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Introduction 

 

Among environmental conditions that affect spore thermoresistance, pH is a 

major factor in microbial destruction. It has been recognised for several years 

that low pH values reduce spore resistance  

(Alderton et al., 1976; Townsend et al., 1938; Tsuji et al., 1960). However, 

available information related to the quantitative effect of pH is scarce. Jordan 

and Jacobs (1948) observed a linear relationship between the D-value (decimal 

reduction time) of Escherichia coli and the pH of the heating menstruum. Davey 

et al., (1978) and, more recently, Mafart and Leguérinel, (1998), proposed a 

model to describe the combined effect of temperature and pH on heat resistance 

of  spores. 

These models were developed from data where D-values were estimated by 

recovering surviving cells at optimum conditions and, particularly, at optimal 

pH of the recovery medium. However, it is well known that counts of survival 

spores after a heat treatment are greatly influenced by the characteristcs of the 

recovery medium (temperature, pH, water activity, composition). At non 

optimum recovery conditions, both a decrease in the number of viable cells 

capable of producing colonies and a decrease in the estimated decimal reduction 

time are observed. It is generally accepted that the pH of the recovery medium 

exerts a great influence on the apparent heat resistance of spores: D-values 

decrease as pH is reduced (Cook and Brown, 1965; Yokoya and York, 1965; 
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Cook and Gilbert, 1968; Mallidis and Scholefield, 1986; Santos and Zarzo, 

1996; Lopez et al., 1997). 

This paper aims to present a simple overall model which takes into account both 

the effect of the pH of the heating menstruum and that of the recovery medium 

upon the observed D-value. 

Assuming a "multiplicative" effect of the pH on the D-value, the influence of 

the heating menstruum pH can be written: 

D = f (pH).D*                           (1) 

where D* is the maximum D-value at the optimum pH. Similarly, the effect of 

the recovery medium pH can be written: 

D' = f' (pH').D                                                              (2) 

where D' is the apparent decimal reduction time at pH' (pH of the recovery 

medium). The overall model is provided by combining Eqn (1) and (2): 

D' = f (pH).f' (pH').D*                                                   (3) 

Model (3) can be linearized by the following logarithmic transformation: 

log D' = log D* + log f (pH) + log f' (pH')                      (4) 

The destruction factor f (pH) which is related to Mafart and Leguérinel's model 

(1998) corresponds to: 

f pH

pH pH

zpH( )

( *)

=
− −

10

2

2

                                                                                 (5) 

in which pH* is the optimum pH of the heating menstruum corresponding to the 

maximum heat resistance. On account of the similitude of patterns which can be 
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observed between curves plotting D vs pH and D' vs pH' respectively, and in 

order to keep the homogeneity of the overall model, we tested the following 

stress factor: 

f pH

pH pH

z pH' ( ' )

( ' '*)

'=
− −

10

2

2

                                                                               (6) 

where pH'* is the optimum pH of the recovery medium corresponding to the 

maximum D' value. Then, Eqn (4) was transformed into: 

log ' log *
( *) ( ' '*)

'
D D

pH pH

z

pH pH

zpH pH

= − − − −2

2

2

2               (7) 

 

Materials and methods 

Micro-organism and spore production 

 The strain of Bacillus cereus (CNRZ 110) was obtained from the Institut 

National de Recherche Agronomie (France). Spores were kept in distilled water 

at 4°C. 

 Cells were precultivated at 37°C during 24 h in Brain Heart Infusion 

(Difco ). The preculture was used to inoculate nutritive agar plates (Biokar 

Diagnostics BK021) added with MnSO4 40 mg l-1 and CaCl2 100 mgl-1 on the 

surface area. Plates were incubated at 37°C for 5 days. Spores were then 

collected by scraping the surface of the agar, suspended in sterile distilled 

water, and washed three times by centrifugation (10000xg for 15 min) 

(Bioblock Scientific, model Sigma 3K30). The pellet was then suspended 
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againin 5 ml distilled water and 5 ml ethanol. The obtained suspension was then 

kept at 4°C during 12 hours in order to eliminate vegetative non sporulated 

bacteria, and washed again three times by centrifugation. The final suspension 

(about 1010 spores ml-1) was finally distributed in sterile Eppendorf microtubes 

and kept at 4°C. 

 

Thermal treatment of spore suspension 

 D values in citrate-phosphate buffer adjusted were determined at 95°C 

with one replicate at each pH ranging from 5 to 7.  

First, 30µl of spore suspension was diluted in 3 ml buffer. Capillary tubes of 25 

µl (vitrex) were filled with 10µl of sample and submitted to a thermal treatment 

in a thermostated oil bath. After heating, the tubes were cooled in water/ice 

bath, washed  in a solution of soap and rinsed with sterile distilled water. 

Finally, the ends were flamed with ethanol. The capillary tubes were broken at 

both ends and their contents poured into a tube containing 9 ml sterile tryptone 

salt broth (Biokar Diagnostics) by rinsing with 1 ml tryptone salt broth 

contained in a needle-equipped syringe. 

