
HAL Id: hal-00607247
https://hal.univ-brest.fr/hal-00607247v1

Submitted on 8 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Introducing Built-In Test for Software Components
in AADL Models

Valérie-Anne Nicolas

To cite this version:
Valérie-Anne Nicolas. On Introducing Built-In Test for Software Components in AADL Models. IEEE
EAST-WEST DESIGN & TEST SYMPOSIUM EWDTS’10, Sep 2010, St. Petersburg, Russia. p.179.
�hal-00607247�

https://hal.univ-brest.fr/hal-00607247v1
https://hal.archives-ouvertes.fr


On Introducing Built-In Test for Software Components in AADL Models  
 
 

Valérie-Anne Nicolas 
Université Européenne de Bretagne 

Université de Brest 
Laboratoire d’Informatique des SYstèmes Complexes (LISYC) 

20 avenue Le Gorgeu - CS 93837 - 29238 Brest Cedex 3 – France 
vnicolas@univ-brest.fr 

 
 

Abstract 
 

This paper presents preliminary ideas to include a 
kind of built-in self-test for systems embedded software 
components. The study promotes contract-based 
testing applied to AADL modeling of 
hardware/software systems. The aim is first to help 
evaluating the testability of software components 
embedded in such systems, and next to improve the 
integration step, especially in the context of COTS 
design and development. We introduce an architecture 
to include a generic test system inside an AADL model, 
and then test specifications to handle the testing 
process. The paper exposes the main ideas of the 
proposed approach and its modeling but no 
implementation work. Next stage is an implementation 
work to assess the feasibility and the benefits of the 
proposed approach.  
 
 

1. Introduction 
 

COTS (Commercial Off-The-Shelf) based system 
design and development is a way to build new systems 
using already available components. Since the 90’s, 
this technology is more and more widely used as it 
reduces components cost and development time, and 
promises better system performance and quality. 
However, experience revealed some drawbacks: 
increase in software component integration work, lack 
of precise specification and control of the components. 
The difficulty to figure out what is the real behavior of 
a component in a specific context leads to a complex 
yet not safe integration work.  

We believe that testing is a way to tackle these 
difficulties. This paper presents a built-in self-test way 
to apply contract-based software testing [7] to 

embedded software components in systems of hardware 
and software components. We use AADL [1] for 
system modeling purpose.  

The paper is organised as follows: we first introduce 
the AADL language in section 2, and next contract-
based testing in section 3. In section 4, we sketch our 
approach. In section 5, we present the proposed test 
architecture and the associated test engine and test 
specifications. We end with a discussion and a 
conclusion.   
 

2. AADL Language 
 

The AADL language (Architecture Analysis and 
Design Language) is a component-based hierarchical 
architecture design language [1]. AADL is a SAE 
standard [2] whose first version V1.0 was published in 
2004, and the second version V2.0 in 2009. The 
language benefits from an active community and is still 
evolving, being improved and including new 
functionalities and tools supported by the Open Source 
AADL Tool Environment (OSATE [3]).  

First intended for avionics specific needs, AADL 
offers facilities to specify and model real-time 
embedded systems following an MDE (Model-Driven 
Engineering) approach. It allows the description of 
hardware and software components of distributed real-
time embedded systems in a graphical and textual 
framework. A component (system, process, thread, 
subprogram, data, processor, bus…) is specified by an 
interface and properties (e.g. behavior, source code…). 
Components are linked by connections.  

Applications in the scope of AADL have a high 
level of criticality and have to deal with hard 
constraints while executing (tasks scheduling…). 
AADL allows the specification of behavioral properties 
of components for specific analyses (e.g. non-
functional properties such as temporal constraints) or 



automatic validation purpose using language annexes. 
Execution platforms also exist, based on code 
generators for several languages and associated 
runtimes [4]. From an AADL model it is then possible 
to automatically generate an executable code. Running 
it allows to collect or verify some functional properties 
about the system integration. One may think that it 
could also be used to run test data. But to our 
knowledge, testing needs are addressed by neither 
AADL core language nor annexes.  

 

3. Contract-based testing 
 

In component-based software engineering (using 
COTS), choosing the right component to achieve a 
given role in a specific integration context is not so 
easy. User must know, from the design phase, if a 
potential component fits his integration constraints. In 
other words, he needs a specification stating very 
precisely the component’s behavior and using context, 
without entering implementation details. This is the 
notion of contract of a component, introduced in the 
Design by Contract approach for oriented-object 
languages [5]. This approach is especially implemented 
by the Fractal Architecture Description Language [6]. 
Beside this, contracts are also used to build self-
testable classes for object-oriented languages [7]. We 
believe that this work can be transferred to AADL 
software components.       
 

