegsogerand
fulfil the process outcomes; b) a number of inpud autput
work products related to one or more of its outcenaad c)
characteristics associated with each work produt}. [The
capability dimension consists of six capabilitydés/(Level
0 reflects an incomplete process) and the procasability

perform sound intermediary reports) but we minimizeindicators for nine process attributes for level$ol5. A

assessment bias.

process attribute isa“ measurable characteristic of process

Among the self-confrontation methods used in thecapability applicable to any proce€s§ll, p. 4]. Figure 2

Course-of-Action framework, one is the so-calledosel

level self-confrontation interview. It is performexiter the

self-confrontation interview proper. Its procedigeadically

different, because its aim is not to collect engairidata
about the actor's experience at instant t, buteweetbp co-

operation in the analysis of the activity betwedre t
researcher and the actor [19]. We borrow this prador

reporting on industrial and academic periods.

Every two months (corresponding to two industry *= e

periods of 2 weeks each), the academic period begith a
half-day during which each apprentice (12 in athgents an
intermediary report of their activities at work. Kfrg up a
meeting report is assigned to two students, basedhe
individual reports provided by each apprentice.

During academic periods where there is no inddstria

reporting, apprentices must perform a first-leuglgsis on
the state of the software processes of their aciademject.
Each apprentice has to work on two or three prese$s3
are used in all), building an intermediary procetament
called Step-of-Action based on historical Coursécfion
Units related to a given process. This analysiatended to
produce a reconstruction of the global dynamiceirmt of
smaller units and
relationships between these units.

IV. OBSERVING THECOURSE OFAPPRENTICES PROJECTS

represents the two dimensions and a performanpeoctss
assessment.

Process Dimension Capability Dimension

Process Group Capability Level

Id : string
Title : string

Id : string
Name : string
Description : string

Achievement

Id : string
[Name : string

Description : string
-HasPart 1

Has

Process |ngtance Of

‘ocess
Instan
atj

Process Attribute

Id : string
Name : string
Description : string

[Outcomes : string
1 -

Supports

Id : string
| Title : string
Purpose : string

Process Instance

1

-Has

Activity

Id : string

Title : string
¥ -Has

Output

Outcome Work Product

Id : string
Description : string
H FulFil ™

Ipput |Id : string
— Name : string
Charact. : string

Has

Management Practice

Is Generidj 3~ String

Description : string
Process Perf. Char. : string
Resource Char. : string

Task

Id : string
Form : string

Base Practice

Id : string
Title : string
Description : string

Associates

Figure 2. 12207 and 15504 Reference Models. Performing aegeoc
assessment yields a rating for each process aériBuating is a
judgement of the degree of achievment (None, Rlgrtiaargely, Fully) of

the process attribute for the instance of the assksrocess.

the sequencing and embedding 2) Work scenes

The 15504-5 standard provides software engineets wi
an exemplar model of a software project. Unfortalyat
such an exemplar model is necessary but not sertidor

We will survey the models used in the 'Softwarelearning purposes. In our system, we have to orgattie

Engineering by Immersion' programme. We will presam
enacted project that will be used as a case study.

A. Process models

1) Prescribed work

Leplat [23] has identified a difference betweerspribed
task and effective task. The prescribed task ias& that a
designer or an organizer wishes an operator tooperf
What he/she really achieves is the effective task.

It is a hard task to define things to do in a safev
projects, hence to provide a structured descriptibrihe
prescribed tasks. Several standards were writtéh this
goal. In our opinion, the process dimension of tB&/IEC
standard 15504:2004 [11] provides a complete viéwhe
prescribed work to be done in a software project.

ISO 15504 separates process and capability lewdisd
dimensions. In the process dimension, individuaicpsses
are described in terms of Process Title, ProcegsoBe, and
Process Outcomes as defined in ISO/IEC 12207 (wéeck

apprentices’ activity into small units of work el an
apprenticeship/production scene.

The apprenticeship/production scene is the referenc

context in which a part of the play happens: thenscaims
for a unity of place, time and action; the scenatisnce a
situation in which people learn and do; a scenaifriactions;
a role distribution, and an area mobilizing resesrand
means. The different components of a scene, aldtigtheir

articulation are depicted on a card. The card stracis

standardized (see an example in Figure 3).

