
HAL Id: hal-00607350
https://hal.univ-brest.fr/hal-00607350v1

Submitted on 13 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cache Management Strategy to Replace Wear
Leveling Techniques for Embedded Flash Memory

Jalil Boukhobza, Pierre Olivier, Stéphane Rubini

To cite this version:
Jalil Boukhobza, Pierre Olivier, Stéphane Rubini. A Cache Management Strategy to Replace Wear
Leveling Techniques for Embedded Flash Memory. International Symposium on Performance Eval-
uation of Computer & Telecommunication Systems, Jun 2011, La Haye, Netherlands. paper_45.
�hal-00607350�

https://hal.univ-brest.fr/hal-00607350v1
https://hal.archives-ouvertes.fr

A Cache Management Strategy to Replace Wear

Leveling Techniques for Embedded Flash Memory
Jalil Boukhobza

*
, Pierre Olivier

*
, Stéphane Rubini

+

Université Européenne de Bretagne, France

Université de Brest ; CNRS,
*
UMR 3192 Lab-STICC,

+
EA3883 LISyC

20 avenue Le Gorgeu

29285 Brest cedex 3, France

{boukhobza, rubini}@univ-brest.fr, pierre.olivier@etudiant.univ-brest.fr

Abstract— Prices of NAND flash memories are falling drastically

due to market growth and fabrication process mastering while

research efforts from a technological point of view in terms of

endurance and density are very active. NAND flash memories are

becoming the most important storage media in mobile computing

and tend to be less confined to this area. The major constraint of

such a technology is the limited number of possible erase

operations per block which tend to quickly provoke memory

wear out. To cope with this issue, state-of-the-art solutions

implement wear leveling policies to level the wear out of the

memory and so increase its lifetime. These policies are integrated

into the Flash Translation Layer (FTL) and greatly contribute in

decreasing the write performance. In this paper, we propose to

reduce the flash memory wear out problem and improve its

performance by absorbing the erase operations throughout a

dual cache system replacing FTL wear leveling and garbage

collection services. We justify this idea by proposing a first

performance evaluation of an exclusively cache based system for

embedded flash memories. Unlike wear leveling schemes, the

proposed cache solution reduces the total number of erase

operations reported on the media by absorbing them in the cache

for workloads expressing a minimal global sequential rate.

Keywords-component; NAND Flash memory; cache; FTL;

performance; simulation; storage; I/O workload; wear levelling

I. INTRODUCTION

NAND flash memories are more and more used as main
storage systems. We can find them in music players, smart
phones, digital cameras, laptop computers, and a huge set of
electronic appliances. NAND flash memory is based on
semiconductor chips giving them some extremely interesting
characteristics. They are small, lightweight, shock resistant,
and very power efficient. One of its main constraints is its poor
lifetime which is due to the limited number of erase operations
one can perform on a given block (see background section). In
addition to this limitation, flash memories present poor write
performance because writing can be performed only in one
direction (from 1 to 0), so a block must be erased before being
modified.

The FTL (Flash Translation Layer) is a hardware/software
layer implemented inside the flash-based device. One of its
main functionalities is the mapping of logical addresses coming
from higher levels (applications/operating system) to lower
level physical addresses. Throughout this mapping is achieved
the wear leveling, which is the widely adopted technique to
cope with the limited number of erase operations. Wear

leveling consists in spreading the write operations over the
whole flash memory area to increase the block average lifetime
preventing it from wearing out too quickly. So, in order to
modify a given block, it is rewritten to another free one that
suffered less erase cycles. The use of such a technique implies
to take into account the validity of written data as many
versions can be present in different blocks. Garbage collectors
are implemented to recover free space when needed.

