Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent
Karine Alain, Nolwenn Callac, Marianne Guégan, Françoise Lesongeur, Philippe Crassous, Marie-Anne Cambon-Bonavita, Joël Querellou, Daniel Prieur

To cite this version:
Karine Alain, Nolwenn Callac, Marianne Guégan, Françoise Lesongeur, Philippe Crassous, et al.. Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, Microbiology Society, 2009, 59 (Pt 6), pp.1310-1315. <10.1099/ijs.0.005454-0>. <hal-00561034>

HAL Id: hal-00561034
http://hal.univ-brest.fr/hal-00561034
Submitted on 31 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Nautilia abyssi sp. nov.,
a novel thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent

Karine Alain¹, Nolwenn Callac¹, Marianne Guégan¹, Françoise Lesongeur¹, Philippe Crassous², Marie-Anne Cambon-Bonavita¹, Joël Querellou¹ and Daniel Prieur¹.

¹ UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France.
² Laboratoire Environnement Profond, Ifremer EEP/LEP, BP 70, F-29280 Plouzané, France.

Correspondence: Karine Alain
Karine.Alain@univ-brest.fr
Phone number : +33-(0)2-98-49-88-53 Fax : +33-(0)2-98-49-87-05

Running title: Nautilia abyssi sp. nov.

Category: New taxa, Proteobacteria

Footnote: The GenBank/EMBL/DDBJ accession number for the 16S rDNA sequence of Nautilia abyssi PH1209ᵀ is AM937002.

A novel, strictly anaerobic, thermophilic, sulfur-reducing bacterium designated PH1209ᵀ, was isolated from an East Pacific Rise hydrothermal vent (13°N) sample and subjected to a polyphasic taxonomic analysis. The cells were Gram-negative motile rods (approximately 1.60 x 0.40 µm) with a single polar flagellum. Strain PH1209ᵀ grew at temperatures between 33 and 65°C (optimum 60°C), from pH 5.0 to 8.0 (optimum 6.0-6.5) and between 2 and 4% (w/v) NaCl (optimum 3%). Cells grew...
chemolithoautotrophically with \(\text{H}_2 \) as an energy source, \(\text{S}^0 \) as an electron acceptor and \(\text{CO}_2 \) as a carbon source. Alternatively, strain PH1209\(^T\) was able to use peptone and yeast extract as carbon sources. The G+C content of the genomic DNA was 35 mol%.

Phylogenetic analyses based on 16S rRNA gene sequencing showed that strain PH1209\(^T\) fell within the order *Nautiliales*, in the class *Epsilonproteobacteria*. Comparative 16S rRNA gene sequence analysis indicated that strain PH1209\(^T\) belonged to the genus *Nautilia*, and shared, respectively, 97.2 and 98.7% 16S rRNA gene sequence identity with *Nautilia lithotrophica* and *Nautilia profundicola*. It is proposed, from the polyphasic evidence, that the strain should be placed into a novel species, *Nautilia abyssi* sp. nov. The type strain is PH1209\(^T\) (= DSM 21157\(^T\) = JCM 15390\(^T\)).

Epsilonproteobacteria are widely distributed in marine and terrestrial ecosystems (Campbell *et al*., 2006). They are particularly common and abundant in 30-70°C areas of deep sea hydrothermal vents, as indicated by their prevalence in the clone libraries (Polz & Cavanaugh, 1995; Longnecker & Reysenbach, 2001; Lopez-Garcia, 2002; Alain *et al*., 2004), the results of fluorescence *in situ* hybridization (Moussard *et al*., 2006) and the isolation of several representatives (Alain *et al*., 2002; Miroshnichenko *et al*., 2002; Inagaki *et al*., 2003; Takai *et al*., 2003, 2005, 2006; Voordeckers *et al*., 2005). Within this singular ecosystem, *Epsilonproteobacteria* are retrieved in various habitats, thriving (i) as free-living organisms on chimney structures, within vent plumes and in sediments, (ii) as epi- or endosymbionts of hydrothermal invertebrates, or (iii) embedded in mats on the surfaces of chimney rocks or animals. Cultured isolates from deep-sea vents are all mesophilic to thermophilic chemolithoautotrophs coupling the oxidation of hydrogen or sulfur compounds to the reduction of nitrate, sulfur compounds or oxygen (Takai *et al*., 2003; Campbell *et al*., 2006). Because of their abundance and metabolic abilities, *Epsilonproteobacteria* are likely to be key players of the carbon, sulfur and nitrogen biogeochemical cycling at deep-sea vents.