The main elements of a card are the process group /

process (here development / design) tied up wighvibrk;

the role to play (here, designer or architect) wédim-mates’
assignment; the work description (here, the detallesign);
the products (deliverables) to deliver (here, atvgake

Design Document, SDD); the supplied pedagogicaluess
(here, a writing guide, real SDD samples and atysissand

design course); workload and lead-time information.

No.24 | Date: | Origin: Roles assignment
Project: SCENE CARD Designer Solenn Arnaldi
Architect Aude Genoud

Name:
Detailed design

Process grouj: SW development engineering
Process Software design

WORK DESCRIPTION

The goal of the software design activity is to establisiscdtware

design that effeotely accommodates the software requireme

During card No. 20 'Preliminary design', softwaeguirements hav

o

The former is an apprenticeship project driven Ine t
university and the latter is an industrial projddten by the
companies with which students are placed. We need a
assessment framework that is common to both psogeatl
which allows apprentices to relate and cumulateegpces.

TABLE IIl. PROCESSBREAKDOWN AND EXEMPLAR SCENES

been transformed into software architecture andpdetel design fo 12201 Process ‘ Hypothetical activity | Scene
the external and internal interfaces. Now, the psepof the 'Detailed Group Process 'Software Project Management'
design' is to: —
- Transform the top-level design into a detailed giesfor each Proiect | « Proiect tailorin Eresgg?sgao solicitation
software component. Components are refined intedosoftware 6.3.1 M ! i) ng P ! tpl .
units that can be coded, compiled, and tested. 6.3.2| anages ¢ Pro!ect planning rojectpian review
- Establish traceability between the software reguénets and the ment | « Project progress | Weekly progress meeting
software designs. Project monitoring and contro
The expected result will bematerialized with a Software Design Group Process 'Software Development Engineering'
Document (SDD) in accordance with the project basel This « Functional
document describes the position of each softwareimrhe software requirement capture Retro-capture of requirements
architecture and the functional, performance, amality characteristics « Technical Functional requirements
which each must address. The sections relatecet® BMS will be on Require- . Technical feasibility study
the responsibility of the card N&5 'Database Server analysis, de 6.4.1| ments requirement capture Document requirements
and generation'. Capture * Dopument Non-functional requirements
reqwre_ments Architectural feasibility study
Teaching resourcesan be helpful in writing the SDD: * Requirements Requirements review
- Simplified writing guide for the software designodionent (TEMPO review
1GQ348). + Design tailoring Maintenance tasks
- SDD Examples: Techsas and Techdis. * Architectural Retro-engineering
- Object-Oriented Analysis and Design Using UML - @A.' 7.1.3| Software| design Architectural design
7.1.4| design | ¢ Detailed design Database analysis and desig
Products V. Milestone + Database design | Detailed design
Software Design Document (SDD)| A 8-3-2009 * Design review Design review
?tggt g&t}g g_nscfzdoegg 5 Worklgad Group Process 'Software Development Support'
! * Process Life cycle process modelling
Figure 3. Example of a scene card. Methods| establishment Project process modelling
6.2.1| and tools - Process Process monitoring
3) Exemplar scenes _) support | improvement implementation
Our fundamental problem is to prescribe the contént « Tools support Tool usage guide
apprenticeship scenes, their objectives and thgiicomnes

and to link scenes with SE processes (and thecoous).
Our modest proposition is to build scenes from jonev
scenes description, called exemplar scenes. Ratieer
being provided with an abstract definition of thegeribed
situation and its prescribed tasks, the tutor lasldsign
scenes from previous exemplar scenes and his/her
previous scenes (from past projects). Table lliwshdhe
complete breakdown for some processes.

Although an intermediate level between processtaskl
may exist (12207 activity), the hypothesis is malat it
complicates the model - and that hypothetical #s/ are
only presented so as to facilitate the link witd 12207.

4) Competency Assessment Model

Regarding the understanding of software procedsas t
students are building, we were faced with a crusstle. In
the previous system (without work placement), sttsle
learned software processes by doing during theifesation
and reproduced these processes during the secend s,
links were easy to establish and a practical unaietding of
software processes occurred. Now, first iteratfooused on
learning activities) and second iteration (focused
productive activities) are performed on differembjpcts.

Software companies use assessment of software
processes for capability determination and process
improvement [24]. Although we think that process

assessment as defined in ISO/IEC 15504 or CMMéiohd

owhe reach of young engineers, we believe that plgied

Process Reference Model and a personal Processsfsset
Model are required to provide a basis for the pracof
software engineering. Furthermore, we think thagsth
models may provide an initial structure of the régee.