Wear leveling in FTL relies on an on-flash SRAM-based
memory where the logical-to-physical mapping tables are
stored. The use of such an SRAM being very expensive for
embedded systems, FTL designers tried to severely minimize
the size of such metadata. In fact, one have to find a trade-off
between increasing the performance of the flash memory by
allowing a page mapping algorithm, which consumes a lot of
SRAM but reduces the number of erase operations, and
reducing the SRAM usage by reducing the metadata and so
increasing the granularity of the mapping which increases the
number of erase operations. All state of the art solutions are
located between those two extremes.

In addition to minimizing the standard deviation of the
erasure distribution over the flash media, a good wear leveler
should minimize extra erase operations due its own execution.
Despite this, a wear leveler cannot lower the total number of
erase operations under a certain limit. That is why researchers
designed buffering systems on top of FTLs [1-4]. They are
mainly used to reorganize non sequential request streams
which contributes in minimizing the number of erase
operations in addition to buffering the data for future use. The
main disadvantages of those systems are: 1) the price: too high
for many embedded systems like mp3 players, flash memory
cards, etc., 2) the complexity: two levels of complexity are
cumulated, FTL and cache, and 3) a higher CPU usage.

As stated in [5], the endurance problem of flash memories
has been widely overestimated and actual flash memories,
thanks to recovery time, can sustain much more erase
operations than expected.

Because of all the reasons stated above, we think that FTL
solutions are temporary and that one should begin considering
exclusively cache based flash memories mainly for embedded
systems.

We propose, in this paper, a solution based on a simple
flexible dual cache to replace wear levelers and garbage
collectors. This exclusively based cache system is compared to

state-of-the-art FTLs to show that we can rely upon a cache
system to minimize and wear level the erase operations and
improve performances. This cache system performs well for
most tested workloads except for extremely random workloads
with very small request sizes.

The main research contributions of this study are the
following: 1) a novel caching technique to replace the existing
wear leveling (and garbage collection) solutions. 2) The
implementation of a simulator used to achieve performance
evaluation based on FlashSim [6][7] that is built by extending
DiskSim 3.0 [8], the most popular storage system simulator.
We added a cache level support for FlashSim. 3) The
validation with a large number of synthetic workloads based on
global sequentiality parameter.

The paper is organized as follows: a description of flash
memories is given in the background section and some related
works are discussed in the third section. In the forth section, the
proposed cache system organization and policies are depicted.
The following section gives performance evaluation
methodology and discusses the simulation results, and finally
we conclude and give some perspectives in the last section.

II. BACKGROUND

Flash memories are nonvolatile EEPROMs. They are of
mainly two types: 1) NOR flash and 2) NAND flash, they are
named after the logic gates used as the basic structure for their
fabrication. NOR flash memories support bytes random access
and have a lower density and a higher cost as compared to
NAND flash memories. NOR memories are more suitable for
storing code [9]. NAND flash memories are, by contrast, block
addressed, but offer a higher bit density and a lower cost and
provide good performance for large read/write operations (as
compared to NOR memories). Those properties make them
more suitable for storing data [9]. The study presented in this
paper concerns NAND flash memories.

NAND flash memories can be classified into two
categories: 1) Single Level Cell (SLC) and 2) Multi Level Cell
(MLC). In SLC flash memories, only one bit can be stored in
one cell, while in MLC, two bits or more can be stored. The
price to pay when acquiring MLC as compared to SLC
technology is quite high. SLC can have up to 10 times higher
lifetime and lower access latency [10].

Flash memory is structured as follows: it is composed of
one or more chips; each chip is divided into multiple planes. A
plane is composed of a fixed number of blocks, each of them
encloses a fixed number of pages that is multiple of 32. Actual
versions of flash memory have between 128 and 1024 KB
blocks (pages of 2-8KB). A page actually consists of user data
space and a small metadata area [7][2].

Three key operations are possible on flash memories: read,
write and erase. Read and write operations are performed on
pages, whilst erase operations are performed on blocks. Pages
in a given block must be written sequentially. NAND flash
does not support in-place data modification. In order to modify
a page, it must be erased and rewritten in the same location or
completely copied to another page and its corresponding LBA-
PBA translation map entry is updated.

