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Abstract

The classical D value of first order kinetic is rmitable for quantifying bacterial heat
resistance for non-log linear survival curves. Gimaple model derived from the Weibull
cumulative function describes non-log linear kiogtof micro-organisms. The influences of
environmental factors on Weibull model parametehgape parameter “p” and scale parameter
“d", were studied. This paper points out structumatr@ation between these two parameters.
The environmental heating and recovery conditiamsiat present clear and regular influence
on the shape parameter “p” and cannot be deschipeshy model. On the opposite, the scale
parameter & depends on heating temperature and heating aca/eey medium pH. The
models established to quantify these influencethertlassical “D” values could be applied to

this parameterd”. The slight influence of the shape parameter qiati@an on the goodness of
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fit of these models can be neglected and the diegNVeibull model with a constant p-value

for given microbial population can be applied fanning process calculations.
Key words:

Weibull distribution, Heat treatment pH, recovergdium pH
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1. Introduction

The first order kinetic model describing inactieati of micro-organisms is generally
attributed to Madsen and Nyman (1907). The studie€hick (1910), Esty and Meyer

(1922), Esty and Williams 1924 on vegetative clelld confirmed this equation:

N =N, Eq1

where N is the initial number of cells, N the number ofguing cells after a duration of heat
treatment t and Kk is the first order parameter .

In 1943 Katzin et al. defined the decimal reductiome that Ball and Olson (1957)

symbolized by the letter D. Thus the model appearthe familiar form:
t
logN =logN, ) Eq2

In this model the classical D value presents a lmmmwlogical significance: time that leads to
a ten fold reduction of surviving population, areddasily estimated from a simple linear
regression. This concept still governs canning @secalculation.

However in many cases the survival curves of hebtederia do not present a log linear
relation: a concave or upward concavity of curves wequently observed (Cerf, 1977).

So the bacterial heat resistance cannot be evdlfratm the classical D value. Consequently,
many authors proposed mechanistic or purely engbirmodels. (Kilsby et al., 2000;
Rodriguez et al., 1988; Sapru et al., 1993; Shudll.e 1963; Xiong et al., 1999; Buchanan et
al., 1997; Cole et al., 1993; Geeraerd et al., 200Qon et al., 1995; Whiting, 1993). These
models show good accuracy either over parameter{peeichanistic models) or have
parameters without any physical or biological digance (empirical models). Moreover the
complexity of these models hinder their applicaiimheat treatment process calculation.
Other authors who considered the survival curveaasumulative form of temporary

distribution of lethality event distribution, preged a probabilistic approach ( Cunha et al.,
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1998; Fernandez et al., 1999; Peleg and Cole, P&, 2000; Mafart et al., 2002). The
Weibull frequency distribution model (Eq3) involvad describe the time to failure in

mechanical system was applied to bacterial degaté. ti

A1 B
f(t):g(%j xex;{—(é} JEq3

The 3 parameter has a marked effect on the failureahtbe Weibull distribution (Fig 1a).
According to the3 value, the distribution corresponds to a normal (& = 2), an exponential
law (3 = 1) or an asymptotic lavB(<1).

A change of the scale parametertime unit, has the same effect on the distributivan a
change of the abscise scale (Fig 1bi ihcreases, the distribution gets stretched outigjind

and its height decreases while maintaining its shap

The cumulative distribution Weibull function is

£)?
F(t) =ex —(—j Eq 4
a
or applied to survival kinetics curves

£\
In S(t) Z_(Ej Eqg5

where S(t) is the ratio NfNat t time,a and 3 are the two parameters of the Weibull
probability density function.

Figures 1c and 1d show the influence of these tam@meters evolution on the cumulative
distribution Weibull function curveq3<1 corresponds to concave upward survival curves,
B>1 to concave downward curves ghetqual 1 to a straight line. The evolutioncofalue
modifies the slope but does not affect the cunageh. Different forms of this model were

presented in literature, however the decimal ldgariform (Eq 6) which is close to Eq 2,



72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

91

92

93

94

95

seems more suitable to describe the non log linearival curves (Mafart et al., 2002; Van

Boekel, 2002)

t p
logN = logN, _(Ej (Eq 6)

whered is to the first reduction time that leads a teld f@duction of survival population, and
p the shape paramet@r For the traditional case where the survival cuorgginated from a

first order, is linear p equal 1 and th@arameter correspond to the classical D value.