Two orders are currently described within the class *Epsilonproteobacteria* Garrity *et al*. 2006 (Validation List n°107, Garrity *et al*., 2005), namely the *Nautiliales* (Miroshnichenko *et al*., 2004) and the *Campylobacterales* Garrity *et al*. 2006 (Validation List n°107, Garrity *et al*., 2005). The order *Nautiliales* comprises the genera *Nautilia* (Miroshnichenko *et al*., 2002), *Caminibacter* (Alain *et al*., 2002) and *Lebetimonas* (Takai *et al*., 2005) which are exclusively composed of thermophilic strains isolated from
deep-sea hydrothermal vents and which have been found in association with invertebrates or with chimney edifices. At present, the genus *Nautilia* is composed of two species, *Nautilia lithotrophica* (Miroshnichenko *et al*., 2002) and *Nautilia profundicola* (Smith *et al*., 2008). Both strains are strictly anaerobic sulfur-reducing mixotrophs able to grow on hydrogen and carbon dioxide, or alternatively on formate.

In this study, a novel marine bacterium belonging to the genus *Nautilia* is described. Based on the results of a polyphasic taxonomic analysis, the strain PH1209^T represents a novel species, *Nautilia abyssi* sp. nov.

In April-May 2002, during the PHARE oceanographic cruise, fragments of active hydrothermal chimney rocks covered with colonies of the tubeworm polychaete *Alvinella* spp. were collected from 2620m depth at the Elsa vent field, on the East Pacific Rise 13°N (12°48′N, 103°56′W). Sample collection, subsampling and storage procedures were as described elsewhere (Alain *et al*., 2004). One subsample collected on the Ph01 chimney was used to inoculate series of media, including KA22 medium (Alain *et al*., 2002), and incubated at 60°C under a gas phase of H₂/CO₂ (80/20; 200 kPa). After 24h incubation, dense populations of short, rod-shaped, motile cells were observed and purified by repeated dilution to extinction series. One isolate, referenced as strain PH1209^T, is described in this publication. Purity of this isolate was confirmed routinely by microscopic examination and by repeated partial sequencing of the 16S rRNA gene using several primers. Stock cultures were stored at −80°C in KA22 medium supplemented with 5% (v/v) DMSO.

Morphological characteristics of the cells were determined by light microscopy (Olympus CX40) and by scanning electron microscopy (FEI Quanta 200). Cells of strain PH1209^T were Gram-negative, straight rods of 1.05-2.21 µm in length (mean 1.63µm ± 0.34, n=11) and 0.30-0.51 µm in width (mean 0.39 ± 0.05, n=11) in the mid-exponential phase of growth (see Supplementary Fig. S1 in IJSEM online). They occurred mainly singly and were highly motile by a polar flagellum (Fig. S1A). Division was by constriction (Fig. S1B). Formation of spores was never observed.