One fundamental constraint on flash memories is the
limited number of write/erase cycles (from 10

4
 for MLC to 10

5

for SLC) [10]. After the maximum number of erase cycles is
reached, a given memory cell can no more retain data. Some
spare storage cells exist on the chip to cope with such a
wearing out. Due to data locality (temporal and/or spatial in
many workloads), some of those memory blocks would be
much more used than the others. They then tend to wear out
more quickly. This very central problem pushed the
researchers’ community to seriously consider wear leveling
techniques to even out the write operations over the whole
memory blocks even though these techniques reduce
dramatically the performance.

As mentioned earlier, writing a data requires having a clean
page available (free page from a block erased beforehand). If
the system has to modify a previously written page, it looks for
a clean page and writes the data while invalidating the
previously occupied page (by modifying the metadata). The
erase operation is done asynchronously. If there are no clean
pages, a garbage collector is ran to recycle invalidated pages.

III. RELATED WORK

A. FTL Based Systems

One can distinguish three main FTL schemes, named after
the granularity of the logical to physical mapping. 1) Page
mapping provides great flexibility, at the cost of a large
mapping table. 2) Block mapping increases the mapping
granularity to a block level, reducing drastically the size of the
mapping table. When updating data in a previously written
page, the system must copy the entire block to a new free
location, leading to huge performance drops. 3) Hybrid
mapping tries to mix both page and block mapping techniques.
Flash space is partitioned into data blocks, mapped by blocks
and log blocks, mapped by pages. When the number of free log
blocks becomes low, the system must merge them to create
data blocks. Merge operations are extremely costly. Current
FTL systems are derived from those three main schemes.

Demand-based Flash Translation Layer (DFTL) [7] is a
page mapping-based FTL. Only a part of the mapping table is
present in SRAM, most of it residing on the flash media itself.
Based on DFTL, Convertible Flash Translation Layer (CFTL)
[11] also places the major part of its page mapping table on the
flash memory. CFTL separates data into cold and hot data,
respectively mapped by block and by pages.

Regarding hybrid-based schemes, Dynamic dAta
Clustering (DAC) [12] separates the flash space into multiple
regions, from the coldest to the hottest data. This helps to avoid
situations with blocks having mixed hot and cold data which
lead to costly full merges. Fully Associative Sector Translation
(FAST) [13] tries to increase the number of non-costly switch
merges by partitioning the log blocks into sequentially and
randomly written log blocks, sequentially written blocks being
good candidates for switch merge operations.

Block mapping-based scheme Mitsubishi [14] [15] and M-
Systems FMAX algorithm [14] divide flash space into 1)
normally mapped blocks in which physical pages offset is
always equal to the corresponding logical page offset, and 2)

additional blocks written independently of the offset. In order
to retrieve data written in additional blocks, the corresponding
logical page number is written in the Out-Of-Band area of each
physical page.

Actual FTL algorithms try to bypass the limitations of the
main scheme they derivate from, by storing the mapping table
on the flash media for page mapping based schemes, reducing
the number of costly full merge operations for hybrid-based
schemes, and delaying the block copy operations on page
update for block mapping-based algorithms.

For the sake of this study, we have chosen to compare our
system to two efficient FTL schemes that are DFTL (page
mapped) and FAST (hybrid).

B. Buffers above FTL Systems

Even though designed FTL techniques are more and more
efficient (and complex), performance of write operations are
still very poor. Buffering systems have been designed to cope
with this issue by reorganizing non-sequential request streams
before sending them to the FTL. Those buffers are placed on
top of FTLs.

