
HAL Id: hal-00630359
https://hal.univ-brest.fr/hal-00630359

Submitted on 9 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Experience Management for Very Small
Entities

Vincent Ribaud, Philippe Saliou, Claude Laporte

To cite this version:
Vincent Ribaud, Philippe Saliou, Claude Laporte. Towards Experience Management for Very Small
Entities. International Journal On Advances in Software, 2011, 4 (1), pp.218-230. �hal-00630359�

https://hal.univ-brest.fr/hal-00630359
https://hal.archives-ouvertes.fr

Towards Experience Management for Very Small Entities

Vincent Ribaud, Philippe Saliou

Département d‟Informatique

Université de Bretagne Occidentale, UEB

20 avenue Le Gorgeu, CS 93837

29238 Brest Cedex, France

{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Claude Y. Laporte

Département de génie logiciel et des TI

École de technologie supérieure

1100 rue Notre-Dame Ouest

Montréal (Québec), Canada, H3C 1K3

Claude Y. Laporte@etsmtl.ca

Abstract—The ISO/IEC 29110 standard: Lifecycle profiles for

Very Small Entities, provides several Process Reference

Models applicable to the vast majority of very small entities

(defined by the ISO as “an entity (enterprise, organization,

department or project) having up to 25 people”) which do not

develop critical software and share typical situational factors.

An ISO/IEC 29110 pilot project has been established between

the Software Engineering group at Brest University and a 14-

employee company with the aim of establishing an engineering

discipline for a new Web-based project. As the project

proceeded, it became apparent that setting up the ISO/IEC

29110 standard has to be performed in two steps: 1) provide

self-training materials to the VSE employees on this new

standard; and 2) support good practices with a simple

Experience Management system which is compatible with the

ISO/IEC 29110 standard. This paper reports the lessons

learned about training from the pilot project, and addresses

the research issues associated with the Experience

Management system.

Keywords: software engineering processes, experience

management, very small entities, ISO standards.

I. INTRODUCTION

This paper is an extended and enhanced version of a
paper presented at the ICSEA 2010 conference [1].

Very Small Entities (VSEs) are recognized as extremely
important to the software economy, producing stand-alone or
integrated software components for large software systems.
While the use of Software Engineering standards may
promote recognized and valuable engineering practices,
these standards were not designed with the needs and
expertise of VSEs in mind, and do not fit the characteristics
of VSEs. They are consequently difficult to apply in these
settings [2]. The term „Very Small Entity‟ (VSE) was
defined by ISO/IEC JTC1/SC7 Working Group 24 (WG24)
as “an entity (enterprise, organization, department or
project) having up to 25 people.” This definition has
subsequently been adopted by the ISO in their response to
the specific needs of VSEs: the ISO/IEC 29110 standard,
Lifecycle profiles for Very Small Entities [3]. The standard
defines a group of Standardized Profiles. Profiles are subsets
of appropriate elements of standards which are relevant to
the VSE context; for example, processes and products of the
main software engineering standards. The ISO/IEC 29110-4-
1 Basic Profile [4] applies specifically to a VSE involved in
the development of a single software application by a single

project team with no special risk involved and no particular
situational factors at play.

This paper reports some of the conclusions reached as a
result of a pilot project the authors conducted with a 14-
person VSE that builds and sells counting systems for
tracking visits to public and private sites. Only 3 of the
employees are software developers, however, and so the
VSE asked for assistance with software processes – mainly
managing requirements and establishing a disciplined test
process. ISO/IEC 29110 was naturally chosen as the
reference framework, and the aim of the pilot project was to
set up, within the VSE, the part of the Basic Profile related to
requirements.

A VSE claiming compliance with the ISO/IEC 29110-4-
1 Basic Profile will implement and use all the profile
elements, as identified in Clause 7 of the profile specification
[3]. The profile elements concerning requirements are:
Project Plan Execution (PM.2), and Project Assessment and
Control (PM.3), producing the Change Request work
product; and Software Requirements Analysis (SI.2),
producing a work product Change Request and Requirement
Specification.

These profile elements state what has to be done, but
provide very little guidance on how to do it. For the latter,
Deployment Packages (DP) are expected to be particularly
helpful. A DP is a set of artifacts developed to facilitate the
implementation of a set of practices of the ISO/IEC 29110
standard. We introduced the ISO/IEC 29110 materials
related to requirements to the VSE, and began to coach a
novice engineer on the use of these materials for managing
requirements. As the pilot project proceeded, it became
apparent that the ISO 29110 set of documents (including
DPs) was not up to the task of sustaining this VSE in its
engineering activities. We maintain in this paper that
implementing standardized software engineering activities in
a VSE requires specific operational materials and
mechanisms. What we are proposing is to provide VSE
employees with a Self-Training Package intended to help the
engineer carry out these activities.

Because software engineers in a VSE use SE processes
and produce SE products continuously in different projects,
we expected that an Experience Management (EM) system
tailored for a VSE would provide a way to relate and
integrate those project experiences and be a significant help.
We also maintain in this paper that an EM system for a VSE
should be constructed on a framework suitable for that entity,

but derived from a standardized Process Reference Model
(presented in part in Section III.C) taken from the ISO/IEC
29110 Basic Profile [4].

EM solutions to organizing knowledge can be supported
by experience factories (EF) [5]. “EM includes methods,
techniques, and tools for identifying, collecting,
documenting, packaging, storing, generalizing, reusing,
adapting, and evaluating experience; and for the
development, improvement, and execution of all knowledge-
related processes” [6]. EF is defined as “an infrastructure
designed to support experience management” and “supports
the collection, preprocessing, and dissemination of
experiences” [6]. This paper outlines a simple knowledge
management system intended to gather, link, and reuse
knowledge about SE activities. Requirement Analysis and its
associated work products will be used as an example.

Professional competency management focuses on the
development of a professional attitude and skills. These
components are usually addressed in a „practicum‟ or in
„clinical work‟, and the concept of reflection, inspired by D.
Schön‟s work [7], is central to this competency development.
The knowledge management system was designed based on
two main guiding principles: the extraction of knowledge of

existing SE standards  providing the system with a
bootstrap, and the building of new knowledge by the

software engineers themselves  a process required to
maintain accurate and „living‟ knowledge.

The next section provides an overview of the ISO/IEC
29110 standard, EM and EF, and related work. The standard
is discussed in section III, and a case study introduced
focused on requirement analysis and test activities. In section
IV, we present our work on EM for a VSE and discuss some
facts related to the case study. We conclude the paper by
briefly presenting a few perspectives.

II. REQUIREMENTS AND RELATED WORK

In this section, we present the ISO/IEC 29110 initiative,
discuss about the Experience Factory, report on Argyris and
Schön‟s theories of action, and overview D. Schön‟s
reflection-on-action work. Related work is also discussed.

A. SE Standards for Very Small Entities

1) ISO terminology
A Base Standard is an approved International Standard or

ITU-T Recommendation [8]. An International Standardized
Profile (ISP) is a harmonized document on which there is
international agreement, and which describes one or more
profiles [8]. A Profile is a base standard or set of base
standards and/or ISs, including, where applicable, the
selected classes, conforming subsets, options, and parameters
of those base standards, or ISPs, required to accomplish a
particular function [8]. A Technical Report (TR) is
developed like a standard, but its purpose is simply to
provide technical information, rather than requirements on
implementation. Also, TRs are available free of charge.

2) ISO initiative
SE standards and methods often neglect the needs and

problems of small and medium-sized enterprises (SMEs),

which constitute a major part of the software industry. In
2005, the ISO recognized the needs and problems of VSEs
and established a Working Group (WG24) mandated to
develop a set of standards and technical reports suitable for
these entities. The resulting ISO/IEC 29110 standard
constitutes a set of guidelines for use by VSEs. Those
guidelines are based on subsets of appropriate elements of
standards, referred to as VSE profiles [3], relevant to the
VSE context; for example, processes and outcomes of
ISO/IEC 12207 [9], and products of ISO/IEC 15289 [10].

The Generic Profile Group targets VSEs that do not
develop critical software and that share typical situational
factors. It is composed of 4 profiles: Entry, Basic,
Intermediate, and Advanced. As mentioned in the
introduction, the Basic Profile [4] applies to VSEs involved
in the development of a single software application by a
single project team with no special risk involved or
situational factors at play. By design, it excludes many of the
ISO/IEC 12207 processes.

