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 2 

Abstract 1 

 2 

This review focuses on the culture-independent methods available for the description of both 3 

bacterial and fungal communities in cheese. Important steps of the culture-independent 4 

strategy, which relies on bulk DNA extraction from cheese and polymerase chain reaction 5 

(PCR) amplification of selected sequences, are discussed. We critically evaluate the 6 

identification techniques already used for monitoring microbial communities in cheese, 7 

including PCR-ccdenaturing gradient gel electrophoresis (PCR-DGGE), PCR- temporal 8 

temperature gradient gel electrophoresis (PCR-TTGE) or single-strand conformation 9 

polymorphism-PCR (SSCP-PCR) as well as some other techniques that remain to be adapted 10 

to the study of cheese communities. Further, our analysis draws attention to the lack of data 11 

available on suitable DNA sequences for identifying fungal communities in cheese and 12 

proposes some potential DNA targets.  13 

14 



 3 

1. Microbial communities in cheese 1 

 2 

Cheese is produced throughout the world and more than 1000 varieties (Sandine and Elliker 3 

1970) with different forms and flavours exist. Cheesemaking is conjectured to date back to 4 

some 8000 years ago originating from the Middle East (Fox et al. 2000) where the first 5 

fermented milk-based foods were made. Four basic ingredients are required to produce most 6 

cheeses: milk, rennet, salt and microorganisms. These four ingredients are processed through 7 

different steps such as acidification, coagulation, syneresis and ripening (see Fox et al. 2000). 8 

Each unique combination of ingredients and processing parameters leads to a specific type of 9 

cheese with unique properties. Fox et al. (2000) mentioned how fascinating it is that “such a 10 

diverse range of products can be produced” from “basically similar raw material”. The 11 

composition and activity of the microflora is the least controllable of all the parameters. The 12 

microflora is made up of (i) starter lactic acid bacteria that are involved in acid production 13 

during cheese manufacture and that also participate in the ripening processes to various 14 

extents; and (ii) non-starter lactic acid bacteria, other bacteria, yeasts and filamentous fungi 15 

that form the secondary microflora, which plays a significant role during ripening (Fox et al. 16 

2000). Both starter and secondary flora modify the physical and chemical properties of 17 

cheese, contributing to and reacting to environmental changes that occur during the 18 

manufacture and ripening of cheese. Coppola et al. (2007) distinguished seven technological 19 

production phases of cheese that may constitute selective pressures for the microbial species 20 

that play an important role in community succession occurring throughout cheese 21 

manufacture and ripening. The fundamental features that influence the dynamics of the 22 

cheese ecosystem have been described by Beresford et al. (2001). They include (i) physical 23 

features such as moisture, salt concentration, pH or redox potential which change during 24 

cheese manufacture and are themselves influenced by the microflora, and (ii) biological 25 
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features such as those resulting from the interactions between microorganisms. The 1 

characteristics of a given cheese therefore depend on microflora dynamics. Although food 2 

microflora is undoubtedly not as diverse as environmental microflora, such as those found in 3 

the soil (Garbeva et al. 2004), cheese microbial populations still remain difficult to control 4 

due to their complex dynamics and to their interactions (Beresford et al. 2001). Knowledge of 5 

the structure and dynamics of the whole microbial community of cheese would promote 6 

better understanding of how cheese characteristics vary with respect to microbial growth and 7 

metabolism. For instance, greater control over microflora composition would make it 8 

possible to better select for specific organoleptic properties or to prevent quality defects or 9 

spoilage. For these reasons, cheese bacterial and fungal communities have already been 10 

partially identified using traditional methods and, to a lesser extent, molecular techniques. 11 

 12 

2. Towards culture-independent methods 13 

 14 

As in other fields in microbiology, species identification in cheese can be assessed through 15 

the use of either culture-dependent or culture-independent methods. Culture-dependent 16 

methods consist of isolating and culturing microorganisms prior to their identification 17 

according to either morphological, biochemical or genetic characteristics. Different cultures 18 

can even be bulked and analysed using global analysis methods, such as those as described 19 

below for culture-independent methods (Ercolini et al. 2001; 2004). These methods have 20 

already shed light on the structure of microbial populations during cheese manufacture 21 

(Andrighetto et al. 1998; Fitzsimmons et al. 1999; Mannu et al. 2000; Berthier et al. 2001; 22 

