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Abstract— Prices of NAND flash memories are falling drastically 

due to market growth and fabrication process mastering while 

research efforts from a technological point of view in terms of 

endurance and density are very active. NAND flash memories are 

becoming the most important storage media in mobile computing 

and tend to be less confined to this area. The major constraint of 

such a technology is the limited number of possible erase 

operations per block which tend to quickly provoke memory 

wear out. To cope with this issue, state-of-the-art solutions 

implement wear leveling policies to level the wear out of the 

memory and so increase its lifetime. These policies are integrated 

into the Flash Translation Layer (FTL) and greatly contribute in 

decreasing the write performance. In this paper, we propose to 

reduce the flash memory wear out problem and improve its 

performance by absorbing the erase operations throughout a 

dual cache system replacing FTL wear leveling and garbage 

collection services. We justify this idea by proposing a first 

performance evaluation of an exclusively cache based system for 

embedded flash memories. Unlike wear leveling schemes, the 

proposed cache solution reduces the total number of erase 

operations reported on the media by absorbing them in the cache 

for workloads expressing a minimal global sequential rate.  
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I.  INTRODUCTION  

NAND flash memories are more and more used as main 
storage systems. We can find them in music players, smart 
phones, digital cameras, laptop computers, and a huge set of 
electronic appliances. NAND flash memory is based on 
semiconductor chips giving them some extremely interesting 
characteristics. They are small, lightweight, shock resistant, 
and very power efficient. One of its main constraints is its poor 
lifetime which is due to the limited number of erase operations 
one can perform on a given block (see background section). In 
addition to this limitation, flash memories present poor write 
performance because writing can be performed only in one 
direction (from 1 to 0), so a block must be erased before being 
modified.  

The FTL (Flash Translation Layer) is a hardware/software 
layer implemented inside the flash-based device. One of its 
main functionalities is the mapping of logical addresses coming 
from higher levels (applications/operating system) to lower 
level physical addresses. Throughout this mapping is achieved 
the wear leveling, which is the widely adopted technique to 
cope with the limited number of erase operations. Wear 

leveling consists in spreading the write operations over the 
whole flash memory area to increase the block average lifetime 
preventing it from wearing out too quickly. So, in order to 
modify a given block, it is rewritten to another free one that 
suffered less erase cycles. The use of such a technique implies 
to take into account the validity of written data as many 
versions can be present in different blocks. Garbage collectors 
are implemented to recover free space when needed.  

Wear leveling in FTL relies on an on-flash SRAM-based 
memory where the logical-to-physical mapping tables are 
stored. The use of such an SRAM being very expensive for 
embedded systems, FTL designers tried to severely minimize 
the size of such metadata. In fact, one have to find a trade-off 
between increasing the performance of the flash memory by 
allowing a page mapping algorithm, which consumes a lot of 
SRAM but reduces the number of erase operations, and 
reducing the SRAM usage by reducing the metadata and so 
increasing the granularity of the mapping which increases the 
number of erase operations. All state of the art solutions are 
located between those two extremes. 

In addition to minimizing the standard deviation of the 
erasure distribution over the flash media, a good wear leveler 
should minimize extra erase operations due its own execution. 
Despite this, a wear leveler cannot lower the total number of 
erase operations under a certain limit. That is why researchers 
designed buffering systems on top of FTLs [1-4]. They are 
mainly used to reorganize non sequential request streams 
which contributes in minimizing the number of erase 
operations in addition to buffering the data for future use. The 
main disadvantages of those systems are:  1) the price: too high 
for many embedded systems like mp3 players, flash memory 
cards, etc., 2) the complexity: two levels of complexity are 
cumulated, FTL and cache, and 3) a higher CPU usage. 

As stated in [5], the endurance problem of flash memories 
has been widely overestimated and actual flash memories, 
thanks to recovery time, can sustain much more erase 
operations than expected.  

Because of all the reasons stated above, we think that FTL 
solutions are temporary and that one should begin considering 
exclusively cache based flash memories mainly for embedded 
systems.  