 

Recovery conditions 

  Viable spores were counted by duplicate plating in nutritive agar (10g 

tryptone, 5g meat extract, 5g sodium chloride, 15 g agar for 1000ml 

water)(Biokar Diagnostic) and incubated at 25°C for 6 days. The pH medium 
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ranging from 5 to 7 was adjusted with H2SO4 1N before autoclaving. After 

autoclaving the pH was measured and the final pH value was kept for 

calculations. 

For media whose pH was lower than 5.5, 10g/l of agar was added. A 

solution of Na2SO4 was added to adjust the medium at the same ionic strength. 

 

Data analysis 

 D values were based on the reciprocal of slopes obtained when the log 

number of survivors was plotted against time.  

Parameters of the models were fitted by simple or multiple linear 

regressions carried out with the STAT-ITCF software (Institut Technique du 

Fourrage France). 

The goodness of fit of the model was evaluated by using the accounted 

for per cent variance (Snedecor and Cochran, 1969) which is given by: 

                                    R
r n

n N
2

2

1
1 1

1
= − − −

− −
( )( )

( )
 

where n is the number of observations, N the number of terms and r2  is the 

multiple regression coefficient. Complementarily, mean square errors were 

determined. 

 

Results 
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In a first set of experiments spores were heated at 95°C in media ranging from 

pH 5 to 7 and recovered at 25°C , at the optimum recovery pH (6.7). Observed 

D-values are shown in table 1. logD values were then plotted vs (pH-pH*) 2 

(fig1). The pH of maximal thermal resistance related to the studied strain of B. 

cereus was close to 7.5 (Gaillard et al., 1998). The model was then fitted with 

pH* = 7.5 according to a linear regression (table 2). 

 

In a second set of experiments, spores were heated at 95°C in a medium of pH 7 

and recovered at 25°C in media ranging from pH 5 to 7. Observed apparent 

decimal reduction times are shown in table 3. log D' values were then plotted vs 

(pH'-pH'*) with pH'* = 6.7. Fitted parameters according to the linear regression 

are presented in table 4. The observed satisfactory goodness of fit allows to 

adopt the same function for the destruction factor as for the stress factor (Eqn 5 

and 6 respectively). 

 

As foods make up the heating menstruum and the recovery medium, a third set 

of experiments, in which spores were recovered at the same pH as those of the 

heating menstruum, was carried out in order to validate the overall model. 

Parameters of the overall model were not fitted but parameters'values obtained 

from the first two independent sets of data (tables 2 and 4) were used in order to 

compute D' values. Squares on Figure 3 represent observed log D' values while 

the continuous line corresponds to the calculated values according to the model. 
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The correlation between observed and calculated values gives a R2 value of 

0.968 and a Mean Square Error of 8.83.10-3. 

 

Discussion 

Currently the D-values used to establish sterilisation process were not taken into 

account in the recovery phase. The overall model (Eqn 7) is proving to describe 

successfully the influence of the pH on the heat resistance of spores both during 

the heat treatment and the recovery phase. However its lack of robustness, due 

to overparameterization, makes it difficult for it to be used for calculating heat 

food processes. Lack of robustness is pointed out by the following test: if 

instead of calculating D' values with parameters  separately estimated from the 

first two independent sets of data, parameters are fitted according to the actual 

observed D' values from the third set of data (pH* and pH'* are then held to be 

fitted parameters and not fixed values), quite different values are obtained from 

those previously determined (table 5). On account of the great variability of 

microbial species and strains, it seems worthwhile, in the framework of standard 

calculations, to fix pH* and pH'* values to 7.Consequently, when pH' = pH , 

Eqn (7) is reduced to 

log ' log * (
'

)( *)D D
z z

pH pH
pH pH

= − + −1 1
2 2

2                          (8)   or 

log ' log * ( *)D D
Z

pH pH
pH

= − −1
2

2
                                 (9) 
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Fitted parameters of this simplified model are respectively D*=2.27 min and 

ZpH=1.69, with R2=0.976 and a Mean Square Error of 4.34.10-3. The robustness 

of the new overall parameter ZpH was checked through the following test: zpH 

and z'pH were fitted again while standard values were affected to pH* and pH'* 

(7 instead of 7.5 and 6.7 respectively). As expected, new values were clearly 

different from previous ones (zpH=2.62 instead of 3.10 and z'pH=2.04 instead of 

1.75). However, when calculating the overall ZpH value from the following 

relationship 

1 1 1
2 2 2Z z zpH pH pH

= +
'

                                                    (10) 

 ZpH=1.61 was found, which is  close to the value determined from the last set 

of data.  

It is clear that substituting model (7)( 5 parameters when pH* and pH'* are 

fitted instead of being fixed ) for the more parsimonious model (9) ( only 2 

parameters) is likely to lead to some lost of goodness of fit : a R2 value of 0.976 

instead of 0.983 and a Mean Square Error of 4.34.10-3 instead of 2.99.10-3 are 

obtained. However, this drawback is largely set off by the simplification and the 

improvement  of the model's robustness. 