This simple and robust model can be regarded astanson of the conventional first order
equation. Like on D value, the influence of heatiagperature on thé value leads a log
linear relationship. The classical z value can baluated (Mafart et al., 2002; Van Boekel,
2002) and a modified Bigelow method can be useaptonize the heat treatment for a target
reduction ratio (Mafart et al., 2002).

Among environmental factors other than heating naoire, which affect the heat resistance
of bacteria, the pH of the heating medium and tHeopthe recovery medium (pH’) present a
prominent importance. Couvert (1999) has develaedxtended Bigelow model to describe
both effects of heating and recovery medium pH be &pparent bacterial spore heat

resistance.

892
T-T* |pH-pH* _{pH'—pH'*
zr | zyw | | Zw 99 Eq7

logD =logD * -

Where pH* and pH* are the reference heat treatraedtrecovery medium pH fixed to $nz
is a distance of pH from pH*, which leads to a teld reduction D-value. g quantifies the
heat medium pH influence on bacterial heat restgtany,y is a distance of pH’ from pH'*,

which leads a ten fold reduction apparent D-vaig; characterizes the influence of the pH
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on the recovery of the micro-organism after a hesdtment. D* is the calculated D value
corresponding to pH* and pH’* conditions. Like tBegelow model, Couvert’'s model (Eq7)

was suitable for the calculation &fvalues as well as for those of D values. Howeter t

influence of heating temperature on the p valueotsclear and variable according to several
authors (Fernandez et al., 1999; Peleg and Col(i); Mafart et al., 2002; Van Boekel, 2002).
The aims of this paper are to bring arguments tonest a single p value from a set of
survival kinetics, whatever the heating temperaturéeating and recovery medium pH for

bacterial strain at a given physiology state.

2. Material and methods

2.1. Microorganism and spore production

Bacillus pumilus A40 was obtained and isolated from ingredient fio@ canning industry.
Spores were kept in distilled water at 4°C.

Cells were pre-cultivated at 37°C for 24 hours miB Heart Infusion (Difco 0037). The pre-
culture was used to inoculate nutrient agar (Biokaagnostics, Beauvais / France)
supplemented with salt (MnS@0mg I* and CaGl 100 mgl¥). Plates were incubated at 37°C
for 5 days. Spores were then collected by scraptiiegsurface of the agar, suspended in
sterile distilled water and washed three times bytrifugation (10000xg for 15 min)
(Bioblock Scientific, model Sigma 3K30). The peleds resuspended in 5 ml distilled water
and 5 ml ethanol. The obtained suspension was keégCafor 12 hours in order to reduce the
number of vegetative non sporulated bacteria, amshed again three times by centrifugation.
The final suspension (about®@pores mt), containing more than 99% refractive spores and
no visible vegetative cells, was finally distribdte sterile Eppendorf microtubes and kept at

4°C.
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2.2. Thermal treatment of spore suspension and recovery conditions

Heating media were tryptone salt broth ( 10g/l toyye, 10g/I NaCl (Biokar)) for different pH
adjusted with addition of 1M #$0,, media were sterilized by filtration through 0.22u
porosity filter. 30ul of spore suspension was @itlin 3 ml of these media. Capillary tubes of
200 pl (vitrex) were filled with 100ul of samplecasubmitted to a thermal treatment in a
thermostated water bath. After heating, the tubesewooled in water/ice bath. After rising,
the ends were flamed with ethanol. The capillaryetutvere broken at both ends and their
contents poured into a tube containing 9 ml sténjptone salt broth (Biokar Diagnostics) by
rinsing with 1 ml tryptone salt broth.

Viable spores were counted by duplicate platingnutrient agar for different pH (10g
tryptone, 5g meat extract, 5g sodium chloride, 15agar for 1000ml water)(Biokar
Diagnostic). The pH was adjusted withS®0, prior to autoclaving at 121°C for 15 min, the

pH value was controlled after autoclaving.

2.3. Experimental design

To determine the thermal kinetic parameters at leastsamples were counted on nutrient
agar plates. For the longest heating time no cekshould be observed to detect possible
sigmoid curves.