The standard is composed of five parts. As specified in
[3], Part 1 targets VSEs, assessors, standards producers, tool
vendors, and methodology vendors. Part 3 targets assessors
and VSEs, and Parts 2 and 4 target standards producers, tool
vendors, and methodology vendors. Parts 2 and 4 are not
intended for VSEs. Part 5 targets VSEs. If a new profile is
needed, only Parts 4 and 5 can be developed without
impacting existing documents, and they would become Part
4-x and Part 5-x-y respectively, through the ISO/IEC
standardization process.

The simplest path for a VSE is to start with Part 5-1-2:
Management and engineering guide: Generic profile group:
Basic profile. Using the Guide, a VSE can benefit in the
following ways [11]:

 An agreed set of project requirements and expected
products is delivered to the customer;

 A disciplined management process, which provides
project visibility and proposes corrective actions for
project problems and deviations, is performed;

 A systematic software implementation process,
which satisfies customer needs and ensures quality
products, is followed.

3) Deployment Packages
Once ISO/IEC TR 29110-5-1-2 has been downloaded, at

no cost, from the ISO website, a VSE may consider that the
help provided in it is insufficient to guide the
implementation. Deployment Packages (DPs), by contrast,
can be expected to provide significant help, a DP being
defined as “a set of artifacts developed to facilitate the
implementation of a set of practices, of the selected
framework, in a VSE” [12]. The elements of a typical DP are:
process description (activities, inputs, outputs, and roles), a
guide, a template, a checklist, an example, presentation
material, references and mapping to standards and models,
and a list of tools [12]. The mapping is given only as
information to show that a DP has explicit links to standards,
such as ISO/IEC 12207, or to models, such as the CMMI®.
So, by deploying and implementing the package, a VSE can
visualize the concrete steps required to achieve or
demonstrate coverage. Packages are designed so that a VSE

can implement their content without having to implement the
complete framework at the same time.

4) Pilot projects
Pilot projects are an important means for reducing risks

and learning more about the organizational and technical
issues associated with the deployment of SE practices. A
successful pilot project is also an effective means for
encouraging the adoption of new practices by members of a
VSE [12]. DPs are intended to apply the ISO/IEC 29110
standard in a VSE. Tailoring software processes to a VSE
constitutes a kind of process improvement. A pilot project
may also be an initial implementation of a DP, which
provides WG24 with feedback from the improvement
proposals before the DP is adopted as a standard.

B. Experience Management

1) Knowldege and Experience
The main asset of a software company is its intellectual

capital, and knowledge management (KM) aims to capitalize
on that capital. Schneider has explained how knowledge can
be encoded in different representations and stored in
ontologies, and that the instances of an ontology make up a
knowledge base which can be searched and used for
reference purposes [13, p. 135]. Business issues of KM are
related to decreasing time and cost while increasing quality,
and to making better decisions [14]. But KM implementation
requires investment, and is probably out of reach for a VSE.
Experiences constitute a subset of knowledge, and the reuse
of experiences is a variant of KM. Experience management
(EM) is a lightweight KM approach, a possible
implementation of which is presented in the next section.

2) Experience Factory
EM is aimed at improving project performance by

leveraging experiences from previous projects. In order to
achieve experience reuse, Basili et al. [15] have proposed an
organizational framework that separates project-specific
activities from reuse packaging activities, with process
models to support each activity.

Plan

Project

Execute

Project

Support

Project

Analyze

Project

Data, Models and

Lessons Learned Package

Experience

Experience

BaseTailored Knowldege

Consulting

Decision support,

Suggestions

Project & Context

Characteristics

Project

Organization
Experience Factory

Figure 1. Experience factory (adapted from Ras et al. [6]).

The framework, represented in Figure 1, defines two
separate organizations: a project organization, intended to
deliver the system required by the customer, and an
Experience Factory (EF), the role of which is to monitor and
analyze project developments, to develop and package
experience for reuse in the form of knowledge, processes,
tools, and products, and to supply them to the project
organization upon request [15]. “The EF employs several

methods to package the experience, including designing
measures of various software process and product
characteristics and then build[ing] models of these
characteristics that describe their behavior in different
contexts” [16, p. 30]. A dedicated sub organization is
required for learning, packaging, and storing experience.

Separating the project from the experience organization,
physically or logically, may relieve project teams of the tasks
required by EM, but is not, in our opinion, applicable in
VSEs, or even in software SMEs (up to 250 employees). We
agree with [17] that software SMEs need a more lightweight
means of creating these knowledge bases with minimal
overhead. Wiki-based repositories are often used as
knowledge repositories, because the wiki concept easily
integrates users into the knowledge-sharing process in SMEs
[18]. Lightweight tools are useful, but knowledge transfer
processes have to be built because the goal of EF is to build
knowledge by learning from experience. We draft a learning
theory in the next section.

C. Argyris and Schön’s Theories

1) Theory of Action
According to Argyris and Schön, people design and

guide their behavior by using theories of action. They
suggest that there are two kinds of theory of action: a theory
consistent with what people say, and a theory consistent with
what people do. “Espoused theories of action are the
theories that people report are governing their actions.
Theories-in-use are the theories of action that actually
govern their actions” [19, p. 7].

Argyris and Schön used three constructions to explain
theories-in-use (see Figure 2 for a more comprehensive
explanation). Governing variables are values that a person is
trying to keep within a preferred range (e.g. a manageable
workload). Action strategies are strategies used to maintain
the governing variables within the accepted limits (e.g.
refusal to accept extra work). These strategies will have
consequences which are either intended (e.g. the amount of
work does not increase too much) or unintended (e.g. the
amount of work is decreasing too drastically).

When there is a mismatch between intended
consequences and outcomes, the situation has to be
corrected. Argyris states: “An organization may be said to
learn to the extent that it identifies and corrects errors” [19,
p. 4]. They suggest that the first response to this mismatch is
to select another action strategy that will still satisfy the
governing variables (e.g. accept extra work, but delay
providing the result). Such a process of changing the action
strategy only, and not the governing variables themselves is
called single-loop learning. Another possibility is to examine
and modify the governing variables (e.g. accept too great a
workload in order to reach a new position). In this case, both
the governing variables and the action strategy have to be
modified, and this is called double-loop learning.

Argyris and Schön argue that, although espoused theories
vary widely, theories-in-use do not. They labeled the most
prevalent theory-in-use „Model I‟. “Model I theories-in-use
are theories of top-down, unilateral control of others for the
actors to win, not to lose, and to control the environment in

which they exist to be effective” [19, p. 7]. They argue that,
with such a theory-in-use, problem solving works for issues
that do not require that the underlying assumptions of Model
I be questioned (single-loop learning). Model II theories-in-
use make it possible for people “to have problem-solving
skills that question the governing values of their theory-in-
use” [19, p. 7] (double-loop learning).

Models of theory-in-use
Model I and Model II theories-in-use consider three elements: (1)

governing variables, which are values that actors seek to maintain [1], each
of which can be thought of as a continuum with a preferred range (e.g. not
too concerned, but not too indifferent either); (2) action strategies, which are
sequences of moves and plans adopted by actors in particular situations to
satisfy governing variables [1] to keep those variables within the preferred
range (e.g. undertaking physical exercise to reduce stress); and (3) the
consequences that follow as a result of action, which can be intended – those
that the actor believes will satisfy the governing variables (e.g. feeling better
after engaging in a sport), or unintended, both types designed to be
dependent on the theories-in-use of the recipients, as well as those of the
actors.

Single and double-loop learning
When the consequences of an action strategy are what the actor wanted,

then that person‟s theory-in-use is confirmed. If there is a mismatch between
intention and outcome, the consequences are unintended. Argyris defines
learning as the detection and correction of error. The first response to error is
to search for another action strategy. “Single-loop learning occurs when
errors are corrected without altering the underlying governing variables”
[2, p. 206]. An alternative is to question the governing variables themselves,
to subject them to critical scrutiny (e.g. to openly investigate the anxiety,
rather than trying to suppress it). “Double-loop learning occurs when errors
are corrected by changing the governing variables and then the actions” [2,
p. 206]. Argyris and Schön argue that many people espouse double-loop
learning, but are unaware of it, much less able to produce it.