4. Built-In Self-Test for AADL 
 
4.1. Context 
 

As mentioned in section 2, AADL is dedicated to 
highly critical system design. AADL tools focus on the 
analysis of critical non-functional properties resulting 
from the integration of components, leaving aside the 
behavior of single components. This methodological 
choice is entirely consistent with COTS based system 
design and development, where components should be 
considered safe and reliable. However, experience 
shows that this assertion is not always guaranteed 
because of specification incompletness concerning 
system integration. Even if a single component may be 
considered safe, what about its real behavior in a 
specific integration context? What are the true context 
requirements (preconditions) needed by a component? 
These are real problems encountered during system 
integration of COTS components. They are especially 
true in AADL where bindings between software and 
hardware components are specified during the design 
stage. To face these difficulties, we believe it should be 

useful to be able to evaluate a software component 
behavior, on well chosen data, embedded inside its 
specific software/hardware integration context. The test 
approach sketched next section goes in that direction, 
and even further as it may also be used for 
maintenance. 
 
4.2. Proposed test approach 
 

The study outlined here is about a built-in self-test 
approach for AADL models. The idea is to adapt the 
hardware BIST concept to AADL software 
architectures. We chose the built-in characteristic to fit 
with AADL purposes of integration, reuse and 
validation during the design stage. Another reason is 
that it greatly facilitates future maintenance of the 
system. The self-test aspect is intended to automate as 
much as possible the test effort. Nowadays, most 
hardware components include BIST. That is why we 
focus here on the software parts of an AADL model. 
Unlike hardware, there is no generic software fault 
model. We therefore propose to use contracts for the 
user to specify testing information such as test 
criterion, test coverage type and rate, to enable 
embedded software components self-testing process. 
As stated in section 3, contract-based software testing 
is an instance of the BIST concept for software object-
oriented languages. One goal of this study is to assess 
the feasibility of this kind of approach for software 
components in AADL models. 

Next section, we first introduce an architecture to 
include BIST software facilities in AADL models, then 
a test engine to achieve the testing stages and test 
specifications (so-called test contracts) to describe 
testing process properties.  
 

5. An architecture for AADL Built-In Self-
Test 
 
5.1. Test architecture 
 

We define a BIST AADL system (Figure 1) as an 
architecture incorporating the AADL model of the 
application to be tested (so called user application) and 
a generic test model. The generic test model is the test 
engine providing the needed testing functionalities. To 
achieve a testing stage, the test engine must use the 
model of the user application. The execution of a BIST 
AADL system is parameterized by two operation 
modes (interface features): standard mode and test 
mode. Standard mode consists in executing the user 
application alone, the test engine being disabled. Test 
mode is to run the test engine, which itself executes the 



user application as needed, in order to manage the 
testing process.    

 
Figure 1: BIST AADL system architecture 
 
5.2. Test engine 
 

Test engine has to manage the overall testing 
process of software parts of an AADL model. It should 
offer facilities to generate test data, to run user 
application on these test data, to collect and interpret 
results (oracle), and finally to produce a test report.  

We modeled the test engine as an AADL system 
with four processes: the monitor, the generator, the 
runner and the oracle (Figure 2). Each process contains 
a thread to achieve its task using subprograms. The test 
engine system also has a processor component and a 
bus component. We use AADL properties to connect 
the elements of the interfaces of the different processes, 
to link the processes and the bus to the processor and to 
connect with the bus. Using the AADL component 
data, we define four data types to model the different 
kind of information exchanged in the system: aadl_file, 
test_data, output_data, test_report.  

 
Figure 2: Test engine system model 

 
The monitor launches the testing process by sending 

to the generator the AADL user application model 
(aadl_file) to be tested, after that it will await the 
associated test report (test_report) from the oracle.  

The generator analyses the input AADL model 
(aadl_file) in order to retrieve test specifications and to 

produce test data and associated expected results (we 
give more details on this stage in section 5.3, after 
introducing test specifications). Test data (test_data) 
are then sent to the runner and expected results 
(output_data) to the oracle.   

The runner executes the user application on all the 
different test data (test_data) and saves the obtained 
results. It should be noted that this does not just unit 
testing but rather context embedded testing. These 
results (output_data) are sent to the oracle at the end of 
the running stage.  

The oracle compares its two inputs (output_data), 
expected results from the generator and obtained 
results from the runner, to produce a test report 
(test_report) and send it to the monitor. 
 
5.3. Test specifications 
 

In order to have a relevant testing process, AADL 
models must contain information to guide the test 
engine. More precisely, the generator needs some test 
specifications to produce test data (cf. section 5.2). As 
we focus on AADL software parts testing, the test 
specifications have to be located in subprogram 
components. These test specifications should permit to 
define one’s component testing policy: test strategies, 
criteria, metrics, expected results…  

We propose a preliminary library (TestPropertySet) 
providing new AADL properties for specifying testing 
features of subprogram components. We distinguish 
four types of properties: test_strategy, test_criterion, 
test_coverage, test_data_file. 

Test_strategy property may be DT_predefine or 
DT_criterion_applying. DT_predefine means that a file 
containing test data with associated expected results 
already exists and is available at the location written in 
the property test_data_file. DT_criterion_applying 
means that the test engine has to apply a given 
criterion, specified in property test_criterion, on the 
source code of the subprogram to generate test data. 