Dasen et al. 2003). However, culture-dependent methods are time-consuming, due to long 23 

culture periods and elaborate culture techniques. They are therefore not amenable to 24 

monitoring community dynamics during cheese manufacture and ripening. Moreover, species 25 
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occurring in low numbers are often out-competed in vitro by numerically more abundant 1 

microbial species (Hugenholtz et al. 1998) and some species may be unable to grow in vitro 2 

(Ward et al. 1990, 1992; Head et al. 1998). Hence, if culture conditions are poor and the 3 

number of isolates too low, the culture collection will not be representative of the community 4 

and the actual microbial diversity will be misinterpreted.  5 

 Community-level studies are relying more and more on culture-independent methods 6 

based on the direct analysis of DNA (or RNA) without any culturing step. These methods are 7 

based on protocols where total DNA (or RNA) is directly extracted from the substrate. 8 

Coupled with a global analysis, these methods make it possible to study the total diversity 9 

from the bulk extract in a single step. As they are fast and potentially more exhaustive, these 10 

methods are well suited for analysing microbial communities over time and may provide the 11 

possibility of exploring cheese microflora dynamics in detail. Most of these methods use 12 

polymerase chain reaction (PCR) amplification of total DNA. The PCR amplicons from 13 

different species are discriminated by using gel or capillary separation or by hybridization to 14 

specific probes (Figure 1). However, these methods have potential biases, which will be 15 

discussed below. 16 

 17 

3. ‘Pick’em all’  18 

 19 

As previously mentioned, the isolation step of culture-dependent methods introduces biases 20 

because some species are unable to grow under the selected experimental conditions. Culture-21 

independent methods typically aim at collecting DNA from the whole community to 22 

overcome this bias. Nevertheless, technical issues may arise: DNA may not be recovered 23 

from all genotypes or PCR amplification may be inaccurate. Some genotypes may remain 24 

undetected due to low species abundance in the substrate, low species availability due to 25 
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insufficient homogenization of the matrix, inadequate cell lysis that prevents release of 1 

nucleic acids, or inhibition of PCR amplification.  2 

Complete homogenization of the cheese matrix can be challenging and partial 3 

homogenization may hamper cell lysis, lowering DNA availability. Therefore, existing 4 

protocols for DNA extraction from cheese include mechanical homogenization in salt 5 

solutions such as trisodium-citrate (Coppola et al. 2006; Parayre et al. 2007). However, these 6 

protocols may have to be adapted to the cheese under investigation. The extraction step is 7 

usually performed in specific buffers, such as phosphate buffers containing various 8 

detergents. Extraction can also be done with guanidine thiocyanate and N-laurylsarcosine 9 

(Callon et al. 2006; Duthoit et al. 2005a,b; Delbès et al. 2007; Le Bourhis et al. 2007) and/or 10 

lytic enzymes such as pronase (Florez and Mayo 2006; El Baradei et al. 2007) or proteinase 11 

K (Ercolini et al. 2003; Cocolin et al. 2007). Lysis can be mechanically improved by 12 

vigorously shaking samples in tubes containing beads (Randazzo et al. 2002; Duthoit et al. 13 

2003, Duthoit et al. 2005a,b; Feurer et al. 2004a,b; Delbès and Montel 2005; Florez and 14 

Mayo 2006; Delbès et al. 2007; Le Bourhis et al. 2007). New commercially available 15 

automated instruments exploiting different techniques, such as pressure cycling technology, 16 

which generates alternating hydrostatic pressure (Tao et al. 2007), or optimized mechanical 17 

grinding, should be tested for their capacity to improve DNA extraction from microorganisms 18 

in cheese.  19 

Like for other food materials or environmental samples, DNA extraction yield and 20 

PCR sensitivity are significantly reduced by a wide range of inhibiting substances (Wilson 21 

1997). DNA extraction efficiency may be decreased by the high quantities of 22 

macromolecules in cheeses, such as casein or lipids, that can adsorb detergents, chaotropic or 23 

chelating agents necessary for nucleic acid extraction (Bonaïti et al. 2006). Moreover, even if 24 

DNA yield is high, inhibitors that have not been eliminated may lower PCR sensitivity 25 
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(Wilson 1997). For example, Drake et al. (1996) reported that protein breakdown products 1 

decreased the sensitivity of PCR amplification of rRNA genes of Lactobacillus spp.. DNA 2 

solutions are therefore often purified using phenol-chloroform, which eliminates proteins and 3 

various remnants (Randazzo et al. 2002, 2006; Cocolin et al. 2004; Feurer et al. 2004a,b; 4 

Callon et al. 2006; Delbès and Montel 2005; Duthoit et al. 2003, 2005a,b; Delbès et al. 2007; 5 

