E. Adam, O. Mutanga, and D. Rugege, Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review, Wetlands Ecology Management, pp.281-296, 2009.
DOI : 10.1007/s11273-009-9169-z

D. Alsdorf, E. Rodriguez, and D. Lettenmaier, Measuring surface water from space, Reviews of Geophysics, vol.338, issue.5, pp.2-2002, 2007.
DOI : 10.1029/2006RG000197

G. Aronica, B. Hankin, and K. Beven, Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data, Advances in Water Resources, vol.22, issue.4, pp.349-365, 1998.
DOI : 10.1016/S0309-1708(98)00017-7

M. Baatz and A. Et-schäpe, Multiresolution Segmentation ? an optimization approach for high quality multi-scale image segmentation, Beiträge zum AGIT-Symposium, pp.12-23, 2000.

A. Barducci and I. Pippi, Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth, Applied Optics, vol.40, issue.9, pp.1464-1477, 2001.
DOI : 10.1364/AO.40.001464

M. J. Barnsley, J. J. Settle, M. Cutter, D. Lobb, and F. Teston, The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.7, pp.40-1560, 2005.
DOI : 10.1109/TGRS.2004.827260

A. Bannari, A. Pacheco, K. Staenz, H. Mcnairn, and K. Omari, Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data, Remote Sensing of Environment, vol.104, issue.4, pp.447-459, 2006.
DOI : 10.1016/j.rse.2006.05.018

F. Bonn and R. Dixon, Monitoring Flood Extent and Forecasting Excess Runoff Risk with RADARSAT-1 Data, Natural Hazards, vol.16, issue.4, pp.377-393, 2005.
DOI : 10.1007/s11069-004-1798-1

E. Belluco, M. Camuffo, S. Ferrari, L. Modenese, S. Silvestri et al., Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing, Remote Sensing of Environment, vol.105, issue.1, pp.54-67, 2006.
DOI : 10.1016/j.rse.2006.06.006

C. Bishop, Pattern Recognition and Machine Learning, 2006.

G. R. Brakenridge, B. T. Tracy, and J. C. Knox, Orbital SAR remote sensing of a river flood wave, International Journal of Remote Sensing, vol.19, issue.7, pp.1439-1445, 1998.
DOI : 10.1080/014311698215559

E. Bredensteiner and K. Bennett, Multicategory Classification by Support Vector Machines, Computational Optimizations and Applications, vol.12, issue.1-3, pp.53-79, 1999.
DOI : 10.1007/978-1-4615-5197-3_5

P. A. Brivio, R. Colombo, M. Maggi, and R. Tomasoni, Integration of remote sensing data and GIS for accurate mapping of flooded areas, International Journal of Remote Sensing, vol.1, issue.2, pp.429-441, 2002.
DOI : 10.1080/01431160010014729

R. J. Brown, D. Wood, and B. Brisco, Mapping rainfall distribution using RADARSAT data, Proceedings of GER'97, p.9, 1997.

C. Burges, A tutorial on support vector machines for pattern recognition, in data mining and knowledge discovery. U. Fayyad, Kluwer Academic, pp.1-43, 1998.

K. Crammer and Y. Et-singer, On the algorithmic implementation of multiclass kernel-based vector machine, Journal of Machine Learning Research, vol.2, pp.265-292, 2002.

M. A. Cutter, A low cost hyperspectral mission, Acta Astronautica, vol.55, issue.3-9, pp.631-636, 2004.
DOI : 10.1016/j.actaastro.2004.05.007

E. Adam, O. Mutanga, and D. Rugege, Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation, Wetlands Ecology and Management, pp.281-295, 2009.

K. Fellah, Mesures de paramètres des sols à partir de données des satellites radar pour les applications hydrologiques, Thèse de doctorat, p.213, 1997.

S. Fukuda and H. Hirosawa, Support vector machine classification of land cover: application topolarimetric SAR data. Geoscience and Remote Sensing Symposium, pp.187-189, 2001.