We observed that our apprenticeship scenes and work
placement periods mobilized a similar set of apices’
competency. As mentioned in Section 8lI.A.3, epobcess
is associated with a family of competencies caumstit with
a list of knowledge topics and a set of abilitigs skills
required to perform the process. We believe thiasastep
in competency assessment should be made by theeengi
him/herself through a self-assessment of abilites a
maturity level. The assessment scale grows from®) t O -
Don’ know anything; - 1 - Smog: vague idea; - 2 atildn:
has notion, a general idea but insufficient to perational
undertaken; - 3 - User: is able to perform theitgbilith the

help of an experienced colleague and has a fifstréence

of its achievement; - 4 - Autonomous: is able torkwo

autonomously; - 5 - Expert: is able to act as ape#xto
modify, enrich or develop the ability.

Four times a year, each young engineer is requoed

auto-assess his/her maturity level for each abdftyhe 13

competency families (as well as for each transvers

competency). This periodic self-confrontation withe
competency reference model
inventory and is performed while auto-analyzing theks
performed and his/her achievement level with thiitials
defined in the family.

Periodic competency inventories are stored in at€un

Management System (CMS). The CMS is hierarchicall
structured according to the group process / procesy

decomposition. This structure is also intendedstore
artefacts that may be of interest in illustratitg tability
determination. When the apprentice needs to relatask
performed with a process’s ability, he/she has tidewan
entry associated with the process and may link émigy
with artefacts stored. It constitutes a rudimentaoytfolio,
but is sufficient for our purposes.

Our system reference models are presented in Figure

Competency Area
Title : string
Description : string

ILI Process Group

Id : string
Title : string

Corresponds To
1! P I

[|
ILI Process C

Title : string
Description : string

Family

Id : string 7
Title : string Title : string
Purpose : string Performed : Date
(Outcomes : string
ReferencesProcess
ReferencesActivity

=0

Exemplar Activity

-Related

Knowledge
Description : string

-Belongs

Ability
Id : string
Description : string

SE Activity
Title : string

Id : string
Title : string
Description : string
Figure 4. A model of Process Reference Model -PRM- (on tfig dad
Competency Reference Model (on the right).
Periodic inventories hold abilities self-assesssient

5) Technical issues
As the project moves forward, information is condlia

updated - in content, and in structure too. Moreove

metadata management is required. In order to stipipese
purposes, we propose a very simple architecturecbas the
use of several inter-linked semantic wikis. Sentantiki is
the most flexible tool in order to record and shape
structured content.

The structural elements of these reference modetsod
change as projects go along and theirs eventeeoeded. In
order to facilitate links between the project jalrand these
models PRM, information is stored into two semamtikis
and a Content Management System (CMS):

* http://oysterz.univ-brest.fr/1220The 12207 wiki is a
hypertext reference of the ISO/IEC 12207:2008.

* http://oysterz.univ-brest.fr/lcompanthe upper-level of
the company wiki contains decompositions Procegsagp /
Processes / Exemplar Activities and Stages / Scenes

« a CMS contains the periodic inventories togethith
related artefacts used as witness of the matuaitsi |

is called a competen

B. Process enactment

1) Questioning our hypotheses
A case study, discussed below, will provide obd#oa
and information belonging to the different typescdissed in
8lll.B (presentations, accounts and comments) and
structured with the models of §IV.A (hierarchicalogp

aprocess/process/scenes model and competency m&eren

model) enhanced of events’ modelling of the preject

ction presented above.

Self-recording of activity is materialized by adglinew
items either in the portfolio or in the wiki, whith acting as
a journal. A measurement of each apprentice’s diogr
from low to high) gives an indication that the egqtice is
aware of the structure of his/her repertoire anid &huse it
classify their experiences. It will provide amgirical
verification of hypothesis H2: the Course-of-Action
observatory may help to be aware of his/her reperto

Once experiences are self-recorded, apprentices are
periodically performing self-assessment and sedflyais.
Comparing self-assessments of previous cohorts thitke
of our Study Team may provide an indication that ke of
an observatory is influencing the maturity levehaleed by
the team at study.

The self-analysis of the Course-of-Action is pravgla
view of the enacted processes as they are recotedrand
perceived by the apprentices themselves. On ther bind,
the project should follow processes as they arscpiteed by
the company’s tutor. A qualitative evaluation oé tprocess
reconstruction gives an indication of the gap betwe
prescribed and enacted processes. It will provide a
empirical verification of hypothesis H1: self-ansiy/ and
self-assessment helps an apprentice to revealtheaoise.

