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ABSTRACT 13 

Fungi are ubiquitous micro-organisms often associated with spoilage and biodeterioration of a large 14 

variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic 15 

or environmental factors such as temperature, water activity, pH, preservatives, atmosphere 16 

composition, all of which may represent potential sources of stress. Molecular-based analyses of 17 

their physiological responses to environmental conditions would help to better manage the risk of 18 

alteration and potential toxicity of food products. However, before investigating molecular stress 19 

responses, appropriate experimental stress conditions must be precisely defined. Penicillium 20 

glabrum is a filamentous fungus widely present in the environment and frequently isolated in the 21 

food processing industry as a contaminant of numerous products. Using response surface 22 

methodology, the present study evaluated the influence of two environmental factors (temperature 23 

and pH) on P. glabrum growth to determine „optimised‟ environmental stress conditions. For 24 

thermal and pH shocks, a large range of conditions was applied by varying factor intensity and 25 

exposure time according to a two-factorial central composite design. Temperature and exposure 26 
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duration varied from 30 to 50°C and from 10 min to 230 min, respectively. The effects of 27 

interaction between both variables were observed on fungal growth. For pH, the duration of 28 

exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus 29 

carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on 30 

fungal growth results, a thermal shock of 120 min at 40°C or a pH shock of 240 min at 1.50 or 9.00 31 

may therefore be useful to investigate stress responses to non-optimal conditions.  32 

 33 
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Introduction  36 

Fungi are ubiquitous micro-organisms often associated with spoilage and biodeterioration of a large 37 

variety of foods and feedstuffs. Various genera such as Aspergillus, Cladosporium, Alternaria or 38 

Penicillium are involved in different food spoilage (Pitt & Hocking 1997). Penicillium is one of the 39 

most widespread fungal genera isolated from food products and, in addition to the economic losses 40 

they cause, several Penicillium species may produce mycotoxins that represent a potential health 41 

risk for humans and animals (Pitt & Hocking 1997; Samson et al. 2004). Numerous intrinsic 42 

parameters in foods (water activity, pH, preservatives, etc.) or extrinsic ones (temperature, 43 

atmosphere composition, etc.) provide favourable conditions for moulds to develop. Changes in 44 

these parameters beyond the tolerated range may represent a potential source of stress that can 45 

affect germination, mycelial growth, conidiation or even synthesis of secondary metabolites as 46 

mycotoxins (Espeso et al. 1993; Calvo et al. 2002; Magan et al. 2002; Schmidt-Heydt et al. 2008). 47 

Nevertheless, to our knowledge, little is known about the effects of shock conditions on the growth 48 

and physiology of food related filamentous fungi. Understanding these effects in spoilage moulds 49 

would be useful for a better risk management of alteration and toxicity of food products. In this 50 

study, investigations were conducted on Penicillium glabrum, which is very frequently encountered 51 



in the food processing industry due to its ubiquitous presence in the environment and its capacity to 52 

disperse a large number of spores into the air (Pitt & Hocking 1997). This fungal contaminant was 53 

has been isolated in a large variety of products, including cheese (Hocking & Faedo 1992), nuts 54 

(Freire et al. 2000), bottled mineral water (Cabral & Fernandez Pinto 2002), etc. In our study, the 55 

effects of thermal and pH shock conditions were investigated in P. glabrum grown in liquid 56 

cultures. Temperature was chosen for this study because it is one of the most important factors that 57 

determine the ability of moulds to grow (Dantigny et al. 2005). pH was also investigated as this is a 58 

main environmental factor of physiological importance that can vary significantly depending on the 59 

food product. Shock conditions are usually defined by their intensity and their duration. To 60 

efficiently study the physiological effect of a large range of these two environmental shock 61 

conditions, we analysed P. glabrum growth using the response surface methodology (RSM) (Myers 62 

et al. 1989). A two-factorial central composite design (CCD) (Box et al. 1978) was applied to 63 

determine „optimised‟ experimental shock conditions by combining different stress intensities and 64 

durations for each factor studied. Results from CCD were used to modelise the effects of shock 65 

intensity and duration on the measured response (fungal biomass growth). 66 

This study brings a missing characterisation of the growth response of a fungal food contaminant to 67 

different thermal, acidic and alkaline conditions. Such results were needed to support the choice of 68 

temperature and pH shock conditions to investigate stress response of P. glabrum.  69 