Model I and Model II
Briefly, Model I is composed of four governing variables: (1) achieve

the purpose as defined by the actor; (2) win, not lose; (3) suppress negative
feelings; and (4) emphasize rationality [1]. The primary behavioral strategies
are to control the relevant environment and tasks unilaterally, and to protect
oneself and others unilaterally. Thus, the most widely used action strategy is
unilateral control over others. Characteristic ways of implementing this
strategy are: to make non illustrated attributions and evaluations (e.g. “Your
work is poor.”); to advocate courses of action in ways that discourage
inquiry (e.g. “Surprise me, but don‟t take risks.”); and to treat one‟s own
views as obviously correct, leaving potentially embarrassing facts unstated
[1]. The consequences are likely to be defensiveness, misunderstanding, and
self-fulfilling processes [2]. Model I leads to low-level learning, and double-
loop learning tends not to occur. Argyris and Schön aim to move people
from a Model I theory-in-use to a Model II theory-in-use that fosters double-
loop learning.

The governing variables of Model II include: (1) valid information; (2)
free and informed choice; and (3) commitment: vigilant monitoring of the
implementation choice to detect and correct errors [2]. The behavioral
strategies involve sharing control with those who have the competence to do
so and who participate in designing or implementing the action [1]. As in
Model I, prominent behaviors are advocated, evaluated, and attributed.
Unlike Model I behaviors, Model II behaviors stem from action strategies
where attributions and evaluations are illustrated with observable data, and
the surfacing of conflicting views is encouraged so that they can be publicly
tested. The consequences include minimally defensive interpersonal and
group relationships, great freedom of choice, and a high level of risk-taking.
Defensive routines are minimized and genuine learning is facilitated [1, 2].

References
[1] C. Argyris, R. Putnam, and D. McLain Smith, “Action Science:

Concepts, Methods, and Skills for Research and Intervention,” San
Francisco: Jossey-Bass, 1985, pp. 4, 80.

[2] C. Argyris, “Double-Loop Learning, Teaching and Research,”
Learning & Education, vol. 1 (2), Dec. 2002, pp. 206-219

Figure 2. Theory of Action, according to Chris Argyris and Donald

Schön.

2) The reflective practitioner
Schön‟s “reflective practitioner” perspective [7, p. 20]

guides creative professionals to reflect about their creations
during (reflection-in-action) and after (reflection-on-action),
thereby completing the creative process. A specialist is a
professional practitioner who is used to dealing with certain
types of situations again and again. Practitioners build up a
collection of ideas, examples, situations, and actions which
Schön calls a “repertoire”. “A practitioner’s repertoire
includes the whole of his experience insofar as it is
accessible to him for understanding and action” [7, p. 138].

A practitioner develops a repertoire of expectations,
images, and techniques. As long as her/his practice continues
to present the same types of cases, s/he becomes less and less
susceptible to surprise [5, p. 60]. But, when a new situation
is stimulating enough, the reflective practitioner is surprised.
Schön argues that these experienced professionals deal with
the „messiness‟ of practice not only by consulting the
research knowledge base, but by engaging in what he calls
“reflection-in-action” [20], which is sometimes described as
„thinking on our feet‟.

In many EF implementations, effort is put into analyzing
and packaging experiences from raw experiences. But
further effort is required to change the way that the whole
organization performs its work. “An organization adopting
the EF approach must believe that exploiting prior
experience is the best way to solve problems and ensure that
the development process incorporates seeking and using this
experience” [16, p. 30]. A parallel can be drawn between an
organization using an EF and a reflective practitioner. Raw
and packaged experiences play the role of the practitioner‟s
repertoire. As long as his/her practice remains stable, the
practitioner relies on her/his tacit knowing-in-action, which
is built on previous experiences directly. An organization
building new knowledge while analyzing and packaging raw
experiences is similar to Schön‟s reflection-on-action.
“Practitioners do reflect on their knowing-in-practice […],
they think back on a project they have undertaken […], and
they explore the understandings they have brought to their
handling of the case. They may do this in a mood of ideal
speculation, or in a deliberate effort to prepare themselves
for future cases” [7, p. 61]. An organization using the EF
assumes that the EF and the Project Organization are
integrated. “The activities by which the Experience Factory
extracts experience and then provides it to projects are well
integrated into the activities by which the Project
Organization performs its function” [16, p. 31]. It assumes
that the Project Organization makes no special effort to reuse
packaged experiences.

But a practitioner may also reflect on a practice while
s/he is performing it (Schön‟s reflection-in-action). In this
case, the possible objects of this reflection are varied. “He
may reflect on the tacit norms and appreciations which
underlie a judgment, or on the strategies and theories
implicit in a pattern of behavior. He may reflect […] on the
way in which he has framed the problem he is trying to
solve” [7, p. 62]. Of course, anyone can encounter a situation
where a rule drawn from previous experience cannot be
applied, in which case he/she has to be engaged in what

Schön calls a “practitioner‟s reflective conversation” with
the materials related to the situation. Occasions will also
arise when none of the packaged experiences will help the
Project Organization using EF. Although Schön did not
explicitly establish links between the reflection concepts and
the nature of organizational learning presented in Figure 2,
we consider reflection-in-action as a kind of double-loop
learning, and we assume that developing a reflective practice
will favor that type of learning.

D. Application to Very Small Projects

The set of ISO/IEC 29110 documents establishes what
has to be done in a software project, and will be presented in
section III.A. Little help is provided to explain the procedure,
however, although pilot projects are carried out expressly
intended to put this standard into practice which can be
considered as an experience packaging activity. Section III.B
and section III.C provide an insightful presentation of a pilot
project on requirements.

The main deliverables of a completed SME project are
stored by the project manager in an Experience Repository,
according to a fixed storage scheme. At best, the Experience
Repository of a VSE contains only raw experiences. Data,
models, and deliverables collected on previous projects are
stored as is, without any structure. The initial benefit for a
VSE of using the ISO/IEC 29110 standard is that a common
Process Reference Model (PRM) will be shared between
projects, as the structure of the PRM may help to structure
the Experience Repository. Since the most common
knowledge pattern transfer is the copy-paste model, a shared
structure will favor reuse of raw experiences. Section IV.A
presents an Experience Repository for raw data, and section
IV.B.1 presents the copy-paste activities that are using it.

We believe that there can be a considerable gap between
the structure of an engineer‟s repertoire (and hence the
project organization that he or she may use) and the structure
of the EF. Extracted knowledge facilitates experience reuse
and learning. In Figure 1, adapted from [6], arrows from left
(Project Organization) to right (Experience Factory) indicate
knowledge extraction. Knowledge transfer is a double-loop
learning activity. Lessons learned from the pilot project
indicate that it is a difficult issue for engineers to cope with,
especially novice engineers. Our challenge was to find a way
to encourage reflection-in-action and develop double-loop
learning. Sections IV.3.2 and IV.3.3 present the practical
solution that we provided to the VSE.

Ras et al. [21] address this problem with an approach
called „learning space generation‟, which enriches
experience packages with additional information from
specifications provided either by the instructor or by the
student. The learning space is presented by means of Wiki
pages within a specialized Wiki based on the Software
Organization Platform (SOP). Our approach does the
opposite. Rather than providing engineers with access to the
experience packages, we essentially provide task description
exemplars and product exemplars created in small projects.

III. A STANDARDIZED PROCESS PROFILE FOR VSES

In this section, we present the context of the pilot project,
the expectations of the VSE, and the application of the
ISO/IEC 29110 standard to this project.

A. Implementation of Standardized Processes

At the core of the ISO/IEC 29110 standard is a
Management and engineering guide (ISO/IEC 29110-5) [11],
which focuses on Project Management and Software
Implementation, and an Assessment Guide (ISO/IEC TR
29110-3) [22]. ISO/IEC 29110-5 provides a practical guide
to the ISO/IEC 29110-4-1 standard [4], identified as a Basic
Profile of the Generic profile group. For instance, the starting
point for ISO/IEC 29110 use for requirements is the SI.2
Software Requirements Analysis activity, its list of tasks
(SI.2.1 to SI.2.7), and the associated roles.

Deployment Packages (DP) provide VSEs with
assistance in adopting standards through a DP Repository
http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html.
For instance, DP Software Requirement Analysis [23]
simplifies task decomposition and provides a step-by-step
method for each task.

B. Pilot Project

1) Requirements
Fenton et al. state in [24]: “For 25 years, software

researchers have proposed improving software development
and maintenance with new practices whose effectiveness is
rarely, if ever, backed up by hard evidence.” They suggest
several ways to address this problem, in particular careful
design and measurement experiments, such as pilot projects.