We propose, in this paper, a solution based on a simple 
flexible dual cache to replace wear levelers and garbage 
collectors. This exclusively based cache system is compared to 



state-of-the-art FTLs to show that we can rely upon a cache 
system to minimize and wear level the erase operations and 
improve performances. This cache system performs well for 
most tested workloads except for extremely random workloads 
with very small request sizes.  

The main research contributions of this study are the 
following: 1) a novel caching technique to replace the existing 
wear leveling (and garbage collection) solutions. 2) The 
implementation of a simulator used to achieve performance 
evaluation based on FlashSim [6][7] that is built by extending 
DiskSim 3.0 [8], the most popular storage system simulator. 
We added a cache level support for FlashSim. 3) The 
validation with a large number of synthetic workloads based on 
global sequentiality parameter. 

The paper is organized as follows: a description of flash 
memories is given in the background section and some related 
works are discussed in the third section. In the forth section, the 
proposed cache system organization and policies are depicted. 
The following section gives performance evaluation 
methodology and discusses the simulation results, and finally 
we conclude and give some perspectives in the last section. 

II. BACKGROUND  

Flash memories are nonvolatile EEPROMs. They are of 
mainly two types: 1) NOR flash and 2) NAND flash, they are 
named after the logic gates used as the basic structure for their 
fabrication. NOR flash memories support bytes random access 
and have a lower density and a higher cost as compared to 
NAND flash memories. NOR memories are more suitable for 
storing code [9]. NAND flash memories are, by contrast, block 
addressed, but offer a higher bit density and a lower cost and 
provide good performance for large read/write operations (as 
compared to NOR memories). Those properties make them 
more suitable for storing data [9]. The study presented in this 
paper concerns NAND flash memories. 

NAND flash memories can be classified into two 
categories: 1) Single Level Cell (SLC) and 2) Multi Level Cell 
(MLC). In SLC flash memories, only one bit can be stored in 
one cell, while in MLC, two bits or more can be stored. The 
price to pay when acquiring MLC as compared to SLC 
technology is quite high. SLC can have up to 10 times higher 
lifetime and lower access latency [10]. 

Flash memory is structured as follows: it is composed of 
one or more chips; each chip is divided into multiple planes. A 
plane is composed of a fixed number of blocks, each of them 
encloses a fixed number of pages that is multiple of 32. Actual 
versions of flash memory have between 128 and 1024 KB 
blocks (pages of 2-8KB). A page actually consists of user data 
space and a small metadata area [7][2].  

Three key operations are possible on flash memories: read, 
write and erase. Read and write operations are performed on 
pages, whilst erase operations are performed on blocks. Pages 
in a given block must be written sequentially. NAND flash 
does not support in-place data modification. In order to modify 
a page, it must be erased and rewritten in the same location or 
completely copied to another page and its corresponding LBA-
PBA translation map entry is updated. 

One fundamental constraint on flash memories is the 
limited number of write/erase cycles (from 10
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 for MLC to 10
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for SLC) [10]. After the maximum number of erase cycles is 
reached, a given memory cell can no more retain data. Some 
spare storage cells exist on the chip to cope with such a 
wearing out. Due to data locality (temporal and/or spatial in 
many workloads), some of those memory blocks would be 
much more used than the others. They then tend to wear out 
more quickly. This very central problem pushed the 
researchers’ community to seriously consider wear leveling 
techniques to even out the write operations over the whole 
memory blocks even though these techniques reduce 
dramatically the performance. 

As mentioned earlier, writing a data requires having a clean 
page available (free page from a block erased beforehand). If 
the system has to modify a previously written page, it looks for 
a clean page and writes the data while invalidating the 
previously occupied page (by modifying the metadata). The 
erase operation is done asynchronously. If there are no clean 
pages, a garbage collector is ran to recycle invalidated pages. 