 70 

Materials and methods 71 

Fungal strain and culture medium 72 

The fungal strain used in this study was isolated from contaminated, aromatised mineral water. It 73 

was characterised as Penicillium glabrum (Wehmer) Westling according to the reference method 74 

for classifying Penicillium species based on morphological characteristics (Pitt, 1988). To confirm 75 

the morphological identification of the fungal strain, we sequenced the internal transcribed spacer 76 

region including the 5.8S of the ribosomal gene in both directions after PCR amplification. Species 77 



identification was confirmed based on the results of BLAST (Basic Local Alignments Search Tool) 78 

searches against known sequences in the GenBank database using BLASTn. The strain has been 79 

registered as LMSA 1.01.421 in the Brittany Microbe Culture Collection (Souchothèque de 80 

Bretagne; University of Brest, France; www.ifremer.fr/souchotheque) and as LCP 08.5568 in the 81 

fungal collection of the Laboratory of Cryptogamy at the Museum National d’Histoire Naturelle 82 

(Paris, France; www.mnhn.fr). The cardinal (minimum, optimum and maximum) growth conditions 83 

of temperature and pH for this filamentous fungus have been estimated to be 6.6 °C, 24.3 °C and 84 

33.8 °C and pH 0.50 - 1.00, pH 5.50 and pH 11.20 (Nevarez et al. 2009).  85 

For strain maintenance and collection of spores, the strain was cultured in tubes of potato dextrose 86 

agar medium (PDA, Difco Laboratories, Detroit, MI, USA) at 25 °C. The pH of this culture 87 

medium was 5.00. 88 

 89 

Shock application on P. glabrum liquid cultures 90 

Spores were collected from seven-day-old mycelium by flooding each tube with 2 ml of sterile 91 

water containing 0.01 % of Tween 80 (Sigma-Aldrich, Saint Louis, MO, USA) under agitation at 92 

250 rpm. Mycelia were cultured from a suspension of 5 × 10
6 

P. glabrum spores inoculated into a 93 

250 ml Erlenmeyer flask containing 50 ml of potato dextrose broth medium (PDB, Difco 94 

Laboratories). Cultures of P. glabrum were first grown in standard PDB (pH = 5.0) at 25 °C, 95 

120 rpm for 48 h and then subjected to different experimental conditions. To test response to a 96 

range of thermal conditions, mycelia were aseptically filtered at room temperature and transferred 97 

immediately into 50 ml of standard PDB media and incubated at different temperature conditions at 98 

120 rpm. For efficient incubation, each inoculated medium had been previously warmed to its 99 

corresponding experimental temperature. To test response to pH conditions, mycelia grown for 48 h 100 

were aseptically filtered and transferred into modified PDB medium at different pH values. Each 101 

medium was prepared with PDB and to stabilise the pH, appropriate buffers were added: citrate-102 

phosphate buffer for pH from 2.00 to 8.00, borate buffer for pH from 8.00 to 9.50, CAPS (N-103 



cyclohexyl-3-aminopropanesulfonic acid) buffer for pH 9.50 from to 11.50. For marginal pH 104 

conditions above pH 11.50 or below pH 2.00, buffer was not required for pH stability. The pH was 105 

then adjusted with NaOH and HCl (1, 2 or 10 M). The pH of each adjusted PDB was verified. The 106 

media were filtered through a 0.22 µm membrane and 50 ml was aseptically distributed into sterile 107 

250 ml Erlenmeyer flasks.  108 

The pH of each adjusted medium was assessed after fungal culture and variation observed in each 109 

medium before inoculation was less than 0.5 pH units. These results confirmed the efficiency of the 110 

various buffers used to prepare the adjusted media.   111 

After incubation under thermal or pH experimental conditions, the mycelia were aseptically filtered 112 

at room temperature and transferred into standard PDB medium (pH 5.00) for cultivation in optimal 113 

conditions for 48 h at 25 °C, 120 rpm. Mycelia were then filtered, washed thoroughly with distilled 114 

water, dried at 70 °C for 48 h and weighed with a precision balance. Mycelium growth was 115 

obtained by quantifying the mycelium dry mass.  116 

Other than the experimental cultures of P. glabrum for each tested environmental factor 117 

(temperature, pH), two sets of control „unstressed‟ mycelia were also cultured under optimum 118 

conditions at 25 °C. The first control, T48, was early-harvested after 48 h of culture and the dry 119 

biomass obtained was used as the minimum fungal growth reached by each culture before 120 

application of experimental thermal and pH conditions. A second control, T96, was harvested after 121 