Le Bourhis et al. 2007). Several authors have used commercial DNA extraction kits based on 6 

ion-exchange chromatography, size-exclusion or sorption techniques (Ercolini et al. 2001; 7 

Rademaker et al. 2005) or just for DNA purification (Parayre et al. 2007).  8 

It is noteworthy that most studies optimized DNA extraction to target bacterial DNA, 9 

with the exception of Callon et al. (2006), who evaluated the dynamics of yeasts, and Florez 10 

and Mayo (2006), who investigated the dynamics of the dominant microorganisms including 11 

bacteria, yeasts and filamentous fungi. In order to characterise whole microbial communities, 12 

protocols have to be adapted to extract DNA from all different types of microorganisms, as 13 

attempted by Bonaïti et al. (2006). 14 

Most culture-independent methods rely on PCR amplification of a targeted sequence. 15 

This step can be affected by preferential or differential PCR amplification (Reysenbach et al. 16 

1992; Walsh et al. 1992; Ercolini 2003; Kanawaga 2003) that may hinder the detection of 17 

some genotypes when analysing bulk DNA extracted from cheese. Preferential PCR 18 

amplification can be caused by (i) primer mismatches at the annealing sites of the DNA 19 

templates of some genotypes or (ii) a lower rate of primer hybridization to certain templates 20 

due to differential denaturation of these templates (Walsh et al. 1992; Suzuki and Giovannoni 21 

1996). Systematically testing different sets of primers and enhancing DNA denaturation 22 

during PCR by using different reagents (denaturants and cosolvents) may solve these 23 

problems (Reysenbach et al. 1992; Weissensteiner and Lanchbury 1996; Hansen et al. 1998). 24 

A second type of bias that may affect PCR carried out on complex bulk DNA extracts is the 25 
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occurrence of (i) heteroduplexes that arise in later PCR cycles when primer concentration 1 

decreases and the concentration of PCR products is high enough to compete with the primers 2 

for annealing (Kanawaga 2003) and (ii) chimeric amplicons that also form in later PCR 3 

cycles when the concentration of incompletely extended primers is high enough to compete 4 

with the original primer for annealing, or when template concentration is high enough to 5 

allow the re-annealing of templates before or during primer extension (Kanawaga 2003). All 6 

these artefacts can generate additional signals that do not correspond to genotypes in the 7 

sample. These artefacts can be minimized by using a low number of PCR cycles.  8 

 9 

4. Analysing bulk DNA 10 

 11 

Through the construction of clone libraries from PCR products amplified from bulk cheese 12 

DNA and subsequent sequencing of the different clones, it is theoretically possible to 13 

examine the actual diversity of a given community. Although the cost of cloning and 14 

sequencing is decreasing, this strategy remains expensive if used on a routine basis since it 15 

implies large-scale cloning and sequencing to ensure that the community is exhaustively 16 

screened. This strategy has been used for the study of bacterial cheese communities (Feurer et 17 

al. 2004a,b; Delbès et al. 2007; El Baradei et al. 2007), but only as a complement to other 18 

techniques (Table 1). Amongst the other molecular methods that may allow exhaustive 19 

screening of microbial communities with no requirement for cloning PCR products, the most 20 

commonly used in cheese microbiology are based on gel electrophoresis or chromatography. 21 

The principal techniques that can be used to describe microbial communities in cheese are 22 

briefly discussed below. 23 

 24 
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4.1. PCR-denaturing gradient gel electrophoresis and PCR-temporal temperature 1 

gradient gel electrophoresis 2 

 3 

PCR-denaturing gradient gel electrophoresis (PCR-DGGE; Myers 1987) and PCR-temporal 4 

temperature gradient gel electrophoresis (PCR-TTGE; Yoshino et al. 1991) (collectively 5 

referred to here as PCR-DG/TTGE) are based on the separation of PCR amplicons of the 6 

same size but with different sequences. In a denaturing acrylamide gel, DNA partially 7 

denatures in discrete regions called melting domains. The melting temperature of these 8 

domains is sequence specific. When the melting temperature (Tm) of the lowest melting 9 

domain is reached, the DNA is partially denatured creating branched molecules. This 10 

branching reduces DNA mobility in the gel. Therefore, amplicons of the same size but with 11 

different nucleotide compositions can be separated based on differences in the melting 12 

behaviour of their melting domains. For PCR-DGGE, the denaturing conditions rely on the 13 

use of chemical denaturants (formamide and urea) incorporated into an acrylamide gel as a 14 

linear denaturing gradient. PCR-DGGE electrophoresis is carried out at constant temperature, 15 

typically between 55°C and 65°C (Ercolini 2004). For PCR-TTGE, the denaturing gradient is 16 

obtained by varying the temperature over time without chemicals, thus generating more 17 

reproducible data. PCR-DG/TTGE provides optimal resolution when PCR products are not 18 

completely denatured. Thus, adding a so-called GC clamp (30-40bp) to one of the PCR 19 

primers ensures that the PCR products are not completely denatured during the analysis 20 