Monofactorial designs were used to evaluate tHaente of heating temperature, heating and
recovery medium pH. The heating temperatures irnyatstd were 89, 92, 95, 98, 101 and

104°C (for heating and recovery media pH equal)i®&ating media pH were 7, 6.1, 5.8, 5.2,
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5.15, 5.1, 4.7 and recovery media pH were 7, 6626, 6.04, 5.82, 5.55 and 5.27 (for

temperature 95°C).

2.4. Fitting parameters and region confidence determination

To estimate Weibull parameters two fitting ways weealized. On the one hand, three
parameters logil & and p were estimated from each kinetic. On theerothand, two
parameters logNand & were estimated from each kinetic with only oneglue evaluated
from the whole set of kinetics.

Couvert’'s model parameters (Eq 7) were estimatet fittese two sets d estimates. The
parameter values and their associated confiderteevat were fitted by using a non-linear
module (“nlinfit” and “nlparci” Matlab 6.1, The Matborks). “nlparci” function used to
evaluate confidence interval at 95% is based onagyenptotic normal distribution for the
parameter estimates ( Bates and Watts. 1988) Oonrtbehand, p value was estimated from
each set of data, and on the other hand, singl@uyewas evaluated from the whole set of
curves. To appreciate the accuracy on the non limeatels used in this study F test and

associated probability p were carried out.

3 Results and discussion

3.1 Independence of Weibull model parameters

One of the main questions to study in any regressido check the independence of model

parameters. The shape of the joint confidence redgdermined by using Lobry et al. (1991)

method leads to detect possible structural corogldietween model parameters. According
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to Beale (1960), a vector of parameter mdgéles in the confidence regions if probabilidy

verifies the inequation:

n p ' '

n number of data, p number of parameters, F Fighkre for a at p and n-p degrees of
freedom. 10 000 vector® were calculated to define the joint confidenceiaegwhere
dimension number is the parameter number. Figusbd®vs the projections of confidence
region projected on three orthogonal planes. Thength shape of the projections and the
high correlation coefficient associated characeeiz structural correlation between model
parameters. Three Weibull model parameters werenattd from each kinetic data and
correlation coefficients were determined from thaleated confidence region, for the 18
environmental conditions studied (Table 1) confirthss structural correlation between
parameters for all kinetics. Thus, Weibull modelgmaeters (log B & and p) are dependent:
an error ond will be balanced by an error on p in the same vangally, a single p value
estimated from the whole set of kinetics eliminates structural correlation betweérand p
parameters as well as logN and p parameters (Talaledldecreases the structural correlation

between logN and. The Weibull model parameters become independent.
3 2 Influence of environmental factors on p-value

For eachBacillus pumilus survival curve, the shape parameter p values wstenated.
Figure 3 suggests that the environmental heatingracovery conditions slightly influence
the p values. This observation is in agreement Wwémandez et al. (2002) data concerning
the influence of heating temperature and heatingnpddlium on the p values f@acillus

cereus spores. Van Boekel (2002) used bibliography datatady the influence of heating
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temperature on the shape (p) and scalé\(eibull model parameter for different vegetative
bacteria and yeast species survival kinetics. Irstnoases the shape parameter is clearly
independent of heating temperature, however, in esorases, dependencies appear
significantly. Constant p value means that the \Wiprobability density function curves
presents the same shape. Applied to the densityapility distribution of inactivation death
time, a single p value leads us to consider thattexer the environmental condition, the least
resistant bacteria die first and the most residtacteria are the last to die while maintaining
proportion. For a given microbial population, a& game physiological state, if the population
proportion is independent of heating and recovesgddions, the Weibull model shape
parameter p value should be constant. To estimategée p value, Fernandez et al. (2002)
determines average of shape parameter determioedtifre different kinetics. Then, for each
kinetic, the scale parameter was re-estimated Benof data with fixed p value. However, it
is preferable to evaluate both single shape ankk sirameter by non linear least square
reduction for the whole set of data. Choosing terage value to evaluate a single p value is
not suitable because the number of data in ead@ti&iis not equal, each kinetic have not the
same weight on the p value evaluation. On the dthed, evaluating p value by estimating
process on the whole set of data consider that @atzhhave the same weight in the p value

evaluation.