The idea behind Flash Aware Buffer (FAB) [1] is to keep a
given amount of pages in the buffer and flush pages that belong
to fullest block. The Cold and Largest Cluster policy (CLC) [2]
system implements two clusters of pages in the cache, a size-
independent and a size-dependant one based on LRU. Block
Padding Least Recently Used (BPLRU) is a write buffer [3]
that uses three main techniques: block level LRU, page
padding and LRU compensation. Block-Page Adaptive Cache
(BPAC) [4] partitions the cache into two parts: an LRU page
list used to store data with high temporal locality, and a list of
blocks divided itself into two data clusters organized by
recency and size.

Most of those buffer techniques have been designed to be
implemented on SSD caches which implies two major
characteristics: 1) they rely on too big size buffers (8 to
128MB) and so are not adequate for some embedded systems,
2) they are implemented on top of FTLs for which they do not
know the details. This is an advantage if one wants to use the
buffer on an existing system (which is the purpose of the
authors), but can be a limitation if one wants to design a well
performing system.

IV. C-LASH ARCHITECTURE FOR EMBEDDED STORAGE

In this section we describe C-lash (Cache for fLASH)
system architecture and policies. C-lash is much smaller than
previously discussed cache systems (512KB for the evaluations
listed in this paper).

A. C-lash Architecture

In C-lash, the cache space is partitioned into two spaces, a
page space (p-space) and a block space (b-space). P-space
consists of a set of pages that may come from different blocks
in the flash while b-space is composed of blocks that can be
directly mapped (see Fig. 1).

C-lash is also hierarchical, it has two levels of eviction
policies: one which evicts pages from p-space to b-space (G in
Fig. 1), and another level in which blocks from b-space are
evicted into the flash media (I in Fig. 1). With this scheme, we
insure that the system always flushes blocks rather than pages
to the flash memory. P-space and b-space regions always
contain respectively either valid or free pages or blocks.

When a read request arrives, data are searched in both
spaces. If we get a cache hit, data are read from the cache (B or
E in Fig. 1), otherwise, they are read from the flash memory (A
in Fig. 1). A read miss does not generate a copy into the cache.

When a write operation is issued, in case of a cache hit,
data are overwritten (respectively C or D in Fig. 1) with no
impact on the flash media. If data are not in the cache, they can
only be written into the p-space (C in Fig. 1). If enough pages
are available, we use them to write the data. If not, we choose
some pages to flush from the p-space to the b-space (G in Fig.
1) and copy the new data.

B. Cache Policies Algorithms

Two eviction policies are implemented for each of p-space
and b-space (respectively G and I in Fig. 1).

1) P-space Eviction Policy
When a write request is issued and the considered page is

neither present in the p-space nor in the b-space, a new page
must be allocated in the cache p-space. If a free page is
available, the new page is written and data in the corresponding
location in the flash invalidated. If no free space is available,
the system chooses a set of pages to evict into the b-space (not
into the flash media). Pages to evict are those forming the
largest set from the same block. Once this set found, we have
two possibilities:

1. A free block is available in the b-space and so victim
pages are copied in it.

Figure 1. Structure of the C-lash system.

2. No free block is available and then, the set of victim pages
is compared to the number of valid pages contained in
each block of the b-space area:

a. If there exists a block containing less valid pages than
the victim ones, a switch operation is performed (F and G
in Fig. 1): pages in the victim block are moved in the p-
space while the subset of victim pages is moved in the
freed block. This induces no impact on the flash memory.

b. If all blocks in the b-space contain more valid pages
than the subset of victim pages: the b-space eviction
policy is executed to flush a block into the flash media.

In the upper illustration of Fig. 2, we describe an example
of a p-space eviction; the chosen pages are those belonging to
block B21 containing the biggest number of pages. One block
in the b-space contains two valid pages which is less than the 3
pages to evict. Thus, C-lash switches between the block B4 and
the three pages subset. The system, therefore, frees one page
without flushing data into the flash.

2) B-space Eviction Policy
An LRU algorithm is used for this eviction to take into

consideration, in the b-space, the temporal locality exhibited by
many workloads. When a block eviction is performed, the

whole corresponding block in the flash memory is erased
before being replaced by the one in the cache.