2) Context of the VSE
A VSE with a staff of 14 (3 of them software engineers)

requested the help of our SE group in the spring of 2009. The
VSE designs, builds, develops, and sells counting systems
designed to collect and analyze data on visits to public or
private sites. Initially intended for counting pedestrians, this
VSE‟s products now cover bikes, horses, and cars. Counting
systems are based on stand-alone counter boxes (including
sensors, a power supply, data storage, and data exchange)
and a software chain capable of collecting, analyzing,
presenting, and reporting counting data. In the previous
software chain, the set of data was downloaded from
counters by infrared link or GSM, stored on personal
computers, and then transmitted via a file transfer utility.

3) The new software project
Because of its clients‟ requirements and the products

supplied by the competition, the VSE began a complete
reconstruction of its software chain in order to transform it
into a Web-based system, called Eco-Visio, intended to host
the data of fleets of counting systems for each client, and
capable of processing statistics and generating analytical
reports on counting. At the end of June 2009, the VSE hired
a graduate of Brest University, who had done his final
internship at the VSE. At the same time, we visited the VSE
and initiated a pilot project with the intention of transferring
a part of the ISO/IEC 29110 standard to the specific context
of the VSE. Project stakeholders decided to focus on two SE

http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html

activities: 1) the establishment of a practical technique for
gathering and managing requirements; and 2) improvement
of the system‟s reliability with a disciplined test process.

The new software project, completed at the end of March
2010, was released as the first version of the new Eco-Visio
Web-based system.

C. Basic Profile

1) Basic Profile processes
The Generic Profile Group [4] is a collection of four

profiles (Entry, Basic Intermediate, Advanced), providing a
progressive approach to satisfying the needs of a vast
majority of VSEs that do not develop critical software and
share characteristic situational features. The Basic Profile
applies to a VSE that is involved in software development of
a single application by a single project team involving no
special risk or situational factors. The objective of the project
is to fulfill an external or internal contract. The internal
contract between the project team and their client need not be
explicit.

The Basic Profile is made up of two processes: Project
Management (PM) and Software Implementation (SI). A
process is defined as “a set of interrelated or interacting
activities which transforms inputs into outputs” [9]. Table I
provides the process/activity breakdown, and presents tasks
related to requirements and tests (which are the focus of the
pilot project cited above).

TABLE I. BASIC PROFILE PROCESS BREAKDOWN

Process Activities
Pilot project-related

tasks

PM
Project

Management

PM.1 Project Planning

PM.2 Project Plan Execution
PM.3 Project Assessment and

Control

PM.4 Project Closure

PM.1.1

PM.1.13, PM.1.14
PM.2.2 and

PM.2.4

PM.3.5

SI

Software

Implementation

SI.1 SW Implementation

Initiation

SI.2 SW Requirements
Analysis

SI.3 SW Architectural and

Detailed Design
SI.4 SW Construction

SI.5 SW Integration and Tests

SI.6 Product Delivery

-

SI.2.2, SI.2.3, SI.2.4

SI.3.5, SI.3.6

SI.4.4

SI.5.4

-

ISO/IEC TR 29110-5-1-2 [11] is intended to guide the

Basic Profile implementation of PM and SI processes
described in ISO/IEC 29110-4-1 [4]. These processes
integrate practices based on the selection of ISO/IEC 12207
SW life cycle processes and ISO/IEC 15289 information
product (documentation) standards elements. DPs will
facilitate the implementation of these processes.

2) Basic Profile products
Clause 9 of ISO/IEC 29110-4-1 [4] establishes the

normative list of Basic Profile work product and deliverable
specifications. There are 23 work products, which can be the
input, output, or internal products of processes, activities, or
tasks.

3) Process assessment

ISO TR 29110-3 [22] is an Assessment Guide applicable
to all VSE profiles. It is compatible with ISO/IEC 15504-2
and ISO/IEC 15504-3. The assessment has two purposes: 1)
to evaluate process capability based on a two-dimensional
assessment model (from the ISO/IEC 15504:2006 standard
[25]); and 2) to determine whether or not an organization
achieves the targeted VSE Profile based on the process
capabilities evaluated [22]. A VSE-specific Process
Assessment Model (PAM) can be derived by selecting only a
set of assessment indicators from ISO/IEC 15504-5: “an
Exemplar PAM” We selected the assessment indicators
relevant to the corresponding process outcomes, as defined
in ISO/IEC 29110-4-1.

4) Performing the ISO/IEC 29110 Requirements

Analysis
ISO/IEC 29110-4-1 provides a set of cohesive tasks for

each activity. Also established here are the VSE needs and
suggested competencies. For instance, it sets out the SI.O2
objective: “Software requirements are defined, analyzed for
correctness and testability, approved by the Customer,
baselined and communicated. Changes to them are
evaluated for cost, schedule and technical impact previously
to be processed” [4, p. 8].

ISO/IEC TR 29110-5-1-2 details the tasks to be
performed for each PM and SI process activity: role,
description of the task, and input and output products. For
instance, it defines tasks SI.2.1 to SI.2.7, detailed in Table II,
and their associated output products: Requirements
Specification, Verification Results, Change Request,
Validation Results, and Software User Documentation.

The Software Requirements Analysis DP [23] simplifies
task decomposition: requirement identification, requirement
refinement and analysis, requirement verification and
validation, and requirement change management. A step-by-
step method is described for each of these four tasks. The DP
also provides a Software Requirement Specification
template. Training materials and an Excel-based traceability
tool can be downloaded from the publicly accessible WG24
website.

The pilot project was intended to provide coaching for
the implementation of the Software Requirements Analysis
DP. One VSE novice engineer studied the DP and was given
a short training course, using the training material associated
with this DP. Despite all this helpful material, the VSE
engineer was not able to start the Software Requirements
Analysis activity, suffering from „blank page‟ syndrome. The
authors could not provide strong support to the VSE, and we
have had to reorientate the pilot project.

5) Problem analysis
Based on feedback that the novice engineer was not able

to perform the SI.2 Software Requirements Analysis activity,
the authors set about to analyze the problem.

As we stated in section III.B, action theory studies what
an actor does in a given situation in order to achieve
objectives. Argyris and Schön [26] made a distinction
between espoused theories, which are those that an
individual claims to follow, and theories-in-use, which are
those that can be inferred from action. Espoused theory and

theory-in-use may be contradictory, and the agent may or
may not be aware of any inconsistency. By definition,
however, the agent is aware of espoused theory, and
theories-in-use can be made explicit by reflection-on-action
[27].

Software companies use SE and software quality
standards as the foundation of their quality assurance process
and quality management system. Since these companies
claim to follow and respect standards, we may think that
these standards constitute a part of the espoused theories of
software engineers, especially Process Assessment and
Process Reference Models. In the software field, we observe

that a software engineer may have a work behavior  her/his

theories-in-use  which often runs counter to the
organizations‟ processes, practices, and procedures that
she/he is supposed to follow and talk about, i.e. espoused
theories.

What happened to that young engineer? Through the
standard documentation and DPs, he received a great deal of
information on espoused theory. However, as his repertoire
of experience (and VSE Experience Repository) was all but
empty, he could not act in accordance with any theory-in-
use.

An Experience Repository may act as a product and
project memory. It records footprints of the organization‟s
theories-in-use and provides support for learning from past
experience. Thus, managing experience in a repository may
provide VSE engineers with a simple form of knowledge
management. But, as we will see in the next section, an
Experience Repository requires additional processes in order
to support knowledge transfer.

IV. EXPERIENCE MANAGEMENT FOR THE VSE

Chan and Chao present a research survey conducted
among 68 SMEs which have implemented Knowledge
Management (KM) initiatives [28]. SMEs are significantly
bigger than the targeted VSEs, but the lessons learned in this
survey also apply to VSEs. Effective KM is influenced by
two types of KM capability: infrastructure and process,
which have to be deployed. This section presents a simple
Content Management System-based infrastructure to manage
experience and some activities that may be part of EM
processes.

A. An Experience Repository

1) Related work
A significant part of EM in a software company should

be about software documentation reuse (code reuse is outside
the scope of this paper). So, the primary inputs of our system
are documentation deliverables: plans, requirements, design
specifications, data schemas, test cases, and so forth.
Publishing and content management systems (CMS) are
generally used as the basis for a documentation management
infrastructure. But several authors have criticized the rigidity
of the editorial control required by a CMS [29] and the need
to balance structure/constraint and flexibility [30]. Some
promote the use of Wikis and RDFs (Resource Description
Frameworks) to resolve these issues [31].