The physiological characterization of the novel isolate was carried out in a basal medium referenced as “NPKsalts” and containing (per liter): 0.33 g NH₄Cl, 0.33 g KCl, 0.33 g CaCl₂.2H₂O, 0.33 g MgCl₂.6H₂O, 25 g NaCl, 1.0 g NaNO₃, 1.95 g MES buffer (Sigma) and 1 mg resazurin (Sigma). Its pH was adjusted to
6.0. Once prepared, this medium was autoclaved and then cooled to room temperature under a stream of O₂-free N₂ gas. Concentrated anaerobic filter-sterilized solutions of vitamins and trace elements were added to the medium after autoclaving. Then, just before inoculation, Na₂S.9H₂O, KH₂PO₄ and elemental sulfur were provided from sterile stocks, to final concentrations of 0.04% (w/v), 20 mM and 1.2% (w/v), respectively. Unless stated otherwise, the experiments were carried out anaerobically, under a gas phase of H₂/CO₂ (80/20; 200 kPa), and incubation were done in the dark and under agitation. Growth was routinely monitored by direct cell counting using a modified Thoma chamber (depth 10 µm), or by counting after fixation with 1% (v/v) glutaraldehyde and storage at –20°C. Growth rates were calculated using linear regression analysis of four to nine points along the logarithmic portions of the resulting growth curves. The determination of the temperature range for growth was tested over the range 30-80°C (i.e. 30, 33, 37, 45, 50, 55, 60, 65, 70, 75, 80°C). No growth was observed at 30°C, 70°C and above. The novel isolate grew from 33 to 65°C, with an optimum growth rate at 60°C (see Supplementary Fig. S2A in IJSEM online). The pH range for growth was tested at 60°C in basal medium buffered and adjusted to the required initial pH as described elsewhere (Alain et al., 2002). Growth was observed from pH 5.0 to pH 8.0, the optimum being around pH 6.0-6.5 (Fig. S2B). No growth was observed at pH 4.0 and pH 8.5. Salt tolerance was tested at 60°C in NPKsalts medium prepared with various concentrations of NaCl (0, 0.5, 1, 2, 3, 4, 5, 6, 8 and 10% w/v). Growth was observed at salt concentrations ranging from 2 to 4% (w/v) NaCl, the optimum salinity being around 3% (Fig. S2C). No growth was observed at 1 and 5% (w/v) NaCl. Under optimal growth conditions, the generation time of strain PH1209ᵀ was around 120 minutes.

Strain PH1209ᵀ was a strictly anaerobic, chemolithoautotrophic bacterium that used sulfur, hydrogen and carbon dioxide as respective primary electron acceptor, electron donor and carbon source. Its ability to use alternative electron acceptors was tested by adding colloidal sulfur (Sigma Aldrich) (5 g l⁻¹), L-cystine (12 g l⁻¹), sulfite (1 mM), thiosulfate (20 mM), sulfate (20 mM), nitrate (10 mM), nitrite (1 mM) and oxygen (1% v/v) to nitrate and sulfur-depleted media, under an atmosphere of H₂/CO₂ (80/20; 200 kPa). Quantitative determination of hydrogen sulfide was as described elsewhere (Cord-Ruwisch, 1985). The novel isolate was found to grow with elemental sulfur and colloidal sulfur, with concomitant production of H₂S, but did not grow when L-cystine, sulfite, thiosulfate, sulfate, nitrate, nitrite and oxygen were used as electron acceptors.
To examine possible carbon sources other than CO$_2$, a variety of organic carbon sources were tested in the presence of sulfur, under an atmosphere of H$_2$ 100% (200 kPa). Formate (10 mM), acetate (10 mM), butyrate (10 mM), propionate (10 mM), methanol (0.5% v/v), pyruvate (10 mM), lactate (0.5% v/v), fumarate (10 mM), glucose (10 mM), peptone (2 g l$^{-1}$) and yeast extract (2 g l$^{-1}$) were tested as potential substrates. Heterotrophic growth (with concomitant H$_2$S production) was observed exclusively with yeast extract and peptone and was probably the result of the decarboxylation of amino acids. The growth rates with yeast extract and peptone were in the same order of magnitude than the one measured with carbon dioxide as carbon source. To test for the capability of the strain to use electron donors other than molecular hydrogen, the strain was cultivated under a gas phase of N$_2$/CO$_2$ (80/20, 200 kPa) in the presence of formate (20 mM), acetate (20 mM), methanol 0.5% (v/v) and yeast extract (2 g l$^{-1}$), and with sulfur as a terminal electron acceptor. No growth was observed with the alternative energy sources, indicating that strain PH1209T was a strict hydrogen-oxidizer. The nitrogen sources for growth were also examined in a nitrogen-depleted medium. The novel isolate was found to grow on organic and inorganic nitrogen sources. Significant growth was observed when NH$_4$Cl (20 mM), glutamate (10 mM), yeast extract (0.2 g l$^{-1}$), tryptone (0.2 g l$^{-1}$), gelatin (0.05% v/v) and urea (0.05% v/v) were provided as sole nitrogen source.