In case the flash memory still contains some valid pages of
the block to evict from the cache, a merge operation (J in Fig.
1) is to be performed. This merge operation consists in reading
the still valid pages in the flash memory before flushing the
whole block from the cache. The merge can be done either
during a p-space eviction, we call it early merge, or just before
flushing the block on the flash media, we call it late merge.
Early merge is more advantageous if the workload is read
intensive and shows temporal and/or spatial locality (make
benefit from the cached data). If the workload is write-
intensive, we would use the late merge. By delaying the merge
operation we insure two main optimizations: 1) we read a
minimum number of pages since between the moment the
pages are evicted into the b-space and the moment they will be
evicted into the flash, many pages can be written and so
invalidated from the flash. 2) Since it is possible for a block in
b-space to be moved to p-space during a p-space pages eviction
(a switch), it may not be worth doing the merge operation too
early. This can cause extra read operations. We restrict the
scope of the presented study to the use of a late merge scheme.

An example of block eviction is shown in Fig. 2. In the
lower illustration, we describe a p-space eviction leading to a
b-space flush to the flash media. In the p-space eviction phase,
two pages of the B21 block are chosen to be evicted. The
blocks in the b-space contain more valid pages than the pages
amount to be evicted from the p-space. So, the system needs to
evict a block into the flash beforehand. After that, the system
copies both pages of the B21 into the freed block. In this
specific example, no merge operation occurs because the
flushed block is full of valid pages.

V. PERFORMANCE EVALUATION

In this part, we compare the C-lash system and three
efficient state-of-the-art FTLs: DFTL, FAST and the idealized
page mapping algorithm used as a baseline. The purpose of the
performance evaluation part is to study if caching techniques
can replace actual efficient FTL schemes for embedded
storage.

A. Simulation Framework and Methodology

FlashSim is a simulator based on Disksim [8] which is the
most popular disk drive storage system simulator in both
academia and industry. Disksim is an event driven simulator
that has been validated with an exhaustive set of disk models. It
simulates the whole storage system going from the device
driver until the detailed disk movement, integrating many
controller strategies, queues, caches, bus systems, and detailed
disk descriptions. Disksim also integrates a very detailed
synthetic workload generator which is used in part of our
experimentations. Disksim does not natively include flash
memory support.

FlashSim integrates some modules that are specific to the
flash memory subsystem simulation. In addition to the
components modeled by Disksim, it is able to simulate the
basic flash device infrastructure to implement specific
operations: read, write, erase, etc. Logical to physical address

Figure 2. Two examples describing different scenarios of the eviction

policy for p-space and b-space.

translation mechanisms are also implemented with garbage
collection policies. FlashSim implements many FTL schemes:
the FAST, DFTL schemes and an idealized page based FTL.

We have modified and increased the functionality of
FlashSim to allow the simulation of a dual cache subsystem
placed on the top of the flash media. The used cache is
configurable as many cache policies can be simulated in the b-
space (FIFO, LRU, and LFU). Only the study based on LRU is
shown in this paper.

B. Storage System and Performance Metrics

We rely on three main performance metrics: the average
request response time, the number of performed erase
operations and weighted standard deviation of the erase
operations distribution to express the quality of wear leveling.
In our study, the response time is captured from the I/O driver
point of view, including all intermediate delays: caches,
controllers, I/O queues, etc. We tried to minimize the
intermediate elements' impact to focus on the flash memory
subsystem behavior. The second metric we capture is the
number of performed erase operations. It indicates the wear out
of the memory.

We simulated a NAND flash memory with a 2KB page size
and a 128KB block size. The three operations have the
following delays: 130.9µs for a page read: 405.9µs for a page
write, and 2ms for a block erase: [16]. The chosen C-lash
configuration has 2 blocks (128KB each) in the b-space and
128 pages in the p-space (a total size of 512KB). The mapping
table used with C-lash is extremely small (much less than 1KB)
as compared to the cache size. All the performed simulations
begun with the same initial state, the flash media was supposed
to be completely dirty. Each new write in a given block
generated an erase operation.