3.3 Influence of environmental factors on o-value

To evaluate the influence of fixed / free p valuetioa scale parameter, the corresponding
values were compared. (Table 2). The results shoarlgléhat the accuracy of the Weibull
model, characterized by F test and associated pildpais lower when a single p value is

evaluated. However thvalue confidence intervals were reduced, amdrameter could be

10
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described by the Bigelow model and the classigalatue can be evaluated (Table 3) &

the distance of temperature from T* which leads terafold reduction of the first decimal
reduction timed). Whatever the calculation procedure, no significant differengpears.
Van Boekel (2002) has alike applied the Bigelow elow assess the heating temperature
influence on the scale parameter valdeshowever the Arrhenius model as well can be
applied (Fernandez et al., 2002).

Like the classical D value, the scale parameétdecreases with heating and recovery medium
pH (Mafart et al., 1998; Couvert et al.,, 1999; Ceniv,2002). Couvert’'s model, (Eq 7)
including the dependence temperature and heatihgemovery medium pH, was fitted on the
0 values evaluated with the two calculation methd@dle 3 presents the parameter estimated
and Figures 4 a & b compares observed and caldulakies, and show a slight higher
accuracy of Couvert's model when thealues were evaluated with single p value.

For theBacillus cereus strain, Fernandez et al. (2002), following a falttorial design, four
levels of heating temperature and pH medium, ewatL&Veibull scale parameté& The
goodness of fit of Couvert’s model on these datguie 5 & Table 4) confirms the adequacy
of this model on the scale parameter estimated avtimgle shape parameter value p.

These results confirm that single p value evaluftad a set of survival kinetics is sufficient
to describe the survival kinetics and the effecéxiernal factors on bacterial heat resistance.
Furthermore, the evolution of p values, determinfied each kinetics according to
environmental conditions, are too irregular to lesatibed by any constant model (Van
Boekell 2002)

The Weibull model is suitable for describing logelam, or not, heat survival curves. However,
a simplification of this model consisting in gegia single overall estimation of p-value per
strain, regardless of environmental conditions eathtreatment and recovery, seems to be

enough for bacterial food predictive modeling aadring process calculation (Mafart et al.,

11
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2002). Moreover, despite a slight loss of goodnefsdit, this modification leads to an

improvement of the robustness of the model. Howekiercell physiology states seem to
influence the density function; as a result, theapues are likely to change. Further works
should be realized to assess the influence of spgeeand environmental sporulation or
germination conditions on the Weibull shape paramedlue.

As expected, the secondary model developed to ibesdhe heating and recovery

environmental influence on the classical D valwsains suitable fod value estimates.
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Table legend

Table 1: Correlation coefficients between Weibull deb parameters evaluated from the

evaluated joint confidence for the 18 environmestatied conditions.

Table 2:
Weibull model parameters definite with associgtedalue determined for each kinetic for
one part, for the other with single p value evadddir the whole set of kinetics f&acillus

pumilus A40

Table 3

Couvert’'s model parameters fitted on bgalues evaluated with multiple p values on the one
hand, with single p values fdBacillus pumilus A40 on the other. The method used to
compute the 95% confidence intervals is based ofasymptotic normal distribution for the

parameter estimate”. (Bates and Watts 1988)

Table 4
Couvert’'s model parameters fitted on l@gvalues forBacillus cereus INRA TZ 415

(Fernandez et al., 2002)
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Figure legends

Figure 1

Simulated frequency distribution of critical inattion time (Figures a and b) and microbial
survival curves (Figures ¢ and d) generated withassumption that the heat resistance has a
Weibull distribution.

Figures aand a: 5,3: 3 d), 1(---), 0.5(:---) , Figures b andod:3 (0 ), 6(---), 9(----) B: 3

Figure 2
Projection of the confident region on three orthwagglanes, fronBacillus pumilus A40 data

(heating temperature : 95°C, heating and recoveaginm pH : 7)

Figure 3
Graph of the shape parameter p and 95% confideer/al associated as function of heating

temperature, treatment and recovery medium pHBéorllus pumilus A40

Figures 4 a&b
Comparison of calculated and observed dogalues evaluated with multiple p values on the

one hand (Figure &1 ), with single p values on the other (Figure&®:

Figure 5
Comparison of calculated and observed dogalues. Couvert's model fitted from Fernandez

et al. (2002) data

18



379

380

381
382

383

384

p values estimated from each

geverall p value estimated from t

of data gathered sets of data

T® pH pH | LogNovsd logNovsp dvsp | LogNovs logNovsp dvsp

89 7 7 -0.78 -0.62 0.92 -0.71 0.15 -0.06
92 7 7 -0.81 -0.63 0.89 -0.74 0.12 -0.06
95 7 7 -0.75 -0.59 0.93 -0.67 0.35 -0.12
98 7 7 -0.81 -0.64 0.9 -0.74 0.17 -0.08
101 7 7 -0.84 -0.67 0.89 -0.73 0.12 -0.06
104 7 7 -0.82 -0.67 0.93 -0.71 0.26 -0.09
95 4.7 7 -0.84 -0.59 0.73 -0.71 0.09 -0.06
95 5.1 7 -0.9 -0.74 0.88 -0.77 0.15 -0.08
95 515 7 -0.64 -0.11 0.65 -0.55 0.03 -0.06
95 5.2 7 -0.86 -0.7 0.92 -0.65 0.21 -0.08
95 5.8 7 -0.81 -0.66 0.93 -0.71 0.22 -0.09
95 6.1 7 -0.82 -0.52 0.77 -0.82 0.12 -0.05
95 7 5.27 -0.81 -0.632 0.92 -0.75 0.2 -0.11
95 7 5.55 -0.85 -0.71 0.91 -0.77 0.16 -0.06
95 7 5.82 -0.82 -0.66 0.91 -0.73 0.19 -0.09
95 7 6.04 -0.87 -0.74 0.9 -0.74 0.15 -0.10
95 7 6.26 -0.89 -0.73 0.91 -0.79 0.17 -0.08
95 7 6.52 -0.86 -0.72 0.89 -0.72 0.10 -0.07

T1
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p values estimated from each set of data

Smghue for the whole set of kinetics

T® th pHr |og No Cl95% delta Cl 95% p Cl95% SSD |og No Cl95% delta Cl 95% p Cl95% SSD
89 7 7 | 409 018 4914 4835 287 076 . 1427 018 4201 328 196 014 .,
92 7 7 | 383 018 1874 197 250 067 .4 393 018 1704 132 196 014
95 7 7 | 420 012 925 08 203 032 . 4422 012 906 0S5l 196 014 . .,
08 7 7 | 404 016 38 040 226 051 1410 016 364 025 196 014 . .o
101 7 7 | 393 018 151 018 219 062 1398 016 144 01l 196 014 . o
104 7 7 | 404 021 057 008 216 049 ) 410 020 053 004 196 O .o
95 47 7 | 366 026 191 05 110 036 4335 017 270 028 196 014 . oo
95 51 7 | 361 02 377 0§57 175 044 . 1354 016 400 028 196 014 ..
95 515 7 | 420 020 166 119 059 046 4 384 028 322 047 196 014 .,
95 52 7 | 39502 173 05 108 026 . ./ 354 017 285 021 196 014 . _
95 58 7 | 403 022 367 06l 178 042 . ) 396 018 390 028 196 014
95 61 7 | 413 028 554 095 199 062 .. 414 026 550 049 196 014 ..
95 7 527| 389 024 112 025 132 032 .4 360 017 148 011 196 014
95 7 555 405024 262 043 195 055 .4 405 022 263 020 196 014 . o,
95 7 58| 379 016 372 035 260 06l o) 393 016 328 023 196 014
95 7 604| 399 017 600 068 233 085 .. 409 015 557 041 196 014 .
95 7 626 383 020 454 060 195 045 . 38 017 455 031 196 014 . __
95 7 652 398 018 612 078 209 062 .4 401 016 596 048 196 014 . .
T2
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p values determined Single p value for the

for each kinetic

whole set of kinetics

Values Cl95%| Values Cl95%
Logo121.1* -2.38 0.44 -2.36 0.26
ZT 7.90 1.08 8.06 0.66
Zp 3.37 0.7 5.09 1.03
Z'pm 1.92 0.23 2.06 0.17
F test 5.42 5.57
p value 0.0084 0.0076
T3
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Values Cl 95%
log d 121.1°¢ -3.48 0.21
Zr 7.71 0.34
ZpH 3.26 0.59
F test 7.46
p value 0.0021

T4
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