Antibiotic resistance was tested in the presence of a variety of antibiotics from different chemical nature and with different targets and mechanisms. The resistance to vancomycin, streptomycin, chloramphenicol, kanamycin, rifampicin, penicillin, ampicillin and tetracycline was investigated at concentrations of 10, 25, 50 and 100 µg ml$^{-1}$. When the antibiotic was diluted in ethanol (chloramphenicol) or DMSO (rifampicin), the same volume of solvent was added to control cultures. All antibiotics were added aseptically before inoculation and the cultures were incubated at 60°C for one week. Strain PH1209T was found to be sensitive to vancomycin, streptomycin, chloramphenicol, penicillin, ampicillin and tetracycline, all at 10 µg ml$^{-1}$. It grew in the presence of 10 µg ml$^{-1}$ rifampicin and 25 µg ml$^{-1}$ kanamycin, but was sensitive to higher concentrations of these two antibiotics.

The genomic DNA G+C content was determined, by the Identification Service of the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig,
Germany), by HPLC analysis of deoxyribonucleosides as described by Mesbah et al. (1989). The G+C content of strain PH1209T was 35 mol%.

The almost complete 16S rRNA gene (1369 bp) of the strain was double-strand sequenced, as described elsewhere (Alain et al., 2002). This sequence was compared to those in available databases by use of the BLAST program (Altschul et al., 1990) and then aligned to its nearest neighbours using the CLUSTALX program (Thompson et al., 1997). Alignments were refined manually using the SEAVIEW program (Galtier et al., 1996). Distance matrixes were calculated with the Lasergene 6 version software. Phylogenetic trees were constructed by the PHYLIP (PHYlogeny Inference Package) version 3.63 software (http://evolution.genetics.washington.edu/phylip/getme.html) on the basis of evolutionary distance (neighbour-joining method with Jukes and Cantor corrections) (Saitou and Nei, 1987) and maximum likelihood (Felsenstein, 1981). The robustness of the inferred topologies was assessed by bootstrap analyses based on 1000 bootstrap resamplings for the neighbour-joining and 100 replications for the maximum likelihood method (Felsenstein, 1985). Comparison of the 16S rRNA gene sequence with sequences of Bacteria indicated that the novel isolate belonged to the class Epsilonproteobacteria Garrity et al. 2006 (Validation List n°107, Garrity et al., 2005) and more especially to the order Nautiliales (Miroshnichenko et al., 2004). Within this lineage that is composed exclusively of taxa from deep-sea hydrothermal vents, the novel isolate was found to be most closely related to a group of moderately thermophilic sulfur reducers, all isolated from the EPR 13°N like PH1209T (Fig. 1). The novel isolate shared 98.7% 16S rRNA gene sequence identity with Nautilia profundicola strain AmH (Smith et al., 2008), 97.2% 16S rRNA gene sequence identity with Nautilia lithotrophica strain 525T (Miroshnichenko et al., 2002) and 97.4% 16S rRNA gene sequence identity with strain Ex-18.2, a third isolate not formerly described (Campbell et al., 2001). These three closest relatives were all isolated from tubes of the worm Alvinella pompejana and belonged to the genus Nautilia. Otherwise, the novel isolate was most distantly related to members of the genera Lebetimonas and Caminibacter, sharing 91.9% to 93.2% 16S rRNA gene sequence identity with representative species of these genera (Table 1). Based on the sequence similarity and phylogenetic analyses, the novel isolate could be assigned to the genus Nautilia. The level of 16S rDNA sequence
dissimilarity with *N. profundicola* and *N. lithotrophica* suggests that the novel isolate belongs to a novel species (Stackebrandt and Ebers, 2006).