96 h culture and corresponded to 48 h of culture under optimum conditions in standard PDB at 25 122 

°C and then aseptically filtered and transfered to standard PDB at 25°C for another 48 h. The dry 123 

fungal biomass obtained for this control was considered as the fungal growth after 96 h culture in 124 

optimum conditions. The growth results obtained for each temperature or pH condition were 125 

expressed as the relative growth rate, in percent. This is the ratio between the fungal dry weight 126 

obtained under a given experimental condition and the fungal dry weight obtained in the control 127 

T96. 128 

Experimental design and statistical analysis  129 



The thermal and pH stress experiments were conducted according to a two-factorial central 130 

composite design (Box et al. 1978) (Fig 1). For each of the three applied stresses (thermal, acid and 131 

alkali stress), the CCD (Factors/Blocks/Runs = 2/1/11) defined nine experimental conditions by 132 

varying the intensity of the tested environmental factor and its duration (Table 1). Given the 133 

biological variability of P. glabrum growth, each experimental point was replicated three times to 134 

increase precision (consequently, central conditions of each CCD were replicated nine times) and 135 

median values of those three replicates were considered. The growth results obtained for thermal, 136 

acid or alkali stress experiments were analysed separately using STATISTICA 8 (StatSoft) and a 137 

response surface was determined to model the effect of different stress on P. glabrum growth. The 138 

growth results of both controls (T48 and T96) were also reported in the response surface for 139 

comparison with CCD results. 140 

For pH investigations, another experimental design was also implemented. Twenty pH values were 141 

studied in a large range from 0.15 to 12.50 with a single duration of 240 min. To obtain better 142 

estimates, four replicates were studied for each experimental condition. The results obtained were 143 

analysed with STATGRAPHICS 5.0 (Statistical Graphics Corp) using a one-way ANOVA and the 144 

LSD test to determine which fungal growths were significantly different depending on the tested pH 145 

condition. For each condition, means, (which were very close to median values) were plotted and 146 

LSD results were reported by assigning letters to the means. Means with the same letter are not 147 

statistically different (P > 0.05). 148 

 149 

Results  150 

Effect of thermal shock on fungal growth 151 

To investigate the effect of temperature on Penicillium glabrum growth, two-factorial CCD and 152 

RSM were used. Temperature and exposure duration varied respectively from 30 to 50 °C and from 153 

10 min to  230 min. The low, middle and high levels of both variables were determined from 154 

preliminary experiments on fungal growth (unpublished data).  155 



P. glabrum growth results obtained using a CCD were statistically analysed and both parameters 156 

(temperature level and exposure time) and their interaction had significant effects (P < 0.05) on 157 

fungal growth. A response surface was determined from the results (Fig 2) and the goodness-of-fit 158 

between the predicted values and the experimental data was very high (Fig 3), giving a coefficient 159 

of determination (R
2
) of 0.98, indicating a very good adjustment of the model with experimental 160 

data.  161 

 Inspection of the response surface showed that increasing temperature and exposure time affect P. 162 

glabrum growth in a gradual manner.  163 

The adjusted surface response (Fig 2), showed three distinct response areas delimited by the results 164 

of both growth controls T96 and T48 (which was 48 % of T96). The first response area was 165 

observed for the less intense thermal shock conditions 30 °C:120 min to 40 °C:10 min and revealed 166 

an increase of fungal growth in comparison with the fungal biomass of the control T96. A clear 167 

fungal growth increase was measured for the lowest shock condition (30°C:120 min) at supra-168 

optimal temperature (Nevarez et al. 2009). A second area was observed for intermediate thermal 169 

conditions (40°C:230 min, 40 °C:120 min or 47°C:42 min), which showed a moderate reduction in 170 

fungal biomass compared to the T96 control but still greater than the fungal growth of the T48 171 

control. The third area was observed for the highest thermal conditions, e.g. 47°C:198 min or 50 172 

°C:120 min, and revealed a strong decrease in P. glabrum growth. Fungal biomass values were 173 

even lower than those of the T48 control.  174 

Considering the fungal growth results, thermal conditions as 40 °C:120 min, 40 °C:230 min or 47 175 