2) An empirical case study

This case study is based on the activity of a tearé
young software engineering apprentices, the foraméror as
a participant-to-observe having a direct contacthef team
members, sharing their environment and taking pathe
activities of the team, the latter conducting fokma
assessments as they happen. This case study absbeve
whole course of the project. As pointed out by 8mgnd
Vinson [25], apprentices’ consent is required. Atet
beginning of the project they were informed on fhetd
study and its objectives, and they agreed to ppatie.

The project is a semantic annotation tool. The ngaial
of the project is to provide a semantic annotatami able to
annotate Web resources, search in different mdutesyse
hierarchically or with facets, and manage RDF votaies.
The project uses Jena (http://jena.sourceforgeareypen-
source Semantic Web programmers’ toolkit as RDF. API

3) Planning and monitoring the project

The project enactment is based on the process moftlel
the previous section, a Y-shaped life cycle thatasstes
resolution of technical issues from resolution eftfire
issues [26] and a typical WBS (Work Breakdown Stree
“a deliverable-oriented hierarchical decompositioh the
work to be executed by the project team to accamplie
project objectives and create the required delibobea. It
organizes and defines the total scope of the prbj2e]).

The WBS has a structural and a temporal breakdown.

Every two months, apprentices perform a first-level

Each process is achieved through scenes defined froCourse-of-Action analysis on the state of the mttge

exemplar activities. The WBS is temporally orgadize 9
stages of 2 weeks. The planning of each stage sirebes
several work scenes. Scenes will be performed bynte
members, and should produce artefacts.

Information is recorded at mid-level of the compaviki
(http://oysterz.univ-brest.fr/company). This midkdé
structure acts as a simple but realistic model @irGect:
breakdown of the project stages into work scenés;aion
of persons to scenes; expected inputs and oufplis.mid-
level is filled with instances (wiki pages) corresding to
the project WBS and updated regularly. The strectdrthis
mid-level is given in the right half of Figure 5.

4) Recording the project progress

We state in 8l11.B.3 that software artefacts praetlby
the team will serve as (i) presentations. As thejegt
progresses, events of interest are recorded inuengb
associated with significant artefacts they may hased or
produced. As described in 1ll.B.3, each individ@aurse-
of-Action is accounted for, on a 2-3 days basis,am
instance of the smaller unit, called a Performedivitg.
Apprentices create a wiki page for each individaetivity
performed during the stage, fill this page with laors
description of activities performed, link this pageéth
related other pages (scene, person, artefact), uathohd
artefacts. At the end of each 2-week period apues
account for individual and collective work in thadst grain
of collective Course-of-Action, called a CourseAdftion
Unit, which organizes several individual
Activities. This (ii) accounting provides a firsdel of self-

confrontation, as required by
observatory.

ILI Process Group ILI Process Exemplar Activity
Id : string [@®—id - string [@—1d : string

Title : string + [Title : string . [Title: string

Purpose : string

Description : string
Outcomes : string !

Project

1 Title : string
Description : string

Stage
Title : string

DtStart : Date
DtEnd : Date
. ICMSWorkSpace : string

Scene

ReferencesProcess
ReferencesActivity

Step-of-action

Id : string
Title : string
Description : string

-Organizes

Course-of-action Unit

Id : string
Title : string
DtStart : Date

DtEnd : Date
|WorkCard : Object D

Input-Output

Id : string
Title : string
Description : string

Happens

Into

Input-Output

Artifact
Id : string
Title : string
Description : string
ICMSWorkSpace : string

Person

PrefName : string

Mbox : string Works

—Collective

Figure 5. Representation of an enacted project. The lifecytk project
is organized into stages, composed of scenes. Pargtene, actors
perform an SE activity inspired by an exemplanaigti yet contextual to
the project. Input and output work products (atfpare linked to scene,
activity and process. Self-observing the acti@ueto a rebuilding of
project processes into steps of Course-of-Actiatsun

software processes. Each apprentice works on feaepses
and builds intermediary process elements callegsShé

Action, based on historical Course-of-Action Uni¢ated to
this process.

All information is recorded in the lower-level ohet
company wiki (http://oysterz.univ-brest.frlcompanyJhe
structure of this lower-level is shown on the Ieitle of
Figure 5.