III. RELATED WORK 

A. FTL Based Systems 

One can distinguish three main FTL schemes, named after 
the granularity of the logical to physical mapping. 1) Page 
mapping provides great flexibility, at the cost of a large 
mapping table. 2) Block mapping increases the mapping 
granularity to a block level, reducing drastically the size of the 
mapping table. When updating data in a previously written 
page, the system must copy the entire block to a new free 
location, leading to huge performance drops. 3) Hybrid 
mapping tries to mix both page and block mapping techniques. 
Flash space is partitioned into data blocks, mapped by blocks 
and log blocks, mapped by pages. When the number of free log 
blocks becomes low, the system must merge them to create 
data blocks. Merge operations are extremely costly. Current 
FTL systems are derived from those three main schemes. 

Demand-based Flash Translation Layer (DFTL) [7] is a 
page mapping-based FTL. Only a part of the mapping table is 
present in SRAM, most of it residing on the flash media itself. 
Based on DFTL, Convertible Flash Translation Layer (CFTL) 
[11] also places the major part of its page mapping table on the 
flash memory. CFTL separates data into cold and hot data, 
respectively mapped by block and by pages. 

Regarding hybrid-based schemes, Dynamic dAta 
Clustering (DAC) [12] separates the flash space into multiple 
regions, from the coldest to the hottest data. This helps to avoid 
situations with blocks having mixed hot and cold data which 
lead to costly full merges. Fully Associative Sector Translation 
(FAST) [13] tries to increase the number of non-costly switch 
merges by partitioning the log blocks into sequentially and 
randomly written log blocks, sequentially written blocks being 
good candidates for switch merge operations. 

Block mapping-based scheme Mitsubishi [14] [15] and M-
Systems FMAX algorithm [14] divide flash space into 1) 
normally mapped blocks in which physical pages offset is 
always equal to the corresponding logical page offset, and 2) 



additional blocks written independently of the offset. In order 
to retrieve data written in additional blocks, the corresponding 
logical page number is written in the Out-Of-Band area of each 
physical page. 

Actual FTL algorithms try to bypass the limitations of the 
main scheme they derivate from, by storing the mapping table 
on the flash media for page mapping based schemes, reducing 
the number of costly full merge operations for hybrid-based 
schemes, and delaying the block copy operations on page 
update for block mapping-based algorithms. 

For the sake of this study, we have chosen to compare our 
system to two efficient FTL schemes that are DFTL (page 
mapped) and FAST (hybrid). 

B. Buffers above FTL Systems 

Even though designed FTL techniques are more and more 
efficient (and complex), performance of write operations are 
still very poor. Buffering systems have been designed to cope 
with this issue by reorganizing non-sequential request streams 
before sending them to the FTL. Those buffers are placed on 
top of FTLs.  

The idea behind Flash Aware Buffer (FAB) [1] is to keep a 
given amount of pages in the buffer and flush pages that belong 
to fullest block. The Cold and Largest Cluster policy (CLC) [2] 
system implements two clusters of pages in the cache, a size-
independent and a size-dependant one based on LRU. Block 
Padding Least Recently Used (BPLRU) is a write buffer [3] 
that uses three main techniques: block level LRU, page 
padding and LRU compensation. Block-Page Adaptive Cache 
(BPAC) [4] partitions the cache into two parts: an LRU page 
list used to store data with high temporal locality, and a list of 
blocks divided itself into two data clusters organized by 
recency and size. 

Most of those buffer techniques have been designed to be 
implemented on SSD caches which implies two major 
characteristics: 1) they rely on too big size buffers (8 to 
128MB) and so are not adequate for some embedded systems, 
2) they are implemented on top of FTLs for which they do not 
know the details. This is an advantage if one wants to use the 
buffer on an existing system (which is the purpose of the 
authors), but can be a limitation if one wants to design a well 
performing system.  

IV. C-LASH ARCHITECTURE FOR EMBEDDED STORAGE 

In this section we describe C-lash (Cache for fLASH) 
system architecture and policies. C-lash is much smaller than 
previously discussed cache systems (512KB for the evaluations 
listed in this paper). 