(Myers et al. 1985a,b; Shefield et al. 1989). Prior to PCR-DG/TTGE analysis, the location of 21 

the different melting domains within a DNA sequence can be predicted in silico, allowing 22 

selection of the best primer pair. A PCR-DG/TTGE database containing migration profiles 23 

corresponding to reference strains is generally created (Ogier et al. 2002, 2004) to facilitate 24 

further identification of PCR-DG/TTGE profiles. A molecular ladder can be constructed by 25 
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using amplicons corresponding to representative species of this database and used in each gel 1 

migration. However, this kind of database cannot be exhaustive and representative of the 2 

actual community analysed and usually requires constant updates. The advantage of PCR-3 

DG/TTGE is that amplicons can be directly extracted from the DG/TTGE acrylamide gel and 4 

sequenced. Unidentified profiles that do not match reference profiles can thus be sequenced, 5 

compared to publicly available sequence databases and appended to the PCR-DG/TTGE 6 

profile database. The first PCR-DGGE application to microbiology was done by Muyzer et 7 

al. (1995) who studied bacterial communities of deep-sea hydrothermal vents. PCR-8 

DG/TTGE are the molecular techniques that have been the most extensively used for the 9 

study of microbial communities in dairy products (e.g. Lafarge et al. 2004; Ogier et al. 2002; 10 

2004) and more specifically to monitor the structure and even dynamics of microbial 11 

communities in cheese (see references in Table 1). 12 

 13 

4.2. Single-strand conformation polymorphism-PCR 14 

 15 

Single-strand conformation polymorphism-PCR (SSCP-PCR; Orita et al. 1989; Ravnik-16 

Glavac et al. 1994) is a technique using either acrylamide gel- or capillary-based automated 17 

sequencer, based on the separation of denatured (single-stranded) PCR products. Under non-18 

denaturing conditions, single-stranded DNA folds into tertiary structures according to their 19 

nucleotide sequences and their physicochemical environment (e.g., temperature and ion 20 

strength). This causes differences in electrophoretic mobility in non-denaturing gels. SSCP-21 

PCR is potentially easier to carry out than PCR-DG/TTGE since there is no need for gradient 22 

gels or use of GC-clamp primers and it can be performed using an automated sequencer. 23 

However, when using an automated sequencer, one of the disadvantages of this technique lies 24 

in the difficulty of appending new data to an existing database: samples presenting unknown 25 



 11 

profiles cannot be directly sequenced because they are labelled. SSCP-PCR is the second 1 

most-used method to study microbial communities of cheese (see references in Table 1). 2 

 3 

4.3. Terminal restriction fragment length polymorphism 4 

 5 

Terminal restriction fragment length polymorphism (T-RFLP; Liu et al. 1997) is based on 6 

digestion of fluorescent end-labelled PCR products with restriction endonucleases. Either one 7 

or both 5’and 3’ ends of the amplicon can be labelled by incorporating a dye on either one or 8 

both PCR primers. The digested products are separated by electrophoresis using either 9 

acrylamide gel- or capillary-based automated sequencer, with laser detection of the labelled 10 

fragments. This system only detects the end-labelled terminal restriction fragments (TRFs) of 11 

the digested PCR products and their size can be calculated based on the use of DNA size 12 

standards that are run simultaneously with the samples. The data consists of the sizes of the 13 

PCR amplicons that contain the labelled primer and are observed as electrophoregram peaks 14 

or gel bands. Variation in the presence and location of the restriction sites results in different 15 

genotypes having different TRF lengths. T-RFLP was initially developed as a fingerprinting 16 

technique (Liu et al. 1997), with the number of TRFs used as an indication of biodiversity. 17 

The use of a database of TRF profiles obtained from reference samples allows the 18 

identification of the different species of a given community (Dickie et al. 2002). As for 19 

SSCP-PCR performed using an automated sequencer, samples that present unknown profiles 20 

cannot be directly sequenced because they are cut and labelled. T-RFLP has been used to 21 

study diverse microbial communities (e.g. Liu et al. 1998) and has been extensively used by 22 

mycologists since this method is reportedly more sensitive than PCR-DG/TGGE for fungi 23 