C. Simulated Workloads

The performed tests are those described in Table 1. We
mainly vary the global sequentiality of the workload by tuning
three parameters: sequentiality (strictly contiguous requests),
spatial locality (interleaved contiguous requests [8]) and
request size.

We also varied the number of requested data which gives
an idea on the size of used address space and so the free area of
the flash. This last parameter is important because for some
FTL schemes, the more free space is available, the better are
the performances. Nevertheless, for embedded systems, it is
more realistic to consider that the flash memory space has been
optimized and then, there is not much free space available.

Table 1. Tested workloads characteristics on 1GB I/O space

(default values are underlined unless otherwise specified).

Seq. rate Spatial locality Mean Req. Size

0100% (steps

of 5%)

0100% (steps of

10%)

1, 2, 4, 8, 16 , 32, 64,

128 pages

Request number Write rate Inter arrival times

60000 80% exp (0, 200ms)

D. Results & Discussion

In this section, we describe the results obtained when
comparing our cache for flash solution with the following
FTLs: FAST, DFTL and an idealized page mapping FTL. As
stated in the background section, the pure page mapping FTL is
very RAM consuming and is not really usable, but it gives the
best FTL performance. As in [7], we use it as a baseline in our
study.

1) Sequentiality: As we can see in Fig.3, C-lash performs

better than DFTL, in terms of response time, if the

sequentiality rate is above 40 %. It always performs better

than FAST.
 It achieves less erase operations if the sequentiality rate is

above 50% and always outperforms FAST.

Thanks to the dual cache eviction properties of C-lash
which help absorbing the erase operations, C-lash always
perform a better wear leveling than both FAST and DFTL.

The more the sequentiality rate is high, the more C-lash
approaches the ideal page mapping FTL performance for the
three performance metrics.

2) Spatial Locality. We can draw the same conclusions

concerning the spatial locality as for the sequentiality. In terms

of response time, C-lash always acheives better performance

than FAST, it performs better than DFTL if spatial locality is

above 10%, and performs even better than the page mapping

FTL if spatial locality is greater than 85%.
Concerning the number of erasures, C-lash takes advantage

of its buffering mechanism to reveal sequentiality and so
performs better than DFTL for more than 20% spatial locality,
and better than page map FTL for more than 85% spatial
locality.

Spatial locality defines requested data that are neighbors
but not strictly contiguous. Two requests, R1 and R2, are
supposed to be neighbors if the distance between the start
address of R1 and the start address of R2 is under a given
threshold. We defined, for the sake of these tests, the threshold
to be less than two pages (we used a normal distribution). That
is the reason why for 100% spatial locality C-lash gives far
better performance than other FTLs, it is because C-lash takes
benefit of both spatial and temporal locality (through the
Disksim spatial locality parameter, we can also simulate
temporal locality if the distance is nil).

We can observe that the weighted standard deviation increases
for 100% spatial locality. For the three FTLs, this is mainly due
to the very high temporal locality making the same data blocks
to be very frequently modified. For the case of C-lash, the
number of erase operations is too small (write/modify absorbed
by the cache) to consider the case of 100% spatial locality. In
fact, we have less than 10 erase operations. This case is not
representative of real workloads.

3) Request Size: These tests were performed with 0%

sequentiality and 20% spatial locality. We see that for requests

sizes greater than 6 pages (of 2KB), C-lash mean response

time is better than DFTL mean response time. C-lash even

performs better than the page mapping FTL for request sizes

greater than 16 pages.
We can observe the same behavior for the number of

erasures.

We can also notice that the slope of both response times
and number of erasures curves for the three FTLs is steeper
(logarithmic scale in the figure) than the one of C-lash. In fact,
C-lash takes more benefit from the increasing request sizes.
The more the request size is important, the less we have to do
costly merge operations.