A. C-lash Architecture 

In C-lash, the cache space is partitioned into two spaces, a 
page space (p-space) and a block space (b-space). P-space 
consists of a set of pages that may come from different blocks 
in the flash while b-space is composed of blocks that can be 
directly mapped (see Fig. 1).  

C-lash is also hierarchical, it has two levels of eviction 
policies: one which evicts pages from p-space to b-space (G in 
Fig. 1), and another level in which blocks from b-space are 
evicted into the flash media (I in Fig. 1). With this scheme, we 
insure that the system always flushes blocks rather than pages 
to the flash memory. P-space and b-space regions always 
contain respectively either valid or free pages or blocks. 

When a read request arrives, data are searched in both 
spaces. If we get a cache hit, data are read from the cache (B or 
E in Fig. 1), otherwise, they are read from the flash memory (A 
in Fig. 1). A read miss does not generate a copy into the cache. 

When a write operation is issued, in case of a cache hit, 
data are overwritten (respectively C or D in Fig. 1) with no 
impact on the flash media. If data are not in the cache, they can 
only be written into the p-space (C in Fig. 1). If enough pages 
are available, we use them to write the data. If not, we choose 
some pages to flush from the p-space to the b-space (G in Fig. 
1) and copy the new data. 

B. Cache Policies Algorithms 

Two eviction policies are implemented for each of p-space 
and b-space (respectively G and I in Fig. 1). 

1) P-space Eviction Policy 
When a write request is issued and the considered page is 

neither present in the p-space nor in the b-space, a new page 
must be allocated in the cache p-space. If a free page is 
available, the new page is written and data in the corresponding 
location in the flash invalidated. If no free space is available, 
the system chooses a set of pages to evict into the b-space (not 
into the flash media). Pages to evict are those forming the 
largest set from the same block. Once this set found, we have 
two possibilities:  

1. A free block is available in the b-space and so victim 
pages are copied in it.  

Figure 1.  Structure of the C-lash system. 



2. No free block is available and then, the set of victim pages 
is compared to the number of valid pages contained in 
each block of the b-space area:  

a. If there exists a block containing less valid pages than 
the victim ones, a switch operation is performed (F and G 
in Fig. 1): pages in the victim block are moved in the p-
space while the subset of victim pages is moved in the 
freed block. This induces no impact on the flash memory.  

b. If all blocks in the b-space contain more valid pages 
than the subset of victim pages: the b-space eviction 
policy is executed to flush a block into the flash media. 

In the upper illustration of Fig. 2, we describe an example 
of a p-space eviction; the chosen pages are those belonging to 
block B21 containing the biggest number of pages. One block 
in the b-space contains two valid pages which is less than the 3 
pages to evict. Thus, C-lash switches between the block B4 and 
the three pages subset. The system, therefore, frees one page 
without flushing data into the flash. 

2) B-space Eviction Policy 
An LRU algorithm is used for this eviction to take into 

consideration, in the b-space, the temporal locality exhibited by 
many workloads. When a block eviction is performed, the 

whole corresponding block in the flash memory is erased 
before being replaced by the one in the cache.  

In case the flash memory still contains some valid pages of 
the block to evict from the cache, a merge operation (J in Fig. 
1) is to be performed.  This merge operation consists in reading 
the still valid pages in the flash memory before flushing the 
whole block from the cache. The merge can be done either 
during a p-space eviction, we call it early merge, or just before 
flushing the block on the flash media, we call it late merge. 
Early merge is more advantageous if the workload is read 
intensive and shows temporal and/or spatial locality (make 
benefit from the cached data). If the workload is write-
intensive, we would use the late merge. By delaying the merge 
operation we insure two main optimizations: 1) we read a 
minimum number of pages since between the moment the 
pages are evicted into the b-space and the moment they will be 
evicted into the flash, many pages can be written and so 
invalidated from the flash. 2) Since it is possible for a block in 
b-space to be moved to p-space during a p-space pages eviction 
(a switch), it may not be worth doing the merge operation too 
early. This can cause extra read operations. We restrict the 
scope of the presented study to the use of a late merge scheme. 