5) Self-assessment

An attempt must be made to relate the university an
industrial phases of the student’s experience t® aother.
Fortunately, the competency assessment model cfystem
(which could be considered to be the learning dhjes) is
based on a simplified model of professional adésit So it
may help apprentices to link up their competencyding,
thus avoiding their having to ‘climb two ladders
simultaneously’ [28].

As stated at 8IV.A.4, each apprentice is askedetb s
analyze the activities they carried out (duringhbativersity
and industrial periods) four times in the courséhefyear, in
line with the immersion system’s competency asseatm
model. Students assess their own maturity, on le s¢® to
5, for each ability or transverse competency.

In order to prepare the periodic competency assassm
apprentices use the CMS as a portfolio which hosts
significant work and interesting artefacts. At angment of
the year, either in industry or at university, tygprentice

Performedmay encounter a work situation, or perform a tagkctv

they perceived to be a significant experience. Witie

the Course-of-Actioncompetency reference model, they must identify ¢ore

several) skills related to this experience, and thesociate a
new entry with a description of the experience,oading
artefacts that testify to this experience.

6) Building their own repertoire

The process models presented in Section IV.A aeel us

throughout the year to structure the apprenticesnieg
process in the reflective practicum at universityd partially
in industry). The process models are also providingcture
for the self-recording of apprentices’ Course-otiée and
periodic self-assessments of competencies. Wevieetleat
these models provide an initial structure for thpertoire,
acting as knowledge paths towards recording amnikvat
practices within the repertoire.

V. EXCERPTS OF RECORDINGS AND ANALYSIS

We give some quantitative facts about the casey/sind
empirically question the research hypotheses di@e2.

A. Wiki accounting
The project is now complete, and Table IV gives the
number of instances (wiki pages) in each category:
» 69 work scenes occurred,
» students carried out 118 Performed Activities,
» roughly 100 artefacts were produced.

For each process, we have the quantity of: Worln&se
(SCE); Performed Activities (PAY: individual); Caa-of-
Action Units (CAU: collective), and Steps (STE: Inég-
level construct). The 6th column gives an indicatal the
quantity of Software Engineering Activities that ynae
envisaged in the process. The 7th and 8th colusptrthe
12207 breakdown of related processes: number ofitaest

For the Study Team, the average for each process is

significantly higher than that of the other teanenie®mber
that each apprentice of the Study Team has to trepeir
activity in the observatory after each period at tiiversity.
Comparison of Repertoire Use Between a Control Teath
the Study Team .

(Act) in (the) process (es) and number of corredpantasks ~ TABLE V. COM?’E?&?\ESﬁEPSErTD?FSFE;SME BETWEEN ACONTROL
(Tsk). The 9th and final column gives the numbeBake '
Practices (BP) in the corresponding process froenl5604 08-09 Control Team | 08-09 Study Team
standard. Process Min. | Max. | Avg.| Min.| Max. Avg.
TABLE IV. QUANTITATIVE FACTS FROM THECASE STUDY. Project Management 0 4 233 1 3 25
[SE Quiality Insurance 0 2 1 0 3 1.16
Process SCE| PAY| CAY STE = |Act Tsk | BP
Proi i Configuration Management 2 3 2.5 2 5 35
ject 13 | 22| 13| 5| 5| 7| 14 15
managl(_ement Requirements Capture 0 7 3.83 Z 8 4166
Quality 2 | 2| 1] 2| 2| 4| 16 8)
Insurance Software Analysis 1 4 3 1 8 3.83
Configuration
management 2 2 2 3 3 6 6 10 Technical Architecture 1 5 2.83 1 7 3.83
Requirements
2;'pture 10| 18| 10| 3| 5| 5/ 12 6 Software Design 3l 6| as 3| 8 sds
Software 2 2 2 2 2 11 3| s Software Construction 1 7| 416 3 8 533
analysis
Technical 7 10 5 3 4 2 2 : Integration - Validation 1 4 2 1 5 3
architecture
Technical Support 2 4 2.66 2 10 3.33
Sgg;’ivg‘;e 7 | 9 5 | 4 4| 2| 15 12 PP
Software Methods and Tools Support 1 4 2.16 2 8 383
ruct 8 16 4 3 5| 1| 5| 4
Icncigz:aut?olr(]m Documentation 1 6| 283 1 8 4
| -
validation 8 12 5 4 5 6| 20 29 Installation - deployment 2 6 3.16 2 7 4
Technical 8 16 2 2 2 3 4 6
support A .
Methods and It is plausible to think that this periodic selfrdmontation
tools support s 3 3 3 2 | helps them to be aware of the Process Reference|Nioat
Documen - structures the repertoire and facilitates fillihg repertoire.
. 2 4 2 2 2| 4| 7| 8 ;
tatior We may reasonably argue that our hypothesis HZls w
'gj&g‘;‘/ﬂ;’g 1| 2| 2| 1| 2| 2| 5| 6 grounded: the Course-of-Action observatory helps an