Test_criterion property enables the choice of a 
structural test criterion if test_strategy = 
DT_criterion_applying (e.g. instruction_testing, 
branch_testing, path_testing, mutation_testing…). 

Test_coverage property states the criterion coverage 
rate needed for the test data generation step. For 
example a value below 100% allows dead code in the 
subprogram. It could also be useful when the coverage 
of a criterion can not be determined statically without 
approximation. This property is enabled when 
test_strategy = DT_criterion_applying.    

Test_data_file property specifies the location of the 
file needed when test_strategy = DT_predefine. 

  dependency 

BIST AADL System 

Test engine 
System 

User 
application 
System 



We focus on safety testing, specific real-time 
distributed embedded properties being studied by 
dedicated AADL tools. As the source code of the 
subprogram is available in the AADL model, we use 
classical software structural testing criteria. Functional 
criteria could also be used if a behavioral description of 
the subprogram is available. 

From considered test criteria, automatic test data 
generation is easily done, but associated expected test 
results production remains a problem. To face this, the 
user may be asked to provide expected results to the 
test engine. This solution presents a lot of 
disadvantages: not automatic, time expansive, error 
prone, and difficult especially concerning embedded 
third-party components. Otherwise an executable 
specification or a behavioral model of the component is 
needed to automatically compute the expected test 
results, using model-based testing methods [8]. 

These component embedded test specifications are 
needed to produce test data, but they also may be seen 
as contracts, allowing knowing by what criterion and to 
what extent a component is well tested. They may also 
be used to assess component’s testability. In fact, we 
consider that test specifications are a tool to make 
testable components.  
 

6. Discussion 
 

We chose to add a BIST part in an AADL model at 
the system level in order to be able to integrate test data 
but also the test engine for every user application with 
a minimum extra cost for both the user and the system. 
In fact, test engine is generic, and if an implementation 
of the test engine is available as an AADL system, it is 
no cost for the user to package it with his model to 
obtain a BIST version. The only additional effort 
remaining for the user would be to add test 
specifications in his model. Another important 
advantage is that the application could be tested in-line 
in any new environment of deployment for design 
purpose but also during maintenance. For systems with 
very strong memory constraints, the extra memory cost 
of the test engine could already be too important. In 
that case, a BIST version of the system could not be 
deployed on a real target, however it could be used 
during the design stage and off-line maintenance.  

A different option would be to add the BIST part at 
the component level but it would lead to a lot of 
redundancy as the test engine may be the same for the 
different components and to a memory overcost 
unacceptable for such real-time embedded systems. 
Moreover, some testing functionalities need to be at the 
system level in order to achieve integration testing.  

 

7. Conclusion 
 

This study shows that introducing test specifications 
(or test contracts) in software parts of AADL models is 
a way to define their testability and could ease the 
integration step. Combined with a test engine at the 
system level, it could generate and run test data 
automatically in the manner of a BIST during design 
and maintenance stages. One advantage is that software 
parts are tested in their integration context.  

However, to broaden the range of supported test 
criteria, to enable the oracle and to fully automate the 
testing stage, behavioral models of subprograms are 
required. The previously proposed library for test 
specifications is to illustrate the approach and also 
needs to be enriched (e.g. properties to declare the 
hardware/software binding constraints). Next stage is 
an implementation to assess the feasibility and the 
benefits of the proposed approach. 
 

8. References 
 
[1] P.H. Feiler, D.P. Gluch, and J.J. Hudak, “The 
Architecture Analysis & Design Language (AADL): 
An Introduction”, Technical Note CMU/SEI-2006-TN-011, 
February 2006. 
 
 [2] SAE, “Architecture Analysis & Design Language 
(AADL)”, SAE Standard AS5506A, January 2009. 
 
 [3] The SEI (Software Engineering Institute) AADL Team, 
“An Extensible Open source AADL Tool Environment 
(OSATE)”, Technical Note SEI, June 2006. 
 
 [4] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From 
the Prototype to the Final Embedded System Using the 
Ocarina AADL Tool Suite”, ACM Transactions in Embedded 
Computing Systems (TECS), October 2008. 
 
 [5] B. Meyer, Object-Oriented Software Construction, 2nd 
Edition, Prentice Hall, New Jersey, 1997. 
 
[6] “Component-based architecture: the Fractal initiative”, 
Annals of telecommunications, Institut Telecom, Springer, 
vol. 64, no 1-2, January-February 2009. 
 
[7] D. Deveaux, J-M. Jézéquel and Y. Le Traon, “Reliable 
Objects: Lightweight Testing for OO Languages”, IEEE 
Software, July 2001. 
 
[8] M. Utting, and B. Legeard, Practical Model-Based 
Testing: A Tools Approach, Morgan Kaufmann Publishers 
Inc., San Francisco, 2006.  