An example of block eviction is shown in Fig. 2. In the 
lower illustration, we describe a p-space eviction leading to a 
b-space flush to the flash media. In the p-space eviction phase, 
two pages of the B21 block are chosen to be evicted. The 
blocks in the b-space contain more valid pages than the pages 
amount to be evicted from the p-space. So, the system needs to 
evict a block into the flash beforehand. After that, the system 
copies both pages of the B21 into the freed block. In this 
specific example, no merge operation occurs because the 
flushed block is full of valid pages.  

V. PERFORMANCE EVALUATION 

In this part, we compare the C-lash system and three 
efficient state-of-the-art FTLs: DFTL, FAST and the idealized 
page mapping algorithm used as a baseline. The purpose of the 
performance evaluation part is to study if caching techniques 
can replace actual efficient FTL schemes for embedded 
storage. 

A. Simulation Framework and Methodology 

FlashSim is a simulator based on Disksim [8] which is the 
most popular disk drive storage system simulator in both 
academia and industry. Disksim is an event driven simulator 
that has been validated with an exhaustive set of disk models. It 
simulates the whole storage system going from the device 
driver until the detailed disk movement, integrating many 
controller strategies, queues, caches, bus systems, and detailed 
disk descriptions. Disksim also integrates a very detailed 
synthetic workload generator which is used in part of our 
experimentations. Disksim does not natively include flash 
memory support.  

FlashSim integrates some modules that are specific to the 
flash memory subsystem simulation. In addition to the 
components modeled by Disksim, it is able to simulate the 
basic flash device infrastructure to implement specific 
operations: read, write, erase, etc. Logical to physical address 

Figure 2.  Two  examples describing different scenarios of the eviction 

policy for p-space and b-space. 



translation mechanisms are also implemented with garbage 
collection policies. FlashSim implements many FTL schemes: 
the FAST, DFTL schemes and an idealized page based FTL.  

We have modified and increased the functionality of 
FlashSim to allow the simulation of a dual cache subsystem 
placed on the top of the flash media. The used cache is 
configurable as many cache policies can be simulated in the b-
space (FIFO, LRU, and LFU). Only the study based on LRU is 
shown in this paper. 

B. Storage System and Performance Metrics 

We rely on three main performance metrics: the average 
request response time, the number of performed erase 
operations and weighted standard deviation of the erase 
operations distribution to express the quality of wear leveling. 
In our study, the response time is captured from the I/O driver 
point of view, including all intermediate delays: caches, 
controllers, I/O queues, etc. We tried to minimize the 
intermediate elements' impact to focus on the flash memory 
subsystem behavior. The second metric we capture is the 
number of performed erase operations. It indicates the wear out 
of the memory.  

We simulated a NAND flash memory with a 2KB page size 
and a 128KB block size. The three operations have the 
following delays: 130.9µs for a page read: 405.9µs for a page 
write, and 2ms for a block erase: [16]. The chosen C-lash 
configuration has 2 blocks (128KB each) in the b-space and 
128 pages in the p-space (a total size of 512KB). The mapping 
table used with C-lash is extremely small (much less than 1KB) 
as compared to the cache size. All the performed simulations 
begun with the same initial state, the flash media was supposed 
to be completely dirty. Each new write in a given block 
generated an erase operation. 

C. Simulated Workloads 

The performed tests are those described in Table 1. We 
mainly vary the global sequentiality of the workload by tuning 
three parameters: sequentiality (strictly contiguous requests), 
spatial locality (interleaved contiguous requests [8]) and 
request size.  

We also varied the number of requested data which gives 
an idea on the size of used address space and so the free area of 
the flash. This last parameter is important because for some 
FTL schemes, the more free space is available, the better are 
the performances. Nevertheless, for embedded systems, it is 
more realistic to consider that the flash memory space has been 
optimized and then, there is not much free space available.  