J. C. Garcia and J. Moreno, Removal of noises in CHRIS/PROBA images: application of the Sparc Campaign data, Proc. of the 2 nd CHRIS/Proba Workshop, p.5, 2004.

E. Gruntfest and J. Handmer, Coping with flash floods, NATO science series, p.322, 2001.

R. K. Hawkins, E. Attema, R. Crapolicchio, H. Laur, P. Lecomte et al., Stability of Amazon Backscatter at C-Band: Spaceborne SAR Results from ERS-2 and Radarsat-1, 1999.
DOI : 10.4095/219593

M. S. Horritt, Calibration of a two-dimensional finite element flood flow model using satellite radar imagery, Water Resources Research, vol.124, issue.7, 2000.
DOI : 10.1029/2000WR900206

R. Hostache, C. Puech, R. , and D. , Caractérisation spatiale d'aléa inondation a` partir d'images satellites radar: Cartographie et estimation de niveaux d'eau par fusion des donne´es images avec des donne´es topographiques, International Conference on Spatial Analysis and Geomatics, UMR ESPACE, p.12, 2005.

R. Hostache, P. Matgen, G. Schumann, C. Puech, L. Hoffmann et al., Water Level Estimation and Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images of Floods, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.2, pp.431-441, 2009.
DOI : 10.1109/TGRS.2008.2008718

C. Hsu and C. Et-lin, A comparison of methods for multi-class support vector machines, IEEE Transactions on Neural Networks, vol.13, issue.2, pp.415-425, 2002.

A. Jung, P. Kardevan, and L. Tokei, Detection of urban effect on vegetation in a less built-up Hungarian city by hyperspectral remote sensing, Physics and Chemistry of the Earth, Parts A/B/C, vol.30, issue.1-3, pp.255-259, 2004.
DOI : 10.1016/j.pce.2004.08.041

M. Kanevski, A. Pozdnoukhov, and V. Timonin, Machine Learning for Spatial Environmental Data : theory, applications and software, 2009.
DOI : 10.1201/9781439808085

K. Koutroumbas and S. Theodoridis, Pattern Recognition, p.340, 2008.

F. A. Kruse, L. L. Richardson, A. , and V. G. , Techniques Developed for Geologic Analysis of Hyperspectral Data Applied to Near-Shore Hyperspectral Ocean Data, Presented at the Fourth International Conference on Remote Sensing for Marine and Coastal Environments, pp.17-19, 1997.

O. Laugier, K. Fellah, N. Tholey, C. Meyer, D. Fraipont et al., High temporal detection and monitoring of flood zone dynamic using ERS data around catastrophic natural events: The 1993 and 1994 Camargue flood events, paper presented at 3 rd ERS Symposium on Space at the Service of Our Environment, Eur. Space Agency, 1997.

J. S. Lee, M. R. Grunes, and G. De-grandi, Polarimetric SAR speckle filtering and its implication for classification, IEEE Trans. Geosci. and Rem. Sens, vol.37, issue.05, pp.2362-2373, 1999.

Y. Lee, Y. Lin, and G. Wahba, Multicategory Support Vector Machines, Journal of the American Statistical Association, vol.99, issue.465, pp.99-67, 2004.
DOI : 10.1198/016214504000000098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Marinelli, R. Michel, and A. Beaudoin, Flood mapping using ERS tandem coherence image : a case study in souther France, third ERS Symposium on Space at the service of our environment, pp.17-21, 1997.

P. Matgen, J. Henry, F. Pappenberger, P. De-fraipont, L. Hoffmann et al., Uncertainty in calibrating flood propagation models with flood boundaries derived from synthetic aperture radar imagery, Proc. 20th Congr, pp.352-358, 2004.