Wikis are probably a suitable tool for facilitating
collaborative design and development, and may be viewed as
part of the project repository (see Figure 1), but requirements
for an EM infrastructure are different. Rech et al. identified
several challenges related to knowledge transfer and
management processes for SMEs in the software sector:
recording, reusing, locating, and sharing information [18].
The authors evaluated a small software enterprise and a
micro software enterprise with reuse policies in place. They
point out that the engineers have little confidence in
knowledge transfer, because only a few reusable documents
have been created. They also note that the workflow for
reusing knowledge is slow and typically demotivating,
because multiple sources have to be searched manually and
documents belonging together weren‟t grouped together or
linked [18]. As we will see in the next section, a CMS-based
system with a simple and fixed structure may resolve most of
these issues.

2) Experience Repository infrastructure
According to Peter Senge [32], what he calls “personal

mastery models” and “mental models” are two of the five
disciplines that distinguish a learning organization from
more traditional organizations. The questions to be answered
are: how do experts learn compared to novice practitioners,
and how do their mental models differ? “People with a high
level of personal mastery live in a continual learning mode”
[32, p. 142]. Mental models are “deeply ingrained
assumptions, generalizations, or even pictures and images
that influence how we understand the world and how we take
action” [32, p. 8]. They are similar to Schön‟s professional‟s
repertoire. “From a cognitive point of view, there is a
quantitative difference between expert and novice knowledge
bases and also a qualitative difference, e.g. the way in which
knowledge is organized. Novices lack background knowledge
and are not able to connect their experience to their
knowledge base. The organization of knowledge at the
experience provider’s and at the experience consumer’s
makes the transfer of knowledge between different levels of
expertise extremely difficult” [33]. Part of the problem can be
avoided if experts and novices share a common repertoire
structure. We use the ISO/IEC 29110 Basic Profile Process
Breakdown (see Table I) as the shared structure of the
Experience Repository. We discuss later how learning
processes should be developed in order to support
knowledge transfer.

 Managing an Experience Repository for a small project
can be greatly facilitated if the structure is kept as simple as
possible, which means we should also avoid amassing too
many artifacts. Our proposal is that, whenever a project is
completed, the project closure activity create its own space in
the CMS and use the Process/Activity decomposition of
ISO/IEC 29110-4-1 [4, Clause 7] as the structure for that
space. Then, only the main deliverables of the project, as
defined in ISO/IEC TR 29110-5-1-2 [11, Clause 4], will be
stored, and in the right place in the structure.

Table II shows the structure and content of the
Experience Repository for some representative activities of
each process. To further illustrate our work, we added the
activity-related tasks. The left-hand column provides links to

the ISO/IEC 12207 activities profiled in the parts of ISO/IEC
29110 mentioned. We added (in italics) a proposal
(published in [34]) for the management of deliverables
related to support activities.

The infrastructure is not intended to be a project
repository (the left part of Figure 1) hosting project
deliverables in different versions. The infrastructure forms
part of an Experience Repository intended to record the final
state of the project and to provide further projects with
exemplars of deliverables. The Alfresco content platform
(http://www.alfresco.com/products/wcm) is used as a Web

TABLE II. STRUCTURE AND CONTENT OF THE EXPERIENCE

REPOSITORY

12207 Activity Tasks Output products

 Project Management Process

6.3.1.3.3,

6.3.2.3.1,
6.3.2.3.2

PM.2

Project Plan
Execution

 PM.2.1 Review

Project Plan

 PM.2.2 Change
request analysis

 PM.2.3 External

revision meeting

 PM.2.4 Internal

revision meeting

Project Plan

Change Request
Meeting Record

…

 Software Implementation Process

6.4.1.3.1,
6.4.1.3.2,

6.4.1.3.3,

6.4.1.3.4,
6.4.1.3.5,

7.1.2.3.1

SI.2

SW Require-

ments
Analysis

 SI.2.2 Document

requirements

 SI.2.3 and 2.4 V & V
requirements

Requirements
Specifications

V&V Results

7.1.3.3.1,
7.1.4.3.1

SI.3
SW

architectural

and detailed
design

 SI.3.3 Document

software design

 SI.3.4 Software

design verification

Software Design

Traceability Record

Verification Results

…

Management and Implementation Support Process

6.2.1.3.1,

6.2.1.3.3

Method and

tool support

 Process
establishment

 Process

improvement

 Tool support

Process implementation

recommendations
Tool usage guide

content management suite, mainly for providing an upload-
download system organized into a hierarchy of space, with
the possibility of a fine-grained control of users‟ rights over
spaces. As mentioned above, the space hierarchy structure is,
for each project, the Process/Activity decomposition of
ISO/IEC 29110-4-1 [4]. Each space hosts a variety of work
products of ISO/IEC TR 29110-5-1-2 [11]. Examples of
these products are given in Table II, column 4.

B. KM Support Processes

According to [35], knowledge can be created through
dedicated acquisition, conversion, application, and protection
of knowledge assets. In the survey of 68 SMEs by Chan and
Chao [28], most of the respondents stated that they encounter
knowledge capture problems related to time, place, and
people. But Conradi maintains that the hard part is not the

“upward externalizing direction”, but the “downward,
internalizing flow” [36]. The problems that arise are very
similar to those encountered in software engineering reuse.
The literature agrees that understanding is a high cost factor
for reuse. Dusink and Van Katwijk state: “Essential for a
higher degree of reuse is the reusing engineer’s
understanding of the reusable artifacts, the process, and the
actions to be taken” [37]. Ras states that general reuse
education and technology training are the two principal
solutions proposed to enhance reuse with respect to
understanding [33].

The standard method for transferring knowledge from
experts to novices is the copy-paste model, and the VSE
asked for a similar pattern, which is for the Experience
Repository to work based on this model, and for us to seed
the Experience Repository by providing them with suitable
examples, such as a Software Requirements Specification,
that they can reproduce as closely as possible. The VSE
asked for immediate working solutions and did not want to
invest in understanding the experiences stored. However, we
decided to provide the VSE with two levels of Experience
Management Process: a copy-paste level, which is presented
in this section, and a continuous understanding level, as
discussed in section IV.C.

1) Copy-paste activities

TABLE III. SI.2 SOFTWARE REQUIREMENTS ANALYSIS -- TASKS AND

ROLES. THE ASTERISK MEANS „IF APPROPRIATE‟.

Task List Role

SI.2.1 Assign tasks to the Work Team members in

accordance with their role, based on the current Project
Plan.

Technical

Leader,
Work Team

SI.2.2 Document or update the Requirements

Specification.

ANalyst,

CUStomer

SI.2.3 Verify the Requirements Specification. AN

SI.2.4 Validate the Requirements Specification CUS, AN

SI.2.5 Document the preliminary version of the Software

User Documentation or update the present manual.*

AN

SI.2.6 Verify the Software User Documentation AN

SI.2.7 Incorporate the Requirements Specification, and
Software User Documentation* to the Software

Configuration in the baseline.

TL

The copy-paste process is designed to be as simple as

possible. Clauses 4.2.8 and 4.3.8 of ISO/IEC TR 29110-5-1-
2 [11] propose task decomposition of the PM and SI
processes for each activity (Table III presents the
decomposition for SI.2 Software Requirements Analysis),
together with inputs and outputs of each task. So, we can
establish the workflow for each of the 23 work products (cf.
§III.C.2). For instance, Figure 2 presents the workflow of
Work Product 11, Requirements Specification.

SI.2.2 SI.2.3
Requirement

Specification

Requirement

Specification

[Verified]

SI.2.4

Requirement

Specification

[Validated]

SI.2.7

Requirement

Specification

[Baselined]

Figure 3. WP11 Requirements Specification workflow

It may happen that a work product workflow spans
several activities of the same process, such as WP17
Software User Documentation, which covers SI.2 to SI.5,

http://www.alfresco.com/products/wcm

and even PM and SI processes, such as WP8 Project Plan,
which covers PM.1 to SI.6.

The VSE needs a simple model to locate, store, and
retrieve work products, according to the Process Reference
Model used. Our proposal is to locate a work product inside
the CMS space associated with the last activity that outputs
the final version of this work product. So, WP11
Requirements Specification will be located in the „SI.2 SW
Requirements Analysis‟ space, WP17 Software User
Documentation will be located in the „SI.5 SW Integration
and Tests‟ space, and WP8 Project Plan will be located in
the „SI.6 Product Delivery‟ space.