 

Table 1. Tested workloads characteristics on 1GB I/O space 

(default values are underlined unless otherwise specified).  

Seq. rate Spatial locality Mean Req. Size  

0100% (steps  

of 5%) 

0100% (steps  of 

10%) 

1, 2, 4, 8, 16 , 32, 64, 

128  pages 

Request number Write rate Inter arrival times 

60000 80% exp (0, 200ms) 

D. Results & Discussion 

In this section, we describe the results obtained when 
comparing our cache for flash solution with the following 
FTLs: FAST, DFTL and an idealized page mapping FTL. As 
stated in the background section, the pure page mapping FTL is 
very RAM consuming and is not really usable, but it gives the 
best FTL performance. As in [7], we use it as a baseline in our 
study. 

1) Sequentiality: As we can see in Fig.3, C-lash performs 

better than DFTL, in terms of response time, if the 

sequentiality rate is above 40 %. It always performs better 

than FAST. 
 It achieves less erase operations if the sequentiality rate is 

above 50% and always outperforms FAST. 

Thanks to the dual cache eviction properties of C-lash 
which help absorbing the erase operations, C-lash always 
perform a better wear leveling than both FAST and DFTL.  

The more the sequentiality rate is high, the more C-lash 
approaches the ideal page mapping FTL performance for the 
three performance metrics. 

2) Spatial Locality. We can draw the same conclusions 

concerning the spatial locality as for the sequentiality. In terms 

of response time, C-lash always acheives better performance 

than FAST, it performs better than DFTL if spatial locality is 

above 10%, and performs even better than the page mapping 

FTL if spatial locality is greater than 85%.  
Concerning the number of erasures,  C-lash takes advantage 

of its buffering mechanism to reveal sequentiality and so 
performs better than DFTL for more than 20% spatial locality, 
and better than page map FTL for more than 85% spatial 
locality. 

Spatial locality defines requested data that are neighbors 
but not strictly contiguous. Two requests, R1 and R2, are 
supposed to be neighbors if the distance between the start 
address of R1 and the start address of R2 is under a given 
threshold. We defined, for the sake of these tests, the threshold 
to be less than two pages (we used a normal distribution). That 
is the reason why for 100% spatial locality C-lash gives far 
better performance than other FTLs, it is because C-lash takes 
benefit of both spatial and temporal locality (through the 
Disksim spatial locality parameter, we can also simulate 
temporal locality if the distance is nil). 

We can observe that the weighted standard deviation increases 
for 100% spatial locality. For the three FTLs, this is mainly due 
to the very high temporal locality making the same data blocks 
to be very frequently modified. For the case of C-lash, the 
number of erase operations is too small (write/modify absorbed 
by the cache) to consider the case of 100% spatial locality. In 
fact, we have less than 10 erase operations. This case is not 
representative of real workloads. 

3) Request Size: These tests were performed with 0% 

sequentiality and 20% spatial locality. We see that for requests 

sizes greater than 6 pages (of 2KB), C-lash mean response 

time is better than DFTL mean response time. C-lash even 



performs better than the page mapping FTL for request sizes 

greater than 16 pages. 
We can observe the same behavior for the number of 

erasures.  

We can also notice that the slope of both response times 
and number of erasures curves for the three FTLs is steeper 
(logarithmic scale in the figure) than the one of C-lash. In fact, 
C-lash takes more benefit from the increasing request sizes. 
The more the request size is important, the less we have to do 
costly merge operations.  

In fact, the request size is just another facet of sequentiality. 
The bigger the request size is, the more we access to 
contiguous pages into a given block of the flash memory, and 
so better is the throughput. 

4) Request number: For this study, we fixed the request 

size to 6 pages. As we can see in Fig 4., we have varied the 

number of requests in two modes: a random workload and a 

sequential one.  
Generally, we can observe that C-lash performance is 

independent from the number of issued requests. In fact, this 
parameter has no impact on its performance in terms of 
response time/throughput. 

