
HAL Id: hal-00607309
https://hal.univ-brest.fr/hal-00607309v1

Submitted on 8 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing an Automatic Functional Test Pattern
Generation for Mixed-Signal Boards in a Maintenance

Context
Bertrand Gilles, Laurent Tchamnda Nana, Valérie-Anne Nicolas

To cite this version:
Bertrand Gilles, Laurent Tchamnda Nana, Valérie-Anne Nicolas. Implementing an Automatic Func-
tional Test Pattern Generation for Mixed-Signal Boards in a Maintenance Context. 5th IEEE In-
ternational East-West Design & Test Symposium, EWDTS’07, Sep 2007, Erevan, Armenia. p.171.
�hal-00607309�

https://hal.univ-brest.fr/hal-00607309v1
https://hal.archives-ouvertes.fr

Implementing an Automatic Functional Test Pattern Generation for Mixed-
Signal Boards in a Maintenance Context

Bertrand GILLES Laurent NANA Valérie-Anne NICOLAS

EA3883 – LISyC – Département Informatique – Université de Bretagne Occidentale
20 avenue Le Gorgeu – CS 93837 – 29238 Brest Cedex 3 France

{gilles|nana|vnicolas}@univ-brest.fr

Abstract

In this paper, we present in the context of mixed-

signal board maintenance testing, language and
implementation aspects of an automatic functional test
pattern generation approach. The goal is to help
maintenance test engineers. Our modeling method for
mixed-signal boards and their components is
presented and the languages proposed for modeling
are described. The implementation of our test data
generation process based on constraint logic
programming is discussed. The application to a simple
board is shown and the tool Copernicia developed in
the context of our work is presented.
Keywords: Maintenance testing, modeling, mixed-
signal boards, automatic test pattern generation.

1. Introduction

Various test methods and techniques have been
developed for circuit test [1] at the different stages of
product life-cycle, mainly at design and production
levels. Nevertheless, few interest has been thrown into
maintenance testing which has its own specificity. In
particular, functional testing is needed in order to
check behaviors. In the case of mixed-signal boards,
maintenance testing currently relies mainly on the
expertise of test engineers. Methods and tools for
automating the full or part of the testing process are
needed to help them in their task.

Our work aims at providing such solutions. In this
paper, we focus on language and implementation
aspects in the approach we proposed in [2] for the
modeling of mixed-signal boards and the automatic
generation of test data for such boards.

We first present our modeling approach and focus
on the modeling languages and test data generation.
The application to a simple board is then shown and
the tool we are currently developing is described. The
paper ends by conclusions and future works.

2. Modeling and testing approach
The automation of the testing data generation

process of mixed-signal boards requires a structured
modeling approach. We consider two hierarchical
levels of modeling: Board level and block level [2].
Both are used for our automatic test pattern generation
(ATPG). The board is broken down into a set of
interconnected blocks. Each block has an associated
functional model which describes its behavior and a
test model which specifies how the block can be
efficiently tested.

The test of the board is achieved by testing each
block individually using its associated test model. Test
patterns for a block (BTP) are then generated by
carrying out the transition coverage of its test model.
Since the block under test is often embedded within
the board, without any test access mechanism, the
functional models of adjacent blocks are used for
forward propagation to primary outputs (PO) and
backward propagation to primary inputs (PI). During
these propagations, BTP have to satisfy the constraints
associated to the adjacent functional models in order to
compute the final test patterns. Finally, a board test
data set is the union of test patterns for all the blocks of
the board.

3. Modeling languages

We propose three modeling languages: a board
description language associated to the board level, a
block description language and a transition language
associated to the block level. We describe these
languages in the next subsections.

3.1. Board description language

As mentioned in section 2, the board description
language describes the board as a set of interconnected
blocks, as depicted in Figure 1. In addition to the
building blocks of the board, some external blocks are
needed to model connections between the PI/PO of the
board and an automatic test equipment (ATE): external

sources which supply input signals (blocks S1 and S2)
and output measurement points (blocks m1 and m2).

Blocks are analog, digital or mixed-signal, and may
have several inputs and outputs. Oriented links denote
data exchanges (signals) between components.

Figure 1. A board description

3.2. Block description language

The block description language is based on
communicating finite state machines (CFSM). CFSM
are often used for modeling systems which imply
communicating processes and is well suited for our
needs. Another advantage of using it is that it is well
known by test engineers. Two CFSM interact when
one CFSM produces an output that is placed in the
input queue of the other.

Each block is described by one or more CFSM,
depending on the complexity of the functionality of the
block. As a consequence, the set of blocks of a board is
represented by a set of CFSM.

Since communications are involved, CFSM
transitions are decorated with labels. A label expresses
synchronization conditions with blocking receptions of
signals and/or non blocking sending of signals between
two or more CFSM. Constraints on signals involved
into communications are also expressed. Each label is
written with the transition language presented in the
next subsection.