°C:42 min, appeared to affect moderately P. glabrum growth.  176 

 177 

Effect of pH shock on fungal growth 178 

Statistical analysis of the results obtained using a CCD for acid and alkali pH indicated that 179 

exposure time had no significant effect (P>0.05) on fungal growth for the range of values tested (10 180 

to 230 min) (data not shown). This result precluded 2D analysis and response surface modelling, 181 



since only one of the two tested variables (pH value) had a significant influence. Consequently, we 182 

modified our experimental design by using a monofactorial experimental procedure on a large range 183 

of pH from 0.15 to 12.50 for a single exposure time of 240 min.  184 

Global inspection of the results (Fig 4) shows that P. glabrum is able to grow relatively well after 185 

240 min of exposure in a very wide range of pH conditions, spanning pH 2.00 to 11.50.  186 

Analysis of fungal growth clearly showed four distinct areas of response over the wide range of pH 187 

conditions tested. The first area was observed for pH 2.00 to 7.00, which had a very low influence 188 

on fungal growth (80-100 % of T96 growth). The second area was observed for alkaline conditions, 189 

from pH 8.00 to 11.50, which induced a decrease in fungal growth, showing a growth rate of 60-190 

70 % of T96 growth.  191 

The third and fourth response areas were observed for very acidic conditions (pH 0.15 to 1.00) or 192 

alkaline conditions (pH 12.00 to 12.50). These conditions induced a dramatic decrease in fungal 193 

growth after 240 min of exposition. The fungal biomass values were even lower than the control 194 

T48 value.  195 

Considering the fungal growth results obtained, alkaline shock conditions between pH 8.00 to 11.50 196 

for 240 min duration affect significantly and moderately P. glabrum development. Concerning 197 

acidic shock, the transition from no detrimental to detrimental effect appears very steep.  198 

 199 

Discussion 200 

To investigate the effect of temperature and pH shocks on Penicillium glabrum growth, two-201 

factorial CCD and RSM were employed. Using a CCD offers the possibility to assess the effect of a 202 

large range of conditions by testing a limited and optimised number of experimental points with a 203 

low number of replicates. This approach has been successfully employed in fungi to examine 204 

chitinase regulation (Lopes et al. 2008), to study the influence of environmental factors such as 205 

temperature and pH on the growth of the fermenting yeast Pachysolen tannophilus used in 206 



industrial fermentation processes (Roebuck et al. 1995) or to investigate the influence of 207 

temperature, pH and aw on yeast to study their antagonistic properties (Sinigaglia et al. 1998). RSM 208 

is a well-known method for optimising for example medium composition or other critical variables 209 

that affect for example enzyme production or microbial growth. This study used RSM to predict 210 

fungal growth anywhere within the limits of the experimentally tested environmental factors. The 211 

quadratic model obtained in those conditions permitted suitable predictions.  212 

Regarding temperature, inspection of the response surface clearly shows that increasing temperature 213 

and exposure duration affect P. glabrum growth in a gradual manner. The influence of a given 214 

temperature in a wide range of exposure duration has been also observed in Saccharomyces 215 

cerevisiae exposed to 37 °C for 15, 30, 45, 60, 120, 240 and 480 min (Sakaki et al. 2003).  216 

The less intense shock condition (30°C:120 min) did not reduce P. glabrum fungal growth, but 217 

showed an unexpected increase in fungal biomass. This result suggests that when a fungal 218 

contaminant such as P. glabrum is exposed to relatively weak stress conditions, its development on 219 

food products may be enhanced. This observation could be practically important for food industry.  220 

The intermediate stress conditions (40°C:120 min, 40°C:230 min, 47°C:42 min) induced more or 221 

less moderate fungal biomass reductions which can be attributed simultaneously to growth 222 

reduction or increased lag time for growth due to thermal shock. This fungal growth reduction 223 

could be explained by a variety of cellular effects corresponding with thermal stress. It is known 224 

that elevated temperature can affect: (i) the structure of proteins, possibly modifying their biological 225 

activity and overall cellular functioning; (ii) the biosynthesis of a large number of ubiquitous 226 

proteins which decrease or are completely stopped (Plesofsky-Vig & Brambl 1987; Curle & Kapoor 227 

1988); and (iii) plasma membrane fluidity (Beney & Gervais 2001). As described in S. cerevisiae, 228 

an increase of plasma membrane permeability can affect cellular integrity and metabolism (Guyot et 229 

al. 2005).  230 

Finally, in more drastic thermal conditions (47°C:198 min, 50°C:120 min), the fungal biomass 231 

decreased compared to the initial fungal biomass (T48) before applying the experimental stress 232 



conditions. According to the literature, this decrease can be explained by fungal lysis (Emri et al. 233 