Students report on their activity at the end ofheae
week stage. Where an activity has extended beyaidgte
stage (e.g. technical support or coding), studewispt a
simple strategy: creating one single mid-level ctrce
(Course-of-Action Unit), and linking it to individli low-
level units (Performed Activity) belonging to difeat
stages.

B. Self-Recording

In order to evaluate the impact of the Course-digkc
observatory, we measure the use of the portfolkocated
with the competency assessment model. We compaitevth
teams of the 2008-2009 cohort: a Control Team —chwhi
does not record its activity in an observatory € &tudy
Team. Each team comprises 6 apprentices.

For each process of the Process Reference Modkfpan

each apprentice, we measured the number of assdciat

entries in the portfolio. Table V shows, for eaelarh, the
minimum, maximum and average number of entries.

apprentice to be more aware of the repertoire.

C. Self-assessment

A comparison of the different systems can be dram
personal competencies follow-up. For the 13 commuste
families, Table V presents three self-assessmesrages (in
September, February and May) for the 2006-2007 rtoho
(previous system: no work placement), the 2007-2@d0®rt
(new system: with work placement), and the 200832€se
study team (current system: with work placement and
observatory). Each cohort comprises 2 teams afdests.

All families make steady, and roughly equivalent,
progress - with or without work placements (andhwatr
without observatory). Due to the small number aflsnts in
cohorts, and the paucity of our statistical knowkdno
statistical comparison was performed. However,etigrno
evidence to indicate that the observatory helpserstdnd
software processes and reveal theories-in-use.

Some small differences can be pointed out: the 98-0

team-members assess themselves at a lower level tha

previous cohorts, except in terms of Project Manzayd.

This may indicate that building the observatory,d an
reconstructing processes, have enforced this campget

TABLE VI. TECHNICAL COMPETENCIES PERSONAL FOLLOW-UP FOR
THE 2006-20072007-2008COHORTS AND 2008-20095TUDY TEAM

06-07 Cohort | 07-08 Cohort 08-09 Team

competency | o5 | 57| 57| or7 | 2/8 | 5/8 | 918 | 2/9|s | 5i9 | §
family

Project 15 | 28(/34|13|27|29 1212311135!3
Managemer

Quality 11 | 24|28|14|23|24

Insurance il e Rl
Configuration| 1.2 | 1.8{2.9|1.6|2.9]|3.0 12116l2127]3
Management|
Requirementd 2.1 [3.2[3.6[1.8[28]3.0

Captore 2 [232(32|2
Softvva_re 36 |3.7/39|24|3.0|33 2 1212]27]3
Analysis

Tec_hmcal 14 | 24|3.0[20|28|29 1421212713
Architecture

Softvx_/are 2.8 | 3.2/35/23|31|36 182121 3 |4

Desigr

Softvvar_e 27 | 27/31|25|29|34 22l25l2| 3 |2
construction

Integratl_on- 12 | 13/27|13|20(32 1211821233
Validation

Technical | 2.3 [3.0[3.4[24[3.1[35

suport 14(192(23|2
Methodsand 1.7 | 26/ 3.2|2.0|25|29 12118l1125]3
tools suppo

Docu_men- 28 | 33[35[(31]33]|37 24| 25021282

tation
Installation- | 2.4 | 3.3 35|29|3.3|3.7 161261313213
Deployment

Even though we were unable to confirm our hypothesi
H1, we believe that relating the project observator the
personal follow-up of competencies may improve
apprentices' overall understanding of processesbriaf
example: the complete Software Requirements Captu
Process was performed in 10 scenes, spread overakev
sequences. Looking at the individual
apprentice regarding this process, we note that sef
assessment stayed at a low maturity level of 2 tioNs -
despite the fact that she had participated in séver
requirements-related scenes and observed her tedesm
performing other related scenes. It is only aftesr h
participation in the Software Specification Reqoients
Document update that she assessed herself at fevel
Autonomous — and finally perceived that the diffgre
Course-of-Action units related to requirements welated
to the same field.