The phenotypic and genotypic properties of the novel isolate described herein generally met the minimal characteristics described for the order *Nautiliales* (Miroshnichenko et al., 2004). Indeed, strain PH1209^T is a marine thermophilic sulfur-reducing bacterium growing chemolithoautrophically from H₂ oxidation. It unambiguously branches with other *Nautiliales*. Nevertheless, strain PH1209^T can be easily distinguished from other *Nautiliales* species in terms of a number of phylogenetic, genotypic and physiological features. These distinctive criteria are detailed in Table 1. In brief, in addition to the phylogenetic distance, the novel taxon differs from its closest relatives by its temperature, NaCl and pH ranges for growth. Its generation time under optimal growth condition is also slightly different from the ones of its relatives. Furthermore, differences in the utilization profiles of carbon sources, electron donors and electron acceptors are also observed. In contrast to its congeners *N. lithotrophica* and *N. profundicola* which are able to use formate as energy and carbon source, the novel isolate is unable. Finally, another distinctive criterion is the DNA G+C content. In conclusion, in view of all the above-mentioned distinctive features, we propose that the isolate PH1209^T should be assigned as the type strain of a novel species, for which the name *Nautilia abyssi* sp. nov. is proposed.

Description of Nautilia abyssi sp. nov.

Nautilia abyssi (a.bys'isi. L. gen. n. abyssi, of an abyss, of the great deep). Cells are Gram-negative motile rods, approximately 1.6 μm in length and 0.4 μm in width, with a single polar flagellum. Optimal growth occurs at 60°C, with a growth range from 33 to 65°C. The pH and NaCl ranges are 5.0-8.0 (optimum 6.0-6.5) and 2-4% (w/v) (optimum, 3% w/v NaCl), respectively. Growth occurs under strictly anaerobic conditions using H₂ as an electron donor, elemental sulfur (or colloidal sulfur) as a terminal electron acceptor and CO₂ as a carbon source. Yeast extract and peptone can be used as alternative carbon sources, but formate, acetate, methanol, lactate, propionate, fumarate, malate, citrate, pyruvate, glucose and glycogen can not. The following are not utilized as electron acceptors: L-cystine, thiosulfate, sulfate, sulfite, nitrate, nitrite, oxygen. The following are not used as electron donors: formate, acetate, methanol and yeast extract. Sensitive to 10 μg ml⁻¹ of the following antibiotics: vancomycin,
streptomycin, chloramphenicol, penicillin, ampicillin, tetracycline; sensitive to 25 µg ml⁻¹ rifampicin and 50 µg ml⁻¹ kanamycin. Genomic DNA G+C content of the type strain PH1209ᵀ is 35 mol%.

The type strain, PH1209ᵀ (DSM 21157ᵀ, JCM 15390ᵀ) was isolated from the walls of an active deep-sea hydrothermal chimney colonized with alvinellid worms, on the East Pacific Rise (103°56′W, 12°48′N). It is also available under request at the “Souchothèque de Bretagne” (catalogue LMBE) culture collection (http://www.ifremer.fr/souchothèque/).

ACKNOWLEDGEMENTS

We acknowledge Prof. J. P. Euzéby for support in the Latin etymologies of the species name. We thank the captain and crew of the NO L’Atalante, the pilots and support crew of the ROV Victor and N. Le Bris, Chief Scientist for helping us to collect deep-sea hydrothermal vent samples during the PHARE oceanographic cruise. We are grateful to the anonymous reviewers for their constructive comments about the manuscript. This work was financially supported by the Région Bretagne and the joined research unit UMR6197, linking the Université de Bretagne Occidentale to the Ifremer and the Centre National de la Recherche Scientifique.