In fact, the request size is just another facet of sequentiality.
The bigger the request size is, the more we access to
contiguous pages into a given block of the flash memory, and
so better is the throughput.

4) Request number: For this study, we fixed the request

size to 6 pages. As we can see in Fig 4., we have varied the

number of requests in two modes: a random workload and a

sequential one.
Generally, we can observe that C-lash performance is

independent from the number of issued requests. In fact, this
parameter has no impact on its performance in terms of
response time/throughput.

Figure 3. Performance evaluation for C-lash according to sequential rate, spatial locality and request size.

FTLs take more benefit from the available free space in the
flash media to delay erase operations. For DFTL and page
mapping FTLs, the more requests we have, the worse is the
performance. For random workloads, C-lash outperforms
DFTL when more than 60000 requests are issued, which
approximately represents 700MB of data (from 1GB space).
For sequential accesses, C-lash outperforms DFTL earlier:
when there is more than 20000 requests issued, which
represents 230MB of data. The same conclusions can be drawn
for the number of erasures: the more I/O requests we issue, the
better is the performance of C-lash as compared to other FTLs.
Wear leveling performed by C-lash is always better than DFTL
and FAST for the tested workloads except for extremely small
number of requests, which is not realistic.

In fact, the number of requests gives us an idea of the total
congestion of the flash memory. Performance of C-lash is
independent from this parameter while the performances of the
different FTLs highly depend on the available free space on the
flash media to perform wear leveling. Most embedded systems
do not oversize their secondary storage for cost reasons. That is
why we think that one does not have to count on the amount of
free space available to better absorb erasures.

VI. LIMITATIONS OF C-LASH

• C-lash system performs poorly for very random
workloads with small request sizes but still performance drop

is not dramatic and we can notice that many workloads are
sequential for an important number of embedded systems (mp3
and mp4 players, cameras, etc).

• In case of a power failure, data in the cache can be
lost. This is a very important problem especially for embedded
systems; a possible solution consists in adding a small battery
[3] allowing to flush all the valid pages of the cache in the flash
media. In C-lash system, we thought about this problem and we
implemented the LRU algorithm on the b-space and rather than
on the p-space which would have provoked more flush
operations on the media. This ensures a more regular data flush
operations, and so less data loss, sometimes at the expense of
performance (increase of response time).

• For some FTLs like DFTL, the more free space is
available, the better are performances. C-lash system
performance can lag behind even when sequential rate is
somewhat high if flash memory is supposed to be nearly free.
This case did not seem realistic to us, that is why performed
tests does not consider this case even though the request
number could have been increased for sequential rate tests.

VII. CONCLUSION

We think that the FTL must be considered as a temporary
solution, as flash-based embedded storage systems could
migrate in a near future toward exclusively cache-based
solution. This migration will unload the flash subsystem from

Figure 4. Performance evaluation for C-lash according to the number of issued I/O requests.

more and more complex wear leveling and garbage collection
schemes, and so reducing FTL overhead and improving the
overall storage system performance.

In this paper, we presented C-lash, an exclusively cache-
based solution that outperforms state-of-the-art FTL schemes
performance under workloads showing a minimum global
sequentiality. As stated in this paper, sequentiality is
characterized by three parameters: the sequentiality rate for
strictly contiguous requests, the spatial locality for neighbor
/local requests and the request size.

The performance evaluation of this study also showed that
C-lash performs a better wear leveling than the tested FTL
solutions (DFTL and FAST) by showing a less important
weighted standard deviation. Good wear leveling performances
is achieved thanks to the LRU scheme implemented at the b-
space level which insures the cache to absorb erasures caused
by temporal locality exhibited by many workloads.