(Brodie et al. 2003). However, some limitations—due in particular to inefficient restriction 24 

enzyme cleavage—have been pointed out (Avis et al. 2006). T-RFLP was also found to be an 25 
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excellent tool for culture-independent assessment of bacterial community structure and 1 

dynamics during ripening of cheese (Rademaker et al. 2005). 2 

 3 

4.4. Denaturing high-performance liquid chromatography 4 

 5 

Denaturing high-performance liquid chromatography (DHPLC) (Oefner and Underhill 1995 6 

in Xiao and Oefner 2001) allows separation of amplicons using an ion-pair reversed-phase 7 

high-performance liquid chromatography (IP RP HPLC) automated detection system. It was 8 

initially used to detect single nucleotide polymorphisms (SNPs) in clinical applications (e.g., 9 

Frueh and Noyer-Weidner 2005) based on the analysis of heteroduplex formation. DHPLC is 10 

a promising approach for microbial community analysis (Barlaan et al. 2005). PCR 11 

amplicons are injected into a chromatography column containing alkylated non-porous 12 

polystyrene/polydivinylbenzene particles. Separation of the different amplicons relies on the 13 

elution of partially denatured PCR products, which is achieved with the intervention of the 14 

ion-pairing agent, triethylammonium acetate (TEAA) and the cartridge matrix of the system. 15 

As described in Barlaan et al. (2005), under partial denaturation and a given flow rate of 16 

gradient buffers, amplicons of the same size but with different melting behaviours due to 17 

different nucleotide compositions will have different retention times. These differences are 18 

due to the reduced negative charges in the single-stranded portions of the partially denatured 19 

PCR products compared to the double-stranded molecules. The negative charges interact with 20 

the positive charges of ammonium ions of TEAA, and double-stranded DNA is more 21 

efficiently adsorbed to the stationary phase in the cartridge. DHPLC permits high-throughput 22 

automated analyses and, unlike SSCP-PCR or T-RFLP, it allows the collection of elution 23 

fractions corresponding to different amplicons that can be directly sequenced even more 24 

easily than with PCR-DG/TTGE methods. Protocols have already been developed for 25 
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analysing marine bacterial populations (Barlaan et al. 2005), monitoring intestinal microflora 1 

(Goldenberg et al. 2007) and, recently, also for studying the bacterial diversity occurring in 2 

natural whey cultures used for cheese manufacture (Ercolini et al., 2008). The latter study 3 

showed that DHPLC technique was at least as effective as the widely used PCR-DGGE 4 

technique in assessing species diversity of food-related microbial communities. 5 

 6 

4.5. DNA microarrays 7 

 8 

The complementary DNA (cDNA) microarray (or microchips) technology has dramatically 9 

changed the way gene expression can be assessed (Duggan et al. 1999). Since Guschin et al. 10 

(1997) introduced the DNA microarray approach to microbial community analysis, the DNA 11 

array-based methods hold great promise for more extensive analyses of microbial 12 

communities (Zhou et al. 2003; Bodrossy et al. 2007; Wagner et al. 2007) and potential 13 

applications cover various fields of microbiology, including food science (Bae et al. 2005). 14 

By using DNA microarrays, the identification of labelled PCR products or directly retrieved 15 

RNA relies on their hybridization to oligonucleotide probes attached to a substrate. A 16 

description of the various types of microarrays is given by Zhou et al. (2003). Unlike the 17 

previously described methods, DNA array technology potentially allows the simultaneous 18 

application of a nearly unlimited number of probes in a single hybridization experiment 19 

(Small et al. 2001; Peplies et al. 2003). This technique is therefore very well suited to even 20 

the most complex environmental samples. However, for this approach to work, each probe 21 

must specifically hybridize, under given stringency conditions, to a fully matched DNA 22 

target (Valinsky et al. 2002) which has been proven very difficult (Wagner et al. 2007). 23 