3.3. Transition language

In this section, we present the grammar of the
transition language. The main improvement from
previous work is that we can express more complex
analog signals and constraints. The grammar is
described with production rules. A rule has the
following form: A ::= w, where A and w represent
respectively the left and the right hand sides of the
rule. The rules are given below:

Transition : := Recv Constraints Send →
 | Recv → Send
 | Constraints Send | Recv | Send

Recv : := Recv;RecvFromAutomaton
 | RecvFromAutomaton

RecvFromAutomaton : := Identifier ? SignalIds

SignalIds : := SignalIds , Identifier | Identifier

Constraints : := Constraints && Constraint
 | Constraint

Constraint : := Arithmetic relOp Arithmetic

RelOp ::= <=|>=|<|>|==|!=

Arithmetic : := Arithmetic + Term
 | Arithmetic - Term
 | Term

Term ::= Term * Factor
 | Term / Factor
 | Factor

Factor ::= Real
 | (Arithmetic) | Identifier(ParamList)
 | Identifier | SignalParam

ParamList ::= ParamList, Arithmetic | Arithmetic

SignalParam : := Identifier . Attribute

Send : := [SendToAutomata] | ε

SendToAutomata ::= SendToAutomata ;SendToAutomaton
 | SendToAutomaton

SendToAutomaton : := Constraints : Identifier ! SignalFunctors |
Identifier ! SignalFunctors

SignalFunctors : := SignalFunctors , SignalFunctor
 | SignalFunctor

SignalFunctor : := sig (Identifier, Arg, Arg, Arg)

Arg : := Identifier | Real

The possible values of the attribute appearing into
the “signalParam” definition depend on the type of
signal. For example, the attributes max, freq and phase
are defined for sine signals and correspond
respectively to the magnitude, the frequency and the
phase of such signals.

4. Implementation of the test data

generation
We have chosen constraint logic programming

(CLP) for the test data generation process. CLP is very
relevant for test data generation since it makes it
possible to represent test data in a symbolic way, using
ranges of values. These ranges of values deal
efficiently with analog and digital data representations
in a uniform way. Ranges of test data are computed for
reaching the test requirements. Final test data are
instantiated by the user.

The set of CFSM describing the board behavior is
translated into Prolog predicates. The labels of
transitions expressed in the transition language identify
a set of constraints which are associated to the

behavior of a block. These constraints are translated
and solved using CLP, leading to the test patterns.

On the implementation point of view,
communication between CFSM Prolog models is
achieved using dynamic predicates. Their use makes it
possible to implement the synchronization conditions
mentioned in section 3.2 (blocking receptions).

In the next section, we present an application of our
modeling and testing approach to a simple case study.

5. Application to an example of board

test
For the sake of simplicity, we consider a board

which is a simple first order high-pass analog filter.
Figure 2 shows this board modeled by the board
description language where block S, MP and F
represent respectively an analog source, an analog
measurement point and the considered filter.

S F MP

Figure 2. The board level description

5.1. Input/output modeling
Figure 3 shows the functional models with internal

label representation of the source and the measurement
point respectively expressed with the block description
language. For each CFSM, the transitions are
numbered from 1 to n, n being the total number of
transitions. For a given automaton, each transition is
internally represented as follows: CFsmName::T#k {L}
where k is the kth transition of CFSM CFsmName and
L is the label expressed with the transition language.
By convention, CFSM name is the same as block
name.

S

S::T#1 {F ! x}

MP

MP::T#1 {F ? x}

Figure 3. The source and measurement point
functional models

S::T#1{ F ! x } stands for a sending of signal x to
CFSM F and MP::T#1{F ? x } stands for the reception
of signal x from CFSM F. The number of the
transition is 1 in both cases since each CFSM only has
one transition.

5.2. Filter modeling
As we explained in section 2, the functional model

of the filter describes its behavior. It is depicted in
Figure 4. Thus, F::T#1{L1} where L1 is

S ? x -> x.type == sine
expresses that when a sine signal is received from
CFSM S, the corresponding transition is crossed. Then
the output signal is sent to CFSM MP thanks to
F::T#2{L2} where L2 is
[V == (x.max / sqrt(1 + square (Fc)/square(F0))) && F0 == x.freq
&& Phi0 == (x.phase + arctan(Fc/F0)) : MP ! sig(sine,V,F0,Phi0)]

Fc is the filter cutoff frequency. The magnitude, the

frequency and the phase of the output sine signal are
represented respectively by V, F0, and Phi0. The first
part of this label (delimited by the ‘:’ symbol)
expresses the constraints applied to the output sine
signal according to the input signal characteristics. In
the second part, the functor sig represents the output
signal of the filter sent to CFSM MP. As we can see,
this functional model describes the transfer function of
the filter (attenuation and phase shift).

Input Output

F::T#1 {L1}

F::T#2 {L2}
Figure 4. The filter functional model

In the other hand, the test model of the filter
describes the way it can be efficiently tested (Figure
5). The model integrates test engineers skills. Thus,
F::T#1 {L1} and F::T#2 {L2} where L1 is
 S ? x -> x.type == sine && x.max > 2.0 && x.max < 10.0 && x.freq
== (10.0*Fc) && x.phase == 0.0
 and L2 is
 [F0 == x.freq && V <= (x.max + d1) && V >= (x.max - d1) &&
Phi0 <= d2 && Phi0 >= - d2 : MP ! sig(sine,V,F0,Phi0)]

 describe the filter response in the bandwidth.