P. Matgen, G. Schumann, J. B. Henry, L. Hoffmann, and L. Pfister, Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management, International Journal of Applied Earth Observation and Geoinformation, vol.9, issue.3, pp.247-263, 2007.
DOI : 10.1016/j.jag.2006.03.003

G. Nico, M. Pappalepore, G. Pasquariello, A. Refice, and S. Samarelli, Comparison of SAR amplitude vs. coherence flood detection methods - a GIS application, International Journal of Remote Sensing, vol.21, issue.8, pp.1619-1631, 2000.
DOI : 10.1080/014311600209931

R. Oberstadler, H. Hönsch, and D. Huth, Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany, Hydrological Processes, vol.1, issue.10, pp.1415-1425, 1997.
DOI : 10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2

F. Pappenberger, K. Beven, M. Horritt, and S. Blazkova, Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, Journal of Hydrology, vol.302, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.jhydrol.2004.06.036

E. T. Pasterik, The national flood insurance program: a U.S. approach ti flood loss reduction in Marsalek et al. (dir.), in Flood issues in contemporary water management, NATO Science series, vol.2, issue.71, pp.185-195, 2000.

B. Pengra, C. Johnston, . Loveland, and . Tr, Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor, Remote Sensing of Environment, vol.108, issue.1, pp.74-81, 2007.
DOI : 10.1016/j.rse.2006.11.002

C. Puech and D. Raclot, Using geographical information systems and aerial photographs to determine water levels during floods, Hydrological Processes, vol.16, issue.8, pp.1593-1602, 2002.
DOI : 10.1002/hyp.1023

P. Rosso, . Ustin, . Sl, and . Hastings, Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data, International Journal of Remote Sensing, vol.72, issue.23, pp.5169-5191, 2005.
DOI : 10.1890/1051-0761(1997)007[1039:MPCSMU]2.0.CO;2

K. Schmidt and A. Skidmore, Spectral discrimination of vegetation types in a coastal wetland, Remote Sensing of Environment, vol.85, issue.1, pp.92-108, 2003.
DOI : 10.1016/S0034-4257(02)00196-7

G. Schumann, J. B. Henry, L. Hoffmann, L. Pfister, F. Pappenberger et al., Demonstrating the high potential of remote sensing in hydraulic modelling and flood risk management, Annual Conference of the Remote Sensing and Photogrammetry Society With the NERC Earth Observation Conference, 2005.

G. Schumann, G. Di-baldassarre, and P. D. Bates, The Utility of Spaceborne Radar to Render Flood Inundation Maps Based on Multialgorithm Ensembles, IEEE Transactions on Geoscience and Remote Sensing, vol.47, issue.8, pp.82801-2807, 2009.
DOI : 10.1109/TGRS.2009.2017937

J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, p.460, 2004.
DOI : 10.1017/CBO9780511809682

G. Schohn and D. Et-cohn, Less is more : Active learning with support vector machines, Proceedings of the Seventemth International Conference on Machine Learning, pp.839-846, 2000.

A. J. Smola and B. Schölkopf, A tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series, NC2-TR- 1998-030, p.71, 1998.

F. T. Ulaby, B. Brisco, and C. Dobson, Improved Spatial Mapping of Rainfall Events with Spaceborne SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.21, issue.1, pp.118-121, 1983.
DOI : 10.1109/TGRS.1983.350538

F. T. Ulaby and C. Elachi, Radar polarimetry for geoscience applications, 1990.

C. Vaiphasa, K. Skidmore, . De-boer, . Wf, and . Vaiphasa, A hyperspectral band selector for plant species discrimination, ISPRS Journal of Photogrammetry and Remote Sensing, vol.62, issue.3, pp.225-235, 2007.
DOI : 10.1016/j.isprsjprs.2007.05.006

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

N. Vapnik, Statistical Learning Theory, 1998.

J. Vidal, Validation opérationnelle en hydraulique fluviale -Approche par un système à base de connaissance, Thèse de doctorat, Institut National Polytechnique de, 2005.

H. Yésou, P. Chastanet, K. Fellah, Y. Jranblanc, P. De-frainpont et al., Contribution of ERS SAR images and ERS coherence data to a flood information system on the Meuse basin ? France, European Space AgencySpecial Publication) ESA SP, pp.597-605, 2000.