Moreover, the design and refinement of efficient probes depend on the comprehensiveness 24 

and quality of probe target database (Wagner et al. 2007). The low quality of some annotated 25 
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sequences in the available databases complicates probe design. Nonetheless, given the lower 1 

diversity of food-borne communities (compared to environmental communities) and given 2 

the unequalled high-throughput capacity of DNA microarrays, it would be worthwhile to 3 

devote research efforts for developing a robust probe target sequence database necessary for 4 

using DNA microarrays as a routine tool for monitoring cheese microbial communities 5 

throughout cheese manufacture. 6 

 7 

5. What is a good target? 8 

 9 

The discrimination between the different species from a cheese sample depends on the 10 

capacity of the analytical technique to reveal polymorphisms. However, whatever analytical 11 

technique is used, no discrimination is possible without polymorphism. The target DNA 12 

sequence must therefore be variable between species. In addition, since almost all of the 13 

above-described techniques rely on PCR amplification, the target DNA sequence must also 14 

include conserved sequences that can serve as anchors for PCR primers. 15 

Unlike prokaryotic genes that do not usually harbour introns, fungal genes are 16 

interrupted by non-coding introns. Although introns are much more variable than exons and 17 

thus offer high levels of polymorphism between species, their length and their location vary 18 

greatly beyond the family level (James et al. 2006). It is therefore difficult to design primers 19 

that allow PCR amplification of introns from all the species in the community. Moreover, the 20 

analysis of exons is often discriminative enough to distinguish between species since they 21 

show sufficient variation at the interspecific level, especially at their third codon positions 22 

that evolve at rates similar to introns. Consequently, most of the DNA regions selected for 23 

studying fungal communities are located in exons. 24 

 25 
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5.1 Bacterial and fungal ribosomal DNA 1 

 2 

Since Woese and Fox’s paper (1977), most community surveys have focused on RNA genes 3 

and intergenic spacers. Bacterial 16S, 23S and 5S rRNA genes are organized into a co-4 

transcribed operon. From one to as many as 15 copies of the operon may be dispersed in a 5 

bacterial genome (Klappenbach et al. 2000). In contrast, in fungi and more generally in 6 

eukaryotes, 18S, 28S 5.8S and 5S rRNA genes and intergenic spacers are tandemly repeated 7 

(up to hundreds of repeats) (Cihlar and Sypherd 1980). The 5S rRNA is, in some species, 8 

separated from the main unit (Kellog and Appels 1995). These repeated units are organized 9 

as multiple and dispersed arrays at chromosomal nucleolar organizer regions (NORs). In both 10 

prokaryotes and eukaryotes, rRNA genes usually show extraordinary sequence homogeneity 11 

within a species (Elder and Turner 1995; Liao 1999). This sequence homogenization is likely 12 

to be due to a process known as concerted evolution. The underlying mechanisms of 13 

concerted evolution involve recombination processes collectively referred to as mitotic or 14 

somatic recombination (see Liao 2000) including unequal crossing-over and gene conversion 15 

that are responsible for DNA repair during replication and transcription. The paradigm of 16 

concerted evolution makes it possible to treat repeated rRNA genes as one locus. For this 17 

reason, rRNA genes have been widely used in phylogeny reconstructions and species 18 

identification. However, deviations from this expected homogeneity of rDNA sequences have 19 

been detected in many taxa. 20 

Although multiple-gene investigation has already been recommended for bacterial 21 

species identification (Stackebrandt et al. 2002), studies evaluating bacterial diversity and/or 22 

dynamics or investigating bacterial phylogenetics have mostly focused only on ribosomal 23 

DNA array analysis (Throbäck et al. 2004). In cheese, all bacterial community surveys are 24 

based on the analysis of 16S rRNA genes and 16S-23S intergenic region (Table 1). Bacterial 25 
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16S rRNA genes comprise nine hypervariable regions, V1-V9, that exhibit considerable 1 

sequence diversity among species (Van de Peer et al. 1996; Baker et al. 2003). These 2 

hypervariable regions are generally flanked by conserved sequences that can serve as anchors 3 

for universal or specific primer pairs (see Baker et al. 2003). They are therefore used for 4 

species identification and allow the evaluation of community diversity. No single region can 5 

differentiate among all bacteria and different regions can be used depending on the goal 6 

(Chakravorty et al. 2007). In cheese, the V3 hypervariable region is the target that has been 7 

the most extensively used, but the use of different sets of primers targeting different regions 8 

can improve the analysis (Delbès et al. 2007). 9 

In fungi, the analysis of fungal rRNA genes limits identification to the genus or 10 

family level (Anderson and Cairney 2004). The fungal internal transcribed spacers (ITS) 11 

provide a greater taxonomic resolution than rRNA genes and are generally used for fungal 12 

community surveys in different environments (Anderson and Cairney 2004). The ITS is a 13 

region located between the 18S rRNA and 28S rRNA genes and including the 5.8S rRNA 14 

gene that splits the ITS into two parts: ITS1 and ITS2. The ITS region undergoes a faster rate 15 

of evolution than rRNA genes but its sequence remains homogenous within a species. Indeed, 16 

both ITS1 and ITS2 fulfil significant functions during rRNA maturation (Joseph et al. 1991; 17 