D. Process reconstruction

progress of an

Analysis should be correlated with the participati@nd
commitment) of students into scenes that are tedhe
process. Further work is required.

In Table 1V, the number of 12207 tasks (and 15564eB
Practices as well) give an indication as to thesitgrof the
process. The higher these numbers are, the gréager
complexity - it should therefore lead to a process
reconstruction involving a higher number of Stepgwction
related to a roughly equivalent number of Software
Engineering Activities. A difference between tH&@lumn
(STE) and 6 column (SE Act.) - e.g. Requirements capture
- may indicate that the reconstruction failed.

From the tutor's point of view, steps creation was
haphazard. Simple processes, such as Design, leee b
correctly reconstructed. But, since a large numifeBP
(Base Practices) in Table IV indicate a complexcpss
which may be oversimplified in the practicum (e.g.
Configuration Management or V&V), the reconstructigas
correct regarding the simplified process but it piartly
inaccurate. For complex processes involving margnes,
reconstruction may fail - probably because appcentiare
unable to perceive an abstract view of the procébis is
what happened during the Software Requirement Bsoce
where students were not able to create the Stepsmbuld
establish significant links with smaller units, rinter-wikis
links with the corresponding 12207.

VI. CONCLUSION AND FUTURE WORK

Argyris and Schén make a distinction between the tw
contrasting theories of actiotheories-in-useand espoused
theories We proposed to adapt the Course-of-Action
framework to observe software engineering appresitic
activity in the course of their final year. Two logpeses are
discussed: (1) that self-analysis and self-assegsinelp
reveal theories-in-use, and (2) that the Cours@etibn
observatory helps raise awareness of the reperfuira case
study, the activity of a team of 6 young softwangieeers

'%ccompanied with two participants-to-observe isrentty

recorded in the observatory.

Observations are presentations (software artefacts)
accounting (events in the project diary or a pdicjoand
comments (steps reconstruction and activity repoifbis
self-observation builds a hierarchy of SE processesl as a
structure for young engineers’ repertoires. Fauet a year,
apprentices self-confront the work they did, selessing
against a personal ability model.

Current progress with this work suggests that tloegss
models (a personal Process Assessment Model and a
simplified Process Reference Model) may form ariahi
structure of the repertoire, and that the obseryabelps
apprentices to be aware of their own experiences.

Further work is required to consider how the Cowfe

We concentrate on reconstruction by the students Qlfction analysis fits in with Reflection-in-Actiomd how it

higher-level Course-of-Action from the smaller snit

Impacts the software engineering apprentices’tgtii cope

In Table VI, column S represents the average of th/ith innovation and change.

student carrying out reconstruction for this precésetween
February and May) - but there is no evidence thiatwork
improved their understanding of the reconstructestegss.

ACKNOWLEDGMENT

The authors wish to thank Frangois-Xavier Bru, &aél
Frappin, Ludovic Legrand, Estéban Merrer, Sylvaited,
and Guillaume Salou for their participation in thisrk.

(1]

(2]

(3]

(4]

5]
(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

REFERENCES

V. Ribaud, and P.Saliou, “Revealing Software Enegiirg
Theory-in-Use through the Observation of Softwaregigeering
Apprentices' Course-of-Action”, in Proceedings @09 Fourth
International Multi-Conference on Computing in th@lobal
Information Technology, New York: IEEE Press, pf22210,
2009.

D. Schén, D., “Educating the Reflective Practioffeaward a New
Design for Teaching and Learning In the Professior&an
Fransisco: Jossey-Bass, 1987.

J. E. Tomayko, “Carnegie Mellon's software develeptrstudio: a
five year retrospective” in Proceedings of the @ibnference on
Software Engineering Education, New York: IEEE Coep
Society Press, pp. 119-129, 1996.