While C-lash architecture shows good performances with
embedded constraints (size, congestion, complexity) with a
large set of workloads, it is not completely adequate for large
scale storage systems like SSDs. As an extension perspective,
we are studying a composite structure including a FTL and a
collaborative cache based on C-lash. The FTL, in this case, is
only used to deal with random workloads. Indeed, while FTL
systems can be replaced by caching mechanisms for embedded
systems, we think that they are still useful to manage random
workloads in mass storage systems in collaboration of well
performing caching mechanism.

The Disksim simulator including the C-lash support will
soon be available online with the bunch of performed tests.

REFERENCES

[1] H. Jo, J. Kang, S. Park, J. Kim, J. Lee, “FAB: Flash-Aware Buffer
Management Policy for Portable Media Players”, IEEE Transactions on
Consumer Electronics, 52, pp. 485- 493, 2006.

[2] S. Kang, S. Park, H. Jung, H. Shim, J. Cha, “Performance Trade-Offs in
Using NVRAM Write Buffer for Flash Memory-Based Storage
Devices”, In IEEE Transactions on Computers, 58, no.6, 2009.

[3] H. Kim, S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage”, the 6th USENIX
Conference on File and Storage Technologies, CA, 2008.

[4] G. Wu, B. Eckart, X. He, BPAC: “An Adaptive Write Buffer
Management Scheme for Flash-Based Solid State Drives”, In
Proceedings of the IEEE 26th MSST, Incline village, 2010.

[5] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R. Stan. “How I learned
to stop worrying and love flash endurance”. In Proceedings of the
HotStorage conference, USENIX, Berkeley, CA, USA, 3-3.

[6] Y. Kim, B. Tauras, A. Gupta, D.M. Nistor, B. Urgaonkar, “FlashSim: A
Simulator for NAND Flash-based Solid-State Drives”, Tech. Report
CSE-09-008, Pensylvania, 2009.

[7] A. Gupta, Y. Kim, B. Urgaonkar, “DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings”, ACM ASPLOS, Washington, 2009.

[8] G. R. Ganger, B. Worthington, Y. N. Patt, “The Disksim Simulation
Environment Version 3.0 Reference Manual”, Tech. Report CMU-CS-
03-102, Pittsburgh, 2003.

[9] G. Forni, C. Ong, C. Rice, K. McKee, R. J. Bauer, “Flash Memory
Applications, In Nonvolatile Memory Technologies with emphasis on
Flash”, edited by Brewer, J.E. and Gill, M., IEEE Press Series on
Microelectronic Systems, USA, 2007.

[10] F. Chen, D.A. Koufaty, X. Zhang, “Understanding Intrinsic
Characteristics and System Implications of Flash Memory based Solid
State Drives”, ACM SIGMETRICS/Performance, Seattle, 2009.

[11] D. Park, B. Debnath, D. Du, “CFTL: A Convertible Flash Translation
Layer with Consideration of Data Access Pattern”, Tech Report,
University of Minnesota, 2009.

[12] M. Chiang, C. Cheng, and C. Wu. “A New FTL-based Flash Memory
Management Scheme with Fast Cleaning Mechanism”. In Proceedings
of ICESS '08. IEEE Computer Society, Washington, DC, USA, 205-214,
2008.

[13] S. Lee, D. Park, T. Chung, D. Lee, S. Park, H. Song, “A Log Buffer-
based Flash Translation Layer Using Fully-associative Sector
Translation”, ACM Trans. Embed. Comput. Syst. 6, 3. 2007.

[14] T. Chung, D. Park, S. Park, D. Lee, S. Lee, H. Song, “A Survey of Flash
Translation Layer”. J. Syst. Archit. 55, 332-343, 2009.

[15] T. Shinohara, “Flash Memory Card with Block Memory Address”,
United States Patent, No. 5,905,993, 1999.

[16] Micron, “Small Block vs. Large Block NAND Flash Devices”, Micron
Technical Report TN-29-07, http://download.micron.com/pdf/technotes/
nand/tn2907.pdf, 2007 (Accessed oct. 2010).