2004; Koutinas et al. 2005) or may be due to an ordered degradation of cellular reserves (McNeil et 234 

al. 1998). In yeast and filamentous fungi, autolysis can be characterised by a fungal biomass 235 

decline. Autolysis occurs in response to a wide range of extrinsic factors such as heat, chemical 236 

treatment, nutrient starvation, etc., which may induce the loss of membrane function leading to a 237 

breakdown in intracellular compartimentalisation and the release of lytic enzymes responsible of 238 

macromolecular degradation (Hernawan & Fleet 1995; McNeil et al. 1998). Important reduction in 239 

fungal growth under high temperatures such as 50 °C has also been reported in S. cerevisiae (Seppa 240 

et al. 2004) and Neurospora crassa (Plesofsky-Vig & Brambl 1985), for which optimum growth 241 

conditions are 25°C and 30°C, respectively. The yeast Candida albicans, for which optimum 242 

growth temperature is 37°C, is also very affected by exposure at 55 °C (Zeuthen & Howard 1989). 243 

In our case, thermal conditions of 47°C:198 min or 50°C:120 min appeared to affect not only P. 244 

glabrum fungal growth but also proteins and mRNA integrity. In fact, subjecting total proteins to 245 

electrophoresis showed that most of the proteins observed in the T96 control condition were not 246 

visible in the highest stress conditions mentioned above (data not shown). Moreover, we analysed 247 

the total RNA using electrophoretic RNA separation on microfabricated chips to determine their 248 

quality. In the drastic growth conditions, this analysis revealed a decrease in the 18S and 28S 249 

ribosomal RNA peaks and an increase in smaller, intermediate RNA fragments, indicating 250 

substantial total RNA degradation (Nevarez et al. 2008).   251 

Given the results on fungal growth, thermal conditions such as 40°C:120 min, 40°C:230 min or 252 

47°C:42 min, appeared to moderately, but significantly affect P. glabrum growth. These conditions 253 

may therefore be appropriate for further investigations on stress response. In addition, these thermal 254 

shock conditions (temperature level and exposure time) correspond pretty well with those used in 255 

other thermal stress studies conducted in fungi which are unfrequently justified. For example, a 256 

study was realised in S. cerevisiae in order to isolate heat shock proteins (HSP), HSP 82 and HSP 257 

104 by shifting optimal cultures from 25 °C to 39 °C for 1 h (Sanchez et al. 1993). Other 258 



investigations conducted in N. crassa or C. albicans exposed fungi to experimental conditions from 259 

30 °C to 45 °C for 90 min and from 37 °C to 40 - 46 °C for 30 min, respectively (Plesofsky-Vig & 260 

Brambl 1985; Zeuthen & Howard 1989). Thermal stress was also investigated with a transcriptional 261 

approach using microarrays in yeasts S. cerevisiae or Schizosaccharomyces pombe, from 25°C to 262 

37°C for 2 h or 30°C to 39°C for 1 h, respectively (Causton et al. 2001; Chen et al. 2003). In our 263 

case, where physiological experimental stress conditions were being validated, the thermal 264 

condition of 40°C:120 min was employed as central condition to investigate heat shock response at 265 

the transcriptional level (Nevarez et al. 2008). A transcriptional study combining suppression-266 

subtraction hybridisation and cDNA microarrays has been conducted in this fungus to isolate 267 

differentially expressed genes in response to thermal shock. Of the various isolated genes, a few are 268 

down-regulated and encode for proteins involved in general cellular metabolism. Given this thermal 269 

shock condition, gene down-regulation may explain the P. glabrum growth reduction as observed in 270 

this study. 271 

The effect of a very large range of pH conditions was tested on P. glabrum growth for a single 272 

exposure time of 240 min. High pH tolerance has been already described in many filamentous fungi 273 

which appear to be little affected by changes in culture pH (Wheeler et al. 1991). Many Penicillium 274 

species including P. chrysogenum, P. camemberti, P. aurantiogriseum, P. marneffei, P. crustosum 275 

or P. islandicum are able to grow from pH 3.00 - 4.00 to 9.00 - 10.00 (Wheeler et al. 1991; 276 