S. Kuhn, “The software design studio: an explorétioEEE
Software, Volume 15 (2), March-April 1998, pp. 85-

D. Schén, “The Reflective Practitioner”, New Yoiasic Books,
1983.

ISO/IEC 12207:1995, AMD 1:2002, AMD 2:2004, “Infoation
technology -- Software life cycle processes”, Genénternational
Organization for Standardization (ISO), 1995, 20004

C. Argyris, and D. Schén, “Theory in practice: leasing
professional effectiveness”, San Fransisco: JoBs&g,; 1974.

L. Pinsky, and J. Theureau, “ Activite cognitiveasttion dans le
travail, Tome 1: les mots, l'ordinateur, l'opextij Collection de
Physiologie du Travail et Ergonomie, vol. 73, BariCNAM.,
1982.

J. W. Maxwell, “Using Wiki as a Multi-Mode Publisig
Platform”, in Proceedings of the 25th annual ACMemational
conference on Design of communication, New York: MAC
pp.196-200, 2001

ISO/IEC 12207:2008, “Information technology -- Sodire life
cycle processes”. Geneva: International Organizatifor
Standardization (ISO), 2008.

ISO/IEC 15504:2004, “Information technology -- Pees
assessment”. Geneva: International ~ Organization for
Standardization (ISO), 2004.

D. Schén, “Educating the Reflective Practitionem” Meeting of
the American Educational Research Association, 1987

O. Hazzan, and J.E. Tomayko, “Reflection procesiseghe
teaching and learning of human aspects of softwaggneering”,
in Proceedings of 17th Conference on Software HEmging

Education and Training, New York: IEEE Press, @ 33, 2004,
doi:10.1109/CSEE.2004.1276507

[14] P. Halloran, “Organisational Learning from the Pexdive of a
Software Process Assessment & Improvement Progran82nd
Hawaii International Conference on System Scienisiesv York:
IEEE Press, 1999.

[15] J. Theureau, “Course-of-Action analysis & Coursedofion
centered design” in: Hollnagel E. (ed.), HandbodkCagnitive
Task Design, New Haven: Lawrence Erlbaum Ass., 2003

[16] C. Argyris, and D. Schoén, “Organizational learnifgtheory of
action perspective”, Reading: Addison Wesley, 1978

[17] O. Hazzan, “The reflective practitioner perspectivesoftware
engineering education”, Journal of Systems and\&o#, Vol. 63
(3), September 2002, pp. 161 — 171, ISSN:0164121

[18] J. Theureau, G. Filippi, and I. Gaillard, “From sesogical
analysis to design: the case of traffic controlh Colloquium
"Work activity in the perspective of organizatiomdadesign",
Paris: M.S.H., 1992

[19] J. Theureau, and G. Filippi, “Analysing cooperatiwverk in an
urban traffic control room for the design of a adination support
system, chapter 4” in: Luff, P., Hindmarsh, J., tHheaC. (eds.)
Workplace studies, Cambridge Univ. Press, 200068(21.

[20] P. Meirieu, “Si la compétence n’existait pas, ildaait I'inventer”
in IUFM de Paris College des CPE, 2005, (accesgmil 2009)
http://cpe.paris.iufm.fr/spip.php?article1150

[21] V. Ribaud, and P. Saliou, “Towards an ability moftelsoftware
engineering apprenticeship”. Italics, InnovationTiaaching And
Learning in Information and Computer Sciences, &¢B), July
2007, pp. 97-107.

[22] T. C. Lethbridge, S. E. Sim, and J. Singer. “StndyBoftware
Engineers: Data Collection Techniques for SoftwaFeld
Studies”, Empirical Software Engineering , vol. (), July 2005,
pp. 311 — 341, doi:10.1007/s10664-005-1290-x

[23] J. Leplat, “Regards sur lactivité en situation tfavail -
Contribution a la psychologie ergonomique”, ParRresses
Universitaires de France, 1997.

[24] Software Process Improvement and Capability dEteation
(SPICE), Software Process Assessment - Version , 1.00
http://www.sqi.gu.edu.au/spice/docs/baseline, 1995

[25] J. Singer, and N. G. Vinson, “Ethical issues in &gl studies of
software engineering”, |EEE Transactions on Sofewar
Engineering, Vol. 28 (12), Dec 2002, pp. 1171- @18
doi:10.1109/TSE.2002.1158289

[26] P. Roques, and F. Vallée, “UML en action”, Parigrdiles, 2002.

[27] ISO/IEC FCD 24765, “Systems and software engingern
Vocabulary”. Geneva: International Organization for
Standardization (ISO), 2009.

[28] J. Topping, Sandwich courses, Phys. Educ. Vol. @4}, 1975,
pp. 141-143, doi:http://iopscience.iop.org/0031®1P/3/003