Figure 3.  Performance evaluation for C-lash according to sequential rate, spatial locality and request size. 



FTLs take more benefit from the available free space in the 
flash media to delay erase operations. For DFTL and page 
mapping FTLs, the more requests we have, the worse is the 
performance. For random workloads, C-lash outperforms 
DFTL when more than 60000 requests are issued, which 
approximately represents 700MB of data (from 1GB space). 
For sequential accesses, C-lash outperforms DFTL earlier: 
when there is more than 20000 requests issued, which 
represents 230MB of data. The same conclusions can be drawn 
for the number of erasures: the more I/O requests we issue, the 
better is the performance of C-lash as compared to other FTLs. 
Wear leveling performed by C-lash is always better than DFTL 
and FAST for the tested workloads except for extremely small 
number of requests, which is not realistic. 

In fact, the number of requests gives us an idea of the total 
congestion of the flash memory. Performance of C-lash is 
independent from this parameter while the performances of the 
different FTLs highly depend on the available free space on the 
flash media to perform wear leveling. Most embedded systems 
do not oversize their secondary storage for cost reasons. That is 
why we think that one does not have to count on the amount of 
free space available to better absorb erasures. 

VI. LIMITATIONS OF C-LASH 

• C-lash system performs poorly for very random 
workloads with small request sizes but still performance drop 

is not dramatic and we can notice that many workloads are 
sequential for an important number of embedded systems (mp3 
and mp4 players, cameras, etc). 

• In case of a power failure, data in the cache can be 
lost. This is a very important problem especially for embedded 
systems; a possible solution consists in adding a small battery 
[3] allowing to flush all the valid pages of the cache in the flash 
media. In C-lash system, we thought about this problem and we 
implemented the LRU algorithm on the b-space and rather than 
on the p-space which would have provoked more flush 
operations on the media. This ensures a more regular data flush 
operations, and so less data loss, sometimes at the expense of 
performance (increase of response time). 

• For some FTLs like DFTL, the more free space is 
available, the better are performances. C-lash system 
performance can lag behind even when sequential rate is 
somewhat high if flash memory is supposed to be nearly free. 
This case did not seem realistic to us, that is why performed 
tests does not consider this case even though the request 
number could have been increased for sequential rate tests. 

VII. CONCLUSION 

We think that the FTL must be considered as a temporary 
solution, as flash-based embedded storage systems could 
migrate in a near future toward exclusively cache-based 
solution. This migration will unload the flash subsystem from 

  

Figure 4.  Performance evaluation for C-lash according to the number of issued I/O requests. 

 



more and more complex wear leveling and garbage collection 
schemes, and so reducing FTL overhead and improving the 
overall storage system performance.  

In this paper, we presented C-lash, an exclusively cache-
based solution that outperforms state-of-the-art FTL schemes 
performance under workloads showing a minimum global 
sequentiality. As stated in this paper, sequentiality is 
characterized by three parameters: the sequentiality rate for 
strictly contiguous requests, the spatial locality for neighbor 
/local requests and the request size. 

The performance evaluation of this study also showed that 
C-lash performs a better wear leveling than the tested FTL 
solutions (DFTL and FAST) by showing a less important 
weighted standard deviation. Good wear leveling performances 
is achieved thanks to the LRU scheme implemented at the b-
space level which insures the cache to absorb erasures caused 
by temporal locality exhibited by many workloads. 

While C-lash architecture shows good performances with 
embedded constraints (size, congestion, complexity) with a 
large set of workloads, it is not completely adequate for large 
scale storage systems like SSDs. As an extension perspective, 
we are studying a composite structure including a FTL and a 
collaborative cache based on C-lash. The FTL, in this case, is 
only used to deal with random workloads. Indeed, while FTL 
systems can be replaced by caching mechanisms for embedded 
systems, we think that they are still useful to manage random 
workloads in mass storage systems in collaboration of well 
performing caching mechanism. 

The Disksim simulator including the C-lash support will 
soon be available online with the bunch of performed tests. 
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