Project X

Contact : Y

PM

Project Management

SI

Software Implementation
IM

Infrastructure Management

SI.2.1

SW Implementation

Initiation

SI.2.2

SW Requirements

Analysis

SI.2.3

SW Architectural and

Detailed Design

SI.2.4

Software

Construction

SI.2.5

SW Integration

and Tests

SI.2.6

Product

Delivery

WP11

Requirement Specification

WP2

Change Request

WP5

Meeting Record
Figure 4. Structure and content of a project in the Experience Repository.

 The task of storing work products in an Experience
Repository space associated with the project will be allocated
to the PM.4 Project Closure activity, which is the
responsibility of the Project Manager (PM) role. With this
simple copy-paste EM process, the PM role stores artifacts,
and (ideally) every VSE employee can access and copy the
artifacts of his/her choice. An extract from the structure and
content of a project space is given in Figure 4.

2) Learning software engineering processes
A common assumption in software process improvement

is that “the quality of a software product is largely governed
by the quality of the process used to develop and maintain it”
[38, p. 8]. Based on this assumption, Conradi states: “This
often means that relevant work practices (processes) must be
systematically documented as formal routines, often as
standard process models. These routines must then be
communicated to the developers, customized and adopted by
them and later revised based on experience and overall
strategies” [39, p. 268].

The ISO/IEC 29110 standard provides a Process
Reference Model and DPs aimed at guiding the
implementation of this model. We were not confident in the
ability of novice engineers to understand the work practices
and associated DPs documented in the ISO/IEC 29110
standard. So, we scheduled a training week on ISO/IEC
29110 Software Requirements Analysis in December 2009.
Ten novice engineers (including the VSE engineer) attended
the session, which comprised a course on requirements and a
case study using the Software Requirement Analysis DP
[23]. This DP is summarized in Figure 5.

Task 1. Requirements identification. The objective is
to clearly define the scope of the project and identify key
requirements of the system. Steps are: (i) Collect information
about the application domain; (ii) Identify project scope; (iii)
Identify and capture requirements; (iv) Structure and
prioritize requirements.

Task 2. Requirements refinement and analysis. The
objective is to detail and analyze all the requirements
identified. Steps are: (i) Detail requirements; (ii) Produce a
prototype.

Task 3. Requirements verification & validation. The
objective is to verify requirements and obtain validation from
the customer or his representative. Steps are: (i) Clarify
fuzzy requirements (verification); (ii) Review SRS (Software
Requirements Specification); and (iii) Validate requirements.

Task 4. Requirements change management. The
objective is to manage requirements change in line with a
process agreed upon with the customer. Steps are: (i) Track
changes to requirements; (ii) Analyze the impact of changes;
(iii) Identify changes that are beyond the project scope; (iv)
and Prioritize changes.

Figure 5. Step-by-step path proposed by the DP Requirement Analysis.

The session began with an introductory lecture on
requirements, but trainees were quickly plunged into action
with the preparation of a peer review on a requirements
analysis guide. This guide was issued by a major ISO 9001
software company (at which both authors had been
employed for about 10 years). The SW Requirements
Specification (SRS) Document was issued by the DOD-
STD-2167A software development standards [40]. This
guide is intended to facilitate the writing of the SRS. Peer
review of this guide provided trainees with their initial
exposure to standardized requirements management.

During the second phase of the session, trainees had to
contribute to writing a similar guide, based only on the
ISO/IEC 29110 standard. The authors provided trainees with
a preliminary version of the guide, written in a top-down
manner, starting with the ISO/IEC 12207 standard processes
devoted to requirements (6.4.1 Stakeholder Requirements
Definition, 7.1.2 SW Requirements Analysis) and finishing
with the ISO/IEC 29110 Basic Profile SI.2 Software
Requirements Analysis activity. Trainees had to incorporate
both the Software Requirement Analysis DP and its step-by-
step approach into the guide.

Finally, trainees had to apply the enhanced guide to a
„real‟ SRS and update this SRS to comply with the guide
requirements. That SRS is for eCompas – an existing system
developed by the second author and former graduate
students.

C. Understanding Experience

1) Learning from experience
Despite the path traced in the standard during the training

session), some young engineers (and this is true of the VSE
engineer in particular) reported being unable to find their
way through managing the requirements.

As mentioned above, the ISO/IEC 29110 standard
attempts to document the best practices as formal routines.
Several authors have studied the gap between the
rationalistic, linear model of software engineering and the
reality for most small software organizations. Conradi and
Dyba carried out a study in the context of a national software
process improvement program in Norway for SMEs to assess
the attitude to formalized knowledge and experience sources.
They found that “developers are rather skeptical at using
written routines, while quality and technical managers are
taking this for granted” [39]. Dyba [41] states that “a
specific challenge involves balancing the refinement of the
existing skill base with the experimentation of new ideas to
find alternatives that improve on old ideas.” But our
hypothesis is more straightforward: for many novice
engineers, the copy-paste model is not sufficient as a
knowledge transfer pattern, because they have no previous
experience to help them understand the formalized
knowledge. The training session provided novice engineers
with products resulting from past experience and with the
assistance of teachers. We built the content session using a
normative curriculum of a professional school, as attributed
to Edgar Schein in [42]: “First teach them the relevant basic
science, then teach them the relevant applied science, then
give them a practicum in which to practice applying that
science to the problems of everyday life.” The normative
curriculum reflects an objectivist view of professional
education, often portrayed as the opposite of a constructivist
view. “Objectivist conceptions of learning assume that
knowledge can be transferred from teachers or transmitted
by technologies and acquired by learners. […]
Constructivist conceptions of learning, on the other hand,
assume that knowledge is individually constructed and
socially co constructed by learners based on their
interpretations of experiences in the world” [43, p. 217]. We
do not oppose the notions of objectivism and constructivism.
Rather, we believe that they offer different points of view
which may be combined to favor learning. An important step
in the learning cycle is the activity of reflection. If we
provide learners with details of past experience acquired by
other people, we have to find a way to help learners reflect
on that experience. By reflecting on the experience acquired
(by her/himself or others), learners integrate the lessons
learned from that experience into their own knowledge
structures.

2) Reflection-on-action and reflection-in-action
To meet the challenges of their work, practitioners rely

on their repertoire of experience, along with a certain
ingenuity acquired during that practice, rather than on
knowledge-oriented curricula or formulae learned during
their basic education. D. Schön describes this repertoire as
follows: “The practitioner has built up a repertoire of ideas,
examples, situations and actions. […] When a practitioner
makes sense of a situation he perceives to be unique, he sees
it as something already present in his repertoire. To see this
site as that one is not to subsume the first under a familiar
category or rule. It is […] to see the unfamiliar, unique
situation as both similar to and different from the familiar
one, without at first being able to say similar or different

with respect to what. The familiar situation functions as a
precedent, or a metaphor, or […] an exemplar for the
unfamiliar one” [7, p. 138].

In order to help VSE employees understand the VSE
Experience Repository, and consequently add to their own
repertoire, we have designed practices that may help
software engineers become „reflective‟ practitioners. These
practices are generally borrowed from two streams:

industrial  process improvement and product assessment 
and Schön‟s theory of reflection-on-action and reflection-in-
action. For instance, bootstrapping an engineer‟s repertoire
for a given activity in SE (e.g. requirements analysis or
design) may require an approach based on tailoring an
activity before the activity itself is performed. This approach
has been presented through the specific case of the design in
[44].

Such an approach is generally implemented in two steps:
1) tailoring the activity to acquire a minimal structure of the
repertoire through a deductive approach (by writing a guide,
for instance); and 2) initializing the repertoire through an
inductive approach, with the use of retroengineering, for
instance. This approach is a pragmatic answer to the lack of
support and training that may be experienced in small
projects, where the main effort is concentrated on project
management and software development tasks.

3) Self-Training Packages
As reflective practices are performed by the learners

themselves, very few interactions with a coach are required.
The next step is related to organizing the self-learning
process. Our proposal is to organize the engineer‟s training
path through small units of work, called „self-training tasks‟.
The description of the task is designed as a theater scene: the
scene is the reference context where action takes place; it
aims to maintain unity of place, time, and action, and is a site
where a situation can occur and where people perform
actions (and learn). It also serves as a location for action
scenarios, for role distribution, and for mobilizing resources
and means. The various components of a scene, along with
their linkages, are depicted on a self-training report card. The
card structure is standardized:

 Related ISO/IEC 29110 Process/Activity
This reference (for instance, SI/SI.2 SW Requirements
Analysis) provides a smooth link to ISO/IEC 29110, and
through the profile to ISO/IEC 12207 and ISO/IEC 15504.

 Role
The role (for instance, Analyst) is a brief reference to
ISO/IEC 29110.