 

When a n decimal reduction ratio is aimed, at the reference temperature 

(121.1°C) and at pH 7, the sterilisation value must be: 

F = nD*121.1°C                                                    (11) 
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At 121.1°C but at a pH different from 7, the time of heat treatment leading to 

the same destruction ratio will be: 

t = nD'121.1°C                                                      (12) 

Combining Eqn (11) and (12) gives: 

tpHLt
D

D
F C

C

C )(
'

*
1.121

1.121

1.121
°

°

° ==                                  (13)    with 

2

2*)(

1.121 10)( pHZ

pHpH

C pHL

−

° =                                                                   (14) 

The function L(pH) must be regarded as a partial apparent Biological 

Destruction Value (partial because pH is here the only considered factor).  

Obviously, the studied strain of B.cereus which is very sensitive to recovery 

medium pH, is not a representative strain likely to be used as an indicator strain 

in order to develop standard heat process calculations. From data of Lopez et 

al.,  (1996), it was possible to fit zpH values of 4 strains of Bacillus 

stearothermophilus which were heated at 120°C. Another set of data from the 

same laboratory (Lopez et al., 1997) allowed to fit z'pH values related to the 

same strains. For each strain, overall ZpH values were deduced from Eqn (10), 

(see Table 6). Table 7 shows the magnitude of partial apparent Biological 

Destruction Values related to B. stearothermophilus with an average ZpH value 

of 3.4. Further works would be needed in order to validate the model more 

generally and to determine ZpH value related to other representative species, 

especially Clostridium botulinum. 
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Abstract 

 

A simple overall model was proposed to describe the effect of both pH of the 

heating menstruum and pH of the recovery medium on apparent spore heat 

resistance of Bacillus cereus. Applied to foods making up both heating and 

recovery media, the model can be reduced to only 2 parameters. Its goodness of 

fit and its robustness enable it to be applied for the optimisation of heat 

treatments. However, further experiments should be undertaken to validate the 

model for other species and to determine parameters related to reference species 

such as Clostridium botulinum. 

 

KEYWORDS: pH, heat resistance, recovery, Bacillus cereus. 
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Legends of tables 

 

Table 1. The effect of the heating medium pH on the heat resistance of Bacillus 

cereus spores. D95 (min) 

 

Table 2. Rate coefficient related to equation 5 (pH*=7.5) 

 

Table 3.  The effect of the recovery medium pH on the apparent heat resistance 

of Bacillus cereus spores. D'95 (min) 

 

Table 4. Rate coefficient related to equation 6 (pH'*=6.7) 

 

Table 5.  Rate coefficient related to equation 7 

 

Table 6. zpH, z'pH and ZpH values related to Bacillus stearothermophilus , 

according to Lopez et al.'s data (1996, 1997) 

 

Table 7. Partial apparent Biological Destruction Values vs medium pH with 

ZpH=3.4 



 17 

Legends of figures 

 

Fig. 1. Fitting of log D vs (pH-pH*)2 with pH*=7.5 

 

Fig 2.  Fitting of log D' vs (pH'-pH'*)2 with pH'*=6.7 

 

Fig 3. Observed (squares) and calculated (continuous line) D' values according 

to equation 7 and parameters values indicated in Tables 2 and 4. 
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Table 1. 

 

pH D95°C(min) 

5 0.64 

5.25 0.79 

 0.76 

5.5 0.98 

 1.10 

6 1.71 

 1.62 

6.5 1.91 

 2.07 

7 2.52 

 2.79 
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Table 2. 

 

Number of data 11 

R2 0.981 

Mean Square Error 6.78.10-4 

D95°C*  2.71 min 

zpH 3.10 
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Table 3. 

 

pH' D95°C' (min) 

5 0.33 

5.15 0.26 

5.25 0.42 

5.5 0.59 

5.8 1.22 

5.9 1.65 

5.95 1.81 

6.2 1.72 

6.35 1.58 

6.35 1.93 

6.7 2.27 

6.75 2.13 

6.9 2.17 
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Table 4. 

 

 

Number of data 13 

R2 0.942 

Mean Square Error 5.77.10-3 

D95°C 2.17 min 

z'pH 1.74 
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Table 5. 

 

Number of data 20 

R2 0.983 

Mean Square Error 2.99.10-3 

pH* 7.87 

pH'* 7.38 

D 95°C* 3.36 min 

zpH 3.59 

z'pH 2.53 
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Table 6. 

 

Strain zpH z'pH ZpH 

12980 3.82 3.06 2.39 

7953 3.97 3.80 2.75 

15951 3.45 3.21 2.35 

15952 4.12 2.94 2.39 
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Table 7. 

 

pH L120°C(pH) 

7 1.00 

6.5 1.11 

6 1.49 

5.5 2.46 

5 4.95 
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Figure 1 
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Figure 2 
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Figure 3 
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