Liu and Schardl 1994) and are under selective pressure. In Penicillium spp. which are 18 

amongst the most prominent fungi in cheese, the analysis of ITS affords better discrimination 19 

than rRNA genes (Skouboe et al. 2000; Doaré-Lebrun et al. 2006). Nevertheless, Doaré-20 

Lebrun et al. (2006) when analysing the fungal community in grape showed that the use of 21 

ITS was not sufficient for good interspecific discrimination, especially for the species of the 22 

subgenus Penicillium, a monophyletic group of moulds that represent 58 of the ≈250 23 

accepted species in the genus Penicillium (Seifert et al., 2007). It is therefore recommended 24 



 17 

to use other targets in addition to ITS when analysing fungal communities in cheese where 1 

species of this subgenus are among the most prominent. 2 

 3 

5.2. Other fungal genes 4 

 5 

With the exception of rRNA genes and ITS, only a few number of sequences have been used 6 

for studying fungal communities. Recently, Seifert et al. (2007) tested the reliability of using 7 

the CO1 gene that codes for mitochondrial cytochrome c oxidase 1 as a barcoding tool for 8 

Penicillium spp. identification. This gene has already been used extensively in animal 9 

barcoding and could be used as a new marker to investigate fungal communities. Sequence 10 

analysis of CO1 yielded a coherent phylogeny of the taxonomically challenging Penicillium 11 

subgenus (Seifert et al. 2007), suggesting that CO1 is a powerful tool for fungal barcoding. 12 

However, the results by these authors show that CO1 is not more variable among the species 13 

of the subgenus Penicillium than ITS. The low CO1 interspecific divergence precludes 14 

distinguishing species of the subgenus Penicillium using gel/capillary separation of PCR 15 

products. 16 

Amongst other possible targets, genes that encode mitochondrial rRNA genes 17 

(Lutzoni et al. 2004) could represent an alternative to nuclear rRNA genes. Moreover, the 18 

general effort for inferring phylogeny of the kingdom fungi (Lutzoni et al. 2004; Blackwell et 19 

al. 2006; Hibbet et al. 2007) has yielded a high number of sequences for different genes and 20 

for different fungal species that can be tested for species identification. The non-ribosomal 21 

genes used for inferring fungal phylogenies comprise: (i) the genes RPB1 and RPB2 that 22 

encode the two largest subunits of the RNA polymerase II (James et al. 2006); the gene EF-1 23 

α coding for elongation factor 1-alpha (James et al. 2006); the gene BenA encoding β-tubulin 24 

A (Einax and Voigt 2003; Samson et al. 2004); the GPD gene coding for glyceraldehyde 3-25 
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phosphate dehydrogenase (Berbee et al. 1999). All these potential targets should be tested for 1 

their usefulness for distinguishing between different species of fungi that compose fungal 2 

communities in cheese. According to Samson et al (2004) and Seifert et al (2007) BenA is 3 

more variable than ITS amongst the species of the Penicillium subgenus and could be a good 4 

target for analysing cheese fungal communities using methods based on gel/capillary analysis 5 

of PCR products. The most promising sequences to analyse can be identified by in silico data 6 

mining of publicly available databases. However, sequence availability for a large range of 7 

species varies amongst genes. Additional sequencing is likely to be required to cover a 8 

reasonable array of species. This requires selecting and designing universal or even a set of 9 

different primers to sequence the targeted genes in the different species investigated.   10 

 11 

6. Limitations and pitfalls of culture-independent methods 12 

 13 

As previously mentioned, the first limitation arises from the difficulty of accessing every 14 

genotype from the community: poor DNA extraction yield, PCR inhibition by various 15 

extraction by-products or by substances coming from the cheese matrix itself, and differential 16 

PCR amplification have already been reviewed (Wintzingerode et al. 1997; Ercolini 2004). 17 

We have already made some suggestions to address, when possible, these concerns. The 18 

various techniques have limitations in terms of resolution: PCR-DG/TTGE, SSCP-PCR, T-19 

RFLP, DHPLC and even microarrays can generate patterns in which different genotypes 20 

group together due to co-migration/co-elution (Ogier et al. 2002; Feurer et al. 2004a; Lafarge 21 

et al. 2004; Delbès et al. 2007; El-Baradei et al. 2007) or ‘co-hybridization’ (Wagner et al. 22 

2007). Since they allow direct (cloning) sequencing of migrants/eluants, PCR-DG/TTGE and 23 