DA

BW

Att

F::T#1 {L1}

F::T#2 {L2}

F::T#3 {L3}

F::T#4 {L4}

Figure 5. The filter test model

5.3. Board test data generation
The following code shows the translation of the

transition F::T#1{L1} of the filter test model into
Prolog predicates, according to the approach described
in section 4:

reception_constraints(1,1,(X_type,X_max,X_frq,X_phi)) :-
cutoff_frequency(Fc), X_type $= 1, X_max $> 2.0, X_max $< 10.0,
X_frq $= 10.0 * Fc, X_phi $= 0.0.
transition(1,1,1,2,[(X_type,X_max,X_frq,X_phi)|L],L,[action(bandw
ith)],Comm,La) :-
channel(2,1,(X_type,X_max,X_frq,X_phi)), !,
Comm is 1, La = [],
retract(channel(2,1,(X_type,X_max,X_frq,X_phi)) :-
carac_signal(2,(X_type,X_max,X_frq,X_phi))), !,
reception _constraints(1,1,(X_type,X_max,X_frq,X_phi)).
transition(1,1,1,2,[(_,_,_,_)|L],L,[action(bandwith)],Comm,La) :-
Comm is 0, La = [2].

The predicate reception_constraints implements the
constraints on the received signal described in section
5.2. The blocking reception of this signal is
implemented by the dynamic predicate channel as
mentioned in section 4.

Covering the transitions of the test model of the
filter as mentioned in section 2, we obtain two test data
TD1 for the bandwidth test and TD2 for the cutoff
frequency test:

TD1 = (In = sig(sine, 2.0 .. 10.0,
 10000.0 .. 10000.0, -0.0 .. 0.0),
 Out = sig(sine, 1.9 .. 10.1,
 10000.0 .. 10000.0, -0.1 .. 0.1))
TD2 = (In = sig(sine, 2.0 .. 10.0,
 1000.0 .. 1000.0, -0.0 .. 0.0)
 Out = sig(sine, 1.214 .. 7.271,
 1000.0 .. 1000.0, 0.585 .. 0.985))

where In represent the primary input test signal
applied and Out the primary output signal when the
filter cutoff frequency is equal to 1000 Hz and
tolerances d1, d2 in F::T#2{L2} are equal to 0.1.

6. The tool Copernicia

We are currently developing a tool named
Copernicia that implements our modeling and testing
approach. The graphical user interface (GUI) is written
in C++ with the ILOG Views graphic library. We use
CLP and the ECLiPSe solver [3] for the generation of
the test data. Figure 6 shows the modeling of the
board considered in section 5. The tool provides two
user modes: board modeling and board test data
generation. In the main panel, with the modeling
mode, the upper left white background window
represents the board level modeling and grey
background windows represent CFSM at the block
level modeling. The lower white background window
(output window) gives information about the internal
modeling of the board. With the board test data
generation mode, the user can in a friendly way click a
block to generate its test data that are written in the
output window. He can also click a state or a transition
on block models in order to generate test data for a
particular behavior.

Figure 6. The tool Copernicia

7. Conclusion and future works
In this paper, we have presented our hierarchical

modeling and testing approach for automatic
generation of test data for mixed-signal boards. This
approach is based on functional testing due to the
particularity of maintenance testing.

We have proposed a graphical language for the high
level description of the board. The graphical nature of
the language aims at making it more convivial for
users. We have also proposed a modeling approach
based on CFSM and a transition language for the
description of board behavior as well as the description
of test strategy. CFSM are well known by testing
engineers, so the use of the proposed solution should
be easy for them. An implementation of our approach
using CLP has been presented and its application to a
simple board made of a single filter has been shown.
The tool Copernicia, which implements the solutions
proposed, has been presented. Future works include
the application of the approach to more complex
boards in order to validate or exhibit its limits.

References
[1] Bushnell Michael L., Agrawal Vishwani D. “Essentials of
Electronic Testing for Digital, Memory and Mixed-signal
VLSI”. Springer (2000).
[2] Gilles B., Nicolas V.-A., Lemarchand L., Marcé L.,
Castel B. “Towards a New Modelling of Mixed Signal
Boards For Maintenance Testing”. Proceedings of the 11th
IEEE International Mixed-Signals Testing Workshop,
IMSTW'05 (2005).
[3] Cheadle A.M., Harvey W., Sadler A.J., Schimpf J., Shen
K., Wallace M.G. “Eclipse: An introduction”. Technical
Report IC-Parc-03-1, IC-Parc, Imperial College London
(2003).

	Introduction
	Modeling and testing approach
	Modeling languages
	Board description language
	Block description language
	Transition language

	Implementation of the test data generation
	Application to an example of board test
	Input/output modeling
	Filter modeling
	Board test data generation

	The tool Copernicia
	Conclusion and future works
	References