REFERENCES

Fig. 1. Phylogenetic tree based on 16S rRNA gene sequences of strain PH1209^T and representative members of related genera within the class Epsilonproteobacteria. Sequence data of reference strains were obtained from the GenBank/EMBL and/or RDP databases. Two species from the Gammaproteobacteria were chosen as outgroups. Accession numbers are indicated in parentheses. The topology shown corresponds to an unrooted tree obtained by the maximum likelihood algorithm, established using the PHYLIP package. Bootstrap values (from 100 replicates) are indicated at the branch nodes. The positioning of the novel isolate was confirmed by the neighbour-joining method. The scale bar indicates 2 nt substitutions per 100 nt.

Table 1. Characteristics differentiating strain PH1209^T from related species of the order Nautiliales.

<p>| Species: | 1, Nautilia abyssi PH1209^T (this study); 2, Nautilia profundicola AmH^T (Smith et al., 2008); 3, Nautilia lithothrophica 525^T (Miroshnichenko et al., 2002); 4, Caminibacter hydrogenophilus AM1116^T (Alain et al., 2002); 5, Caminibacter profundus CR^T (Miroshnichenko et al., 2004); 6, Caminibacter mediatlanticus TB-2^T (Voordeekers et al., 2005); 7, Lebetimonas acidiphila Pd55^T (Takai et al., 2005). |
| Legend: +, positive; ─, negative; w, weak growth; ND, not determined. The percentage of 16S rRNA gene sequence identity is calculated in reference to the 16S rRNA gene sequence of the novel isolate PH1209^T. |</p>
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH range for growth [optimum]</td>
<td>5.0-8.0</td>
<td>6.0-9.0</td>
<td>6.4-7.4</td>
<td>5.5-7.5</td>
<td>6.5-7.4</td>
<td>4.5-7.5</td>
<td>4.2-7.0</td>
</tr>
<tr>
<td>NaCl concentration range for growth (%) [optimum]</td>
<td>2.0-4.0</td>
<td>2.0-5.0</td>
<td>0.8-5.0</td>
<td>1.0-4.0</td>
<td>0.5-5.0</td>
<td>1.0-4.0</td>
<td>0.6-5.0</td>
</tr>
<tr>
<td>Generation time (min.)</td>
<td>120</td>
<td>360</td>
<td>140</td>
<td>90</td>
<td>40</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>Utilization of C source other than CO₂</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complex organic substrates</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Utilization of electron donor other than H₂</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Formate</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Utilization of electron acceptor other than S°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxygen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sulfite</td>
<td>-</td>
<td>ND</td>
<td>w</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Colloidal sulfur</td>
<td>+</td>
<td>ND</td>
<td>w</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>DNA G+C content (mol%)</td>
<td>35.0</td>
<td>33.5</td>
<td>34.7</td>
<td>29±1</td>
<td>32.1</td>
<td>25.6</td>
<td>34.0</td>
</tr>
<tr>
<td>16S rRNA gene sequence identity (%)</td>
<td>100</td>
<td>98.7</td>
<td>97.2</td>
<td>92.8</td>
<td>92.4</td>
<td>93.2</td>
<td>91.9</td>
</tr>
</tbody>
</table>
Fig. S1. Scanning electron micrographs of cells of strain PH1209^T in the mid-exponential phase of growth, showing the polar flagellum (A) and division by constriction (B). Bar, 1.0 μm.
Maximum growth rate μ_{max} (h$^{-1}$)

Temperature (°C)

- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65
- 70
- 75

Maximum growth rate μ_{max} (h$^{-1}$)

pH

- 3.5
- 4
- 4.5
- 5
- 5.5
- 6
- 6.5
- 7
- 7.5
- 8
- 8.5
- 9

Maximum growth rate μ_{max} (h$^{-1}$)

NaCl concentration (% w/v)

- 0
- 1
- 2
- 3
- 4
- 5
- 6
Fig. S2. Maximum growth rate (h⁻¹) of strain PH1209T (*Nautilia abyssi* sp. nov.) at varying temperatures (A), pH (B) and NaCl concentrations (C). Bars indicate confidence intervals.