 Task title and objectives
These are similar to Process Title, Process Purpose, and
Process Outcomes, as defined in ISO/IEC 12207.

 Step-by-step guide
This is a comprehensive description of the work to be done,
intended to be a practical guide to completing the task.

 Resources
This is the set of required resources. It may include the
hosting of technical support (such as Oracle Metalink) that a
technology transfer center is able to afford when the cost is
out of reach for a VSE.

 Output products
These are generally a methodological survey, a tool usage
guide, or an installation manual.

The set of self-training activities that a VSE engineer
should perform is incorporated into a Training Package (TP)
(analogous to the ISO/IEC 29110 Deployment Package, or
DP). Developing the concept of the TP is outside the scope
of this paper, but suffice to say that a TP is primarily
intended to provide self-training on SE activities, with the
supplementary goal of initiating and developing a strategy of
capitalizing on this knowledge and transferring it to VSE
employees.

4) Empirical evaluation
The VSE engineer in question was provided with two

TPs on Requirements at the end of 2009. The first was
intended to provide the engineer with a basic maturity level
on ISO/IEC 29110 Requirements Management (through the
study of an SI.2 activity and a review of a „real‟ WP11
Requirements Specification), and the second involved
performing a Requirements Analysis on a „real‟ case. The
first package was made up of 3 training scenes and the
second of a single one. Each TP was calibrated to a week of
self-training. The VSE engineer worked through both
packages in January 2010.

Favoring reflection-in-action through TPs is, in our
opinion, a kind of software improvement. Although no
measurements can be easily defined and performed to
confirm this, there is empirical evidence of it in the form of
„customer‟ satisfaction.

The VSE engineer reported that he was now ready to
apply the SI.2 SW Requirements Analysis to the Eco-Visio
project. As the specifications were established by a
subcontractor, he merely reviewed the existing Requirements
Specification and rewrote parts of it in order to verify
conformity with the template provided in the DP, Software
Requirement Analysis [23]. Once updated, the WP11
Requirement Specification [Validated] served as an input to
SI.5, SW Integration and Tests. The system has been
deployed since the end of March 2010, and load testing and
application optimization should soon be completed. Defects
will then have to be corrected through a short cycle of SI
activities.

As an empirical measure of satisfaction with the
approach, the VSE asked for a similar approach for SI.5 SW
Integration and Tests. In particular, the VSE wanted
assistance in establishing a disciplined Change Request
Process. This TP is under construction, and we plan to begin
with the Software Testing DP [45] as a basis for the whole
TP. Probably because tests occur in many SE activities, this
DP is organized in a manner that spans PM and SI tasks,
which raises many new questions.

D. Towards a sustainable model for a VSE

1) Packaging experiences
For a VSE, the investment in Knowledge Management

may appear to take too much time before benefits appear.
Obviously, it will take time before a critical mass of
experiences will be available in the Experience Repository.
Schneider and Schwinn report several problems they faced to

in order to achieve a suitable repository, the Experience
Base, at DaimlerChrysler. They pointed out the importance
of “thinking [of] an Experience Base as something that
needs to be seeded in order to grow” [46].

Experience management assumes that all relevant
experience can be collected and packaged for reuse. Rus and
Lindwall have established that there is a difference between
explicit and tacit knowledge. “Explicit knowledge
corresponds to the information and skills that employees can
easily communicate and document, such as processes,
templates, and data” [14]. Packaging raw experiences in the
Experience Factory produces explicit knowledge. “Tacit
knowledge is personal knowledge that employees gain
through experience; this can be hard to express and is
largely influenced by their beliefs, perspectives, and values”
[14]. Relying on tacit rather explicit knowledge is the
prevailing model in a VSE because it does not require the
documentation of knowledge or the packaging of
experiences. Komi-Sirviö et al. analyzed the case of a
company that failed in several attempts to improve
knowledge reuse. The company was looking for a new
solution that should have a minimal impact on the software
development organization. “This new approach consisted of
a knowledge-capturing project and customer projects. The
former gathered knowledge from relevant sources and
packaged and provided it to a customer project for reuse on
demand” [47]. The knowledge-capturing project is similar to
the analysis organization in the Experience Factory
framework, but it does this for the customers‟ project needs.

2) Packaging experiences in a VSE
The previous section suggests that packaging experiences

should be performed outside the software development
organization. As reported in section IV.C, we used the pilot
project to solve an immediate need of the VSE: a disciplined
management of requirements. Because the VSE was aware
of their weakness in requirements management, they agreed
to invest enough time and effort to change their working
process for this point. But packaging the required materials
was performed by the authors rather than the VSE.

Our proposal for an EM system for a VSE is a simplified
approach of the EF infrastructure presented in Figure 1.

The simplified EF is made up of two separate parts: an
Experience Repository, and a Training Package Repository.
The Experience Repository contains raw experiences; as
stated in sections IV.A.2 and IV.B.1, the project manager has
to store the main deliverables of the completed project
according to a fixed storage scheme. The use of the
Experience Repository relies only on the copy-paste
knowledge transfer pattern. No help in understanding the raw
experiences is provided. When a project is experiencing
difficulties in completing a software engineering activity and
no useful materials can be found in the Experience
Repository, an external task force has to build a Training
Package on the given activity and store it in the Training
Package Repository. Then, VSE employees may perform
self-training using this Training Package. VSE employees
may store feedback in the repository in order to improve the
process. Self-training tasks are designed to develop reflective
thinking. They are based on past experiences, either from the

VSE or from elsewhere. Self-training packages are not
intended to explain the packaged experiences for reuse; the
main goal is rather to initialize the engineer‟s repertoire
regarding the problematic software engineering activity.
Once the self-training package has been completed, the
hypothesis is made that the engineer will be able to return to
his/her practice and interact with the problematic situation in
such a way that it will lead to his/her success. Decisions,
support, and suggestions are built up by the engineer
her/himself rather than provided by the packaged
experiences. Figure 6 shows all the Infrastructure and
Process issues that we have addressed in this section.

PM - Process

Management

SI – Software

Implementation

Work products
Work

products

Decision support,

Suggestions

Project Repository

Training

Results

Training

Packages

Training Package

Repository

Experience Repository

Figure 6. Overview of the EM Infrastructure and Process.

V. CONCLUSION AND FUTURE WORK

We have proposed a simple Experience Management
system for a VSE that is compatible with the emerging
ISO/IEC 29110 standard. Two hypotheses are posed: (1) the
EM infrastructure is kept as simple as possible with the use
of a CMS structured with the decomposition of the PM and
SI processes; and (2) EM requires dedicated processes that
can be taken from D. Schön‟s reflection-on-action work. The
needs of a VSE and the solutions that we have provided are
reported as a case study.

Further work is required to consider how the concept of
the Training Package could complement that of the
Deployment Package.

REFERENCES

[1] V. Ribaud, P. Saliou, and C. Y. Laporte, “Experience Management
for Very Small Entities: Improving the Copy-paste Model,” in
Proc. Fifth International Conference on Software Engineering
Advances, New York :IEEE Press, 2010, pp. 311-318.

[2] C. Y. Laporte, “The Development of International Standards for
Very Small Entities: Historical Perspectives, Achievements and
Way Forward,” Joint International Council on Systems
Engineering (INCOSE) / Concordia Institute for Information
Systems Engineering (CIISE) Distinguished Seminar, 2010.

[3] ISO/IEC TR 29110-1:2011, Software Engineering -- Lifecycle
profiles for Very Small Entities (VSEs) -- Part 1: Overview,
Geneva: International Organization for Standardization (ISO),
2011.

[4] ISO/IEC 29110-4-1:2011, Software engineering -- Lifecycle
profiles for Very Small Entities (VSEs) - Part 4-1: Profile
specifications: Generic Profile group, Geneva: International
Organization for Standardization (ISO), 2011, available at:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail
.htm?csnumber=51154 (last accessed June 1)

[5] V. Basili, G. Caldiera, and D. Rombach, “Experience Factory,” in
Encyclopedia of SE, vol. 1, Hoboken:Wiley, 2002, pp. 476-96.

[6] E. Ras, R. Carbon., D. Decker, and J. Rech. “Experience
Management Wikis for Reflective Practice in Software Capstone
Projects,” IEEE Transactions on Education, vol. 50 (4), Nov. 2007,
pp. 312-320.

[7] D. Schön, The Reflective Practitioner, New York: Basic Books,
1983.