Thompson et al. 1993; Cao et al. 2007). The ability of fungi to develop in a wide range of pH is 277 

partially due to adaptation associated with a genetic regulatory system that tailors gene expression 278 

to the ambient pH (Arst & Penalva 2003). Considerable progress has been made in characterising 279 

fungal genetic pH regulatory systems because they are important for major processes including 280 

pathogenesis and the production of extracellular enzymes, penicillin or mycotoxins (Espeso et al. 281 

1993; Denison 2000). Various pH regulatory systems have been described in fungi (Aspergillus 282 

nidulans, A. niger, Penicillium chrysogenum, S. cerevisiae, C. albicans, Yarrowia lipolytica; 283 

Denison 2000; Arst & Penalva 2003).  284 



In acidic conditions (pH 2.00 to 7.00), fungal growth was only slightly affected. This observation is 285 

in accordance with reports that most filamentous fungi including Aspergillus spp., Fusarium spp. 286 

and Penicillium spp. show high tolerance to acidic media and their optimum growth is around pH 287 

5.50 - 6.00 (Deacon 2006). Similar observations have been made on several Penicillium species 288 

such as P. citreonigrum, P. jensenii or P. roqueforti (Sacks et al. 1986; Wheeler et al. 1991; Gock et 289 

al. 2003). It has also been shown in S. cerevisiae that yeast cells grow more rapidly in acidic media 290 

than in neutral or alkaline media (Lamb et al. 2001). An important factor for the maintenance of an 291 

acidic environment is the yeast plasma membrane H
+
-ATPase, which actively extrudes protons and 292 

imports many nutrients and cations (Serrano et al. 2002).  293 

The alkaline pH conditions (pH 8.00 to 11.50) induced a greater growth decrease area than 294 

observed in acidic conditions. This effect may be explained by some cellular modifications caused 295 

by alkaline pH. In S. cerevisiae for example, it has been shown that alkaline media induce 296 

disruption of membrane proton gradients that normally supply energy for nutrient and ion transport 297 

essential for fungal development (Lamb et al. 2001). Some authors also report in S. cerevisiae a 298 

significant repression of genes involved in amino acid or purine biosynthesis and in carbohydrate 299 

metabolism that could explain limitation of yeast growth (Serrano et al. 2002). These authors 300 

suggest that copper or iron availability and solubility can be reduced by alkaline pH, which could 301 

affect some enzymatic activities. Thus, highly alkaline environments can be considered as stressing 302 

conditions. 303 

Given the results on fungal growth, alkaline stress conditions between pH 8.00 to 11.50 for 240 min 304 

may be appropriate for further investigations on stress response as they seemed to moderately, but 305 

significantly affect fungal development. On the basis of our results, the experimental point pH 306 

9.00:240 min may be employed as central condition for further studies in P. glabrum. Comparable 307 

alkaline pH conditions have also been used in several studies on fungi as, for example, in C. 308 

glabrata to analyse its pH response by transferring cultures from pH 4.00 to pH 8.00 (Schmidt et al. 309 

2008). Some molecular studies have been also conducted at pH 4.00 to 8.00 in C. albicans or A. 310 



nidulans to investigate the role of pH transcription factors (Rim13p and PacC respectively) (Espeso 311 

& Arst 2000; Li et al. 2004). A transcriptional approach using microarrays has been employed in S. 312 

cerevisiae at pH ranging from 6.00 to 7.90 (Causton et al. 2001).  313 

Finally, in extreme pH conditions (pH 0.15 to 1.00 and pH 12.00 to 12.50), a great decrease in 314 

fungal biomass was induced. These drastic conditions severely affected cellular metabolism. As 315 

suggested for thermal stress, the effect induced by these conditions on P. glabrum growth may be 316 

also explained by fungal autolysis (McNeil et al. 1998).  317 

In summary, the present work investigated a wide range of temperature and pH conditions to 318 

analyse their effect on P. glabrum growth to determine „optimised‟ experimental shock conditions. 319 

To our knowledge, this approach has not been previously reported in other fungal stress studies, 320 

which generally use a limited number of experimental conditions. The results obtained here made it 321 

possible to determine experimental conditions that may be potentially appropriate for further 322 

investigations on stress response. Based on our results, we propose that conditions such as 323 

40°C:120 min, pH 1.50:240 min or pH 9.00:240 min, can be used to produce a physiological stress 324 

response because they moderately, but significantly affect growth in P. glabrum. 325 

 326 
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