DHPLC may overcome the co-elution/co-migration problem more easily. Another limitation 24 

of gel/capillary migration-based methods is obtaining profiles in which the less-common 25 
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amplified sequences cannot be distinguished from background noise (Feurer et al. 2004a; 1 

Callon et al. 2006). This problem increases with the diversity of the community. Ideally, 2 

multiple DNA targets should be used, as suggested by Doaré-Lebrun et al. (2006) and Delbès 3 

et al. (2007), to increase the efficiency in discriminating between species. Another remark 4 

made by several authors (Ercolini et al 2001; Feurer et al. 2004a,b; Florez and Mayo 2006; 5 

Delbès et al. 2007) is that culture-independent methods regularly fail to identify species 6 

obtained using culture-dependent methods. These two types of methods reveal different 7 

images of the same community. Therefore, those authors suggest that using a polyphasic 8 

approach, combining culture-dependent and culture-independent methods, may be 9 

worthwhile to obtain a more accurate view of the structure of the microbial community. 10 

Nevertheless, culture-independent methods have proven to be the only ones with the capacity 11 

for monitoring the rapid dynamics of microbial communities during cheese manufacture and 12 

ripening processes, where microorganisms encounter multiple environmental shifts. Culture-13 

independent methods need to be improved to reveal as accurately as possible the actual 14 

microbial communities. 15 

 16 

7. Microbial community activity in cheese 17 

In order to reveal metabolically active populations, some authors performed analysis on 18 

reverse-transcribed RNA. Randazzo et al. (2002) and Duthoit et al. (2005a) were among the 19 

first to use reverse transcriptase-PCR-DGGE (RT-DGGE) and reverse transcriptase-PCR-20 

SSCP (RT-PCR-SSCP), respectively. By combining RT-PCR-DGGE and PCR-DGGE or 21 

RT-PCR-SSCP and PCR-SSCP, these authors were able to differentiate the active component 22 

(rRNA-derived) from the total diversity (rDNA-derived) of the community. Duthoit et al. 23 

(2005b) even attempted to link population dynamics and activities (as assessed by PCR-24 

SSCP and RT-PCR-SSCP) to sensorial characteristics in order to identify which species play 25 
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a major role in the development of the organoleptic properties of Salers cheese. However, 1 

their analysis failed to explain the diversity of sensorial qualities in Salers cheese. 2 

Nonetheless, combining DNA- and RNA-based analyses with more quantitative methods, 3 

such as DNA- and cDNA-microarrays coupled with chemiometric and/or sensorial tests, 4 

could significantly increase our ability to identify the impact of the microbial population on 5 

organoleptic characteristics. 6 

 7 

8. Perspectives in the field of cheese microbiology 8 

Our review draws attention to the fact that only a few studies (Florez and Mayo 2006; Callon 9 

et al. 2006; Gente et al. 2007) have targeted fungal communities of cheeses. However, yeasts 10 

and filamentous fungi play a vital role in the development of organoleptic characteristics 11 

and/or, on the contrary, may be the source of quality defects. Protocols need to be developed 12 

to optimize fungal DNA extraction from cheese and new target sequences, in addition to 13 

ribosomal loci, should be investigated to better discriminate between the different fungal 14 

species found in cheese. Surveys could then be extended to the whole microbial community. 15 

 It is noteworthy that, at present, some species can only be detected by culture and that 16 

polyphasic methods, including both culture-independent and culture-dependent approaches, 17 

are necessary to at least allow evaluation of the efficiency of these two types of approaches. 18 

Nevertheless, although culture-independent methods still fail to exhaustively describe the 19 

microbial community composition in cheese, these methods provide a much faster 20 

assessment of community composition than culture-dependent methods do. New light has 21 

been shed on population dynamics and culture-independent methods offer a powerful tool for 22 

controlling cheese manufacture. Therefore, it is worthwhile to devote efforts to improve the 23 

resolution of culture-independent methods and facilitate their transfer to cheese industry. 24 
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 Because cheese microbial communities are much less complex than environmental 1 

communities (in terms of the number of species encountered), they offer an ideal system to 2 

test identification methods that require setting up reference databases or designing individual 3 

nucleic probes, such as for DNA microarrays. A major task is to select the best targets 4 

allowing both universal screening of the microorganisms in cheese and discrimination 5 

between taxa at the species level. Achieving this goal requires increasing the accessibility of 6 

high-throughput DNA sequencing technology that can provide digital images of cheese 7 

ecosystems (cheese ecogenome) by identifying genes associated with species and even 8 

functions. 9 
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