[8] ISO/IEC TR 10000-1:1998, Information technology -- Framework
and taxonomy of International Standardized Profiles -- Part 1:
General principles and documentation framework, Geneva:
International Organization for Standardization (ISO), 1998.

[9] ISO/IEC 12207:2008, Information technology -- Software life
cycle processes, Geneva: International Organization for
Standardization (ISO), 2008.

[10] ISO/IEC 15289:2006, Systems and Software Engineering --
Content of systems and software life cycle process information
products (Documentation), Geneva: International Organization for
Standardization (ISO), 2006.

[11] ISO/IEC TR 29110-5-1-2:2011, Software Engineering -- Lifecycle
profiles for Very Small Entities (VSEs) -- Part 5-1-2: Management
and engineering guide: Generic profile group: Basic profile,
Geneva: International Organization for Standardization (ISO),
2011, available at:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_I
SO_IEC_29110-5-1-2_2011.zip (last accessed June 1)

[12] C. Y. Laporte, Contributions to SE and the Development and
Deployment of International SE Standards for Very Small Entities,
PhD thesis, Université de Bretagne Occidentale, Brest, 2009,
available at: http://tel.archives-ouvertes.fr/tel-00483255/fr/ (last
accessed May 25).

[13] K. Schneider, Experiences and Knowledge Management in
Software Engineering, Berlin Heidelberg:Springer-Verlag, 2009.

[14] I. Rus and M. Lindvall, “Knowledge Management in Software
Engineering,” IEEE Software, vol. 19 (3) , May-June, 2002, pp.
26-38.

[15] V. Basili, G. Caldiera, and G. Cantone, “A Reference Architecture
for the Component Factory,” ACM Transactions on SE and
Methodology, vol. 1 (1), January 1992, pp. 53-80.

[16] V. Basili and C. Seaman, “The Experience Factory Organization,”
IEEE Software, vol. 19 (3) , May-June, 2002, pp. 30-31.

[17] T. Chau and F. Maurer, “A Case Study of a Wiki-based Experience
Repository at a Medium-sized Software Company,” Proc. ACM K-
CAP‟05, ACM Press, 2005, pp. 185-186.

[18] J. Rech, C. Bogner, and V. Haas, “Using Wikis to Tackle Reuse in
Software Projects,” IEEE Software, vol. 24 (6), November-
December, 2007, pp. 99-104.

[19] C. Argyris, “Organizational learning and management information
systems,” ACM SIGMIS Database, vol. 13 (2-3), Winter-Spring
1982, pp. 3-11, ISSN:0095-0033.

[20] D. Schön, Educating the Reflective Practitioner: Toward a New
Design for Teaching and Learning in the Professions, San
Francisco: Jossey-Bass, 1987.

[21] E. Ras and J. Rech, “Using Wikis to support the Net Generation in
improving knowledge acquisition in capstone projects,” Journal of
Systems and Software, vol. 82, April 2009, pp. 553-562.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51154
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51154
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_ISO_IEC_29110-5-1-2_2011.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_ISO_IEC_29110-5-1-2_2011.zip
http://tel.archives-ouvertes.fr/tel-00483255/fr/

[22] ISO/IEC TR 29110-3:2011, Software Engineering -- Lifecycle
profiles for Very Small Entities (VSEs) -- Part 3: Assessment
guide, Geneva: International Organization for Standardization
(ISO), 2011.

[23] S. Alexandre and C. Y. Laporte, “Software Requirement
Analysis,”
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-
Software%20Requirements%20Analysis-V1_2.doc, Montréal,
2011 (last accessed May 25).

[24] N. Fenton, S.L. Pfleeger, and R.L.Glass, “Science and substance:
A challenge to software engineers,” IEEE Software, vol. 11 (4),
July 1994, pp. 86-95.

[25] ISO/IEC 15504:2004, Information technology -- Process
assessment, Geneva: International Organization for
Standardization (ISO), 2004.

[26] C. Argyris and D. Schön, Organizational learning: A theory of
action perspective, Reading: Addison Wesley, 1978.

[27] C. Argyris, R. Putnam, and D. McLain Smith, Action Science,
Concepts, methods, and skills for research and intervention, San
Francisco: Jossey-Bass, 1985.

[28] I. Chan and C. Chao, “Knowledge management in small and
medium-sized enterprises,” Communications of the ACM, vol. 51
(4), April 2008, pp. 83-88.

[29] J. M. García Alonso, J. J. Berrocal Olmeda, and J. M. Murillo
Rodríguez, “Documentation Center  Simplifying the
Documentation of Software Projects,” Proc. Wiki4SE Workshop 
4th International Symposium on Wikis, Porto, 2008.

[30] J. W. Maxwell, “Using Wiki as a Multi-Mode Publishing
Platform,” Proc. 25th annual ACM international conference on
Design of Communication, ACM, New York, 2001, pp. 196-200.

[31] A. Rauschmayer, “Next-Generation Wikis: What Users Expect;
How RDF Helps,” Third Semantic Wiki Workshop. at ESWC,
Redaktion Sun SITE, Aachen, 2009, poster.

[32] P. M. Senge, The Fifth Discipline. The art and practice of the
learning organization, London: Random House, 1990.

[33] E. Ras, “Learning Spaces: Automatic Context-Aware Enrichment
of Software Engineeering Experience,” PhD Thesis in
Experimental Software Engineering no. 29, Stuttgart:Fraunhofer
Verlag, 2009.

[34] V. Ribaud, P. Saliou, R. V. O‟Connor, and C. Y. Laporte
“Software Engineering Support Activities for Very Small Entities,”
Proc. 17th International Conference on European Systems &
Software Process Improvement and Innovation (EuroSPI 2010),
Springer-Verlag, September 2010.

[35] A. H. Gold, A. Malhotra, and A. H. Segars, “Knowledge
Management: An Organizational Capabilities Perspective,” Journal
of Management of Information Systems, vol. 18 (1), May 2001,
pp. 185-214.

[36] R. Conradi, “From software experience databases to learning
organizations,” Proc. 11th Int‟l Conf. on Software Engineering and
Knowledge Engineering (SEKE‟99), 1999, Knowledge System
Institute, pp. 204-206.

[37] L. Dusink and J. van Katwij, “Reuse dimensions,” Proc.
Symposium on Software reusability (SSR '95), ACM Press, 1995,
pp. 137-149.

[38] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis, The
Capability Maturity Model for Software: Guidelines for Improving
the Software Process, SEI Series in Software Engineering,
Addison-Wesley, 1995, 640 p.

[39] R. Conradi and T. Dyba, “An empirical study on the utility of
formal routines to transfer knowledge and experience,” SIGSOFT
Softw. Eng. Notes 26(5), 2001, pp. 268-276.

[40] Department of Defense, Defense System Software Development,
DOD-STD-2167A, 29 February, 1998.

[41] T. Dyba, “Improvisation in small software organizations,” IEEE
Software, 17(5), 2000, pp. 82-87.

[42] D. Schön, “Educating the Reflective Practioner” in Meeting of the
American Educational Research Association,
http://resources.educ.queensu.ca/ar/schon87.htm, 1987, (last
accessed January 25).

[43] D. Jonassen, “Designing Constructivist Learning Environments,”
in Instructional Design Theories and Models: A New Paradigm of
Instructional Theory, Mahwah (New Jersey):Lawrence Eribaum
Associates, 1999, pp. 215-240.

[44] P. Saliou and V. Ribaud, “Bootstrapping an empty repertoire of
experience: The design case,” Proc. 1st Workshop on Human
Aspects of SE (OOPSLA 2009), ACM, October 2009.

[45] L. Gómez Arenas, “Deployment Package  Software Testing,”
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-Software
Basic Profile Testing-CL00.doc, Montréal, 2010 (last accessed
May 25).

[46] K. Schneider and T. Schwinn, “Maturing Experience Base
Concepts at DaimlerChrysler,” Software Process Improvement and
Practice, vol. 6, 2001, pp. 85-96.

[47] S. Komi-Sirvio, A. Mantyniemi, and V. Seppanen, “Toward a
practical solution for capturing knowledge for software projects,”
IEEE Software, 19(3), May/June 2002, pp.60-62.

http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-Software%20Requirements%20Analysis-V1_2.doc
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-Software%20Requirements%20Analysis-V1_2.doc
http://resources.educ.queensu.ca/ar/schon87.htm
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-Software%20Basic%20Profile%20Testing-CL00.doc
http://profs.logti.etsmtl.ca/claporte/VSE/Publications/DP-Software%20Basic%20Profile%20Testing-CL00.doc

