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Summary 

 

Penicillium glabrum is a filamentous fungus frequently involved in food 

contamination. Numerous environmental factors (temperature, humidity, atmosphere 

composition, etc.) or food characteristics (water activity, pH, preservatives, etc.) could 

represent potential sources of stress for micro-organisms. These factors can directly affect 

physiology of these spoilage micro-organisms: growth, conidiation, synthesis of secondary 

metabolites, etc. This study investigates the transcriptional response to temperature in P. 

glabrum, since this factor is one of the most important for fungal growth. Gene expression 

was first analysed by using suppression subtractive hybridization to generate two libraries 

containing 445 different up- and down-regulated Expressed Sequenced Tags (ESTs). 

Expression of these ESTs was then assessed for different thermal stress conditions, with 

cDNA microarrays, resulting in the identification of 35 and 49  significantly up- and down-

regulated ESTs, respectively. These ESTs encode heat shock proteins, ribosomal proteins, 

superoxide dismutase, trehalose-6-phosphate synthase and a large variety of identified or 

unknown proteins. Some of them may be potential molecular markers for thermal stress 

response in P. glabrum. To our knowledge, this work represents the first study of the 

transcriptional response of a food spoilage filamentous fungus under thermal stress 

conditions. 
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Introduction 

 

Fungi are ubiquitous micro-organisms often associated with spoilage and 

biodeterioration of a large variety of foods and feedstuffs. Penicillium is one of the most 

widespread fungal genera isolated from food products. In addition to the economic losses 

caused by these contaminants, many Penicillium species can produce mycotoxins that 

represent a potential health risk for humans and animals (Pitt & Hocking, 1997; Samson et al., 

2004). Due to its ability to disperse a large number of spores in the environment, P. glabrum 

is very frequently encountered in the food manufacturing industry (Pitt & Hocking, 1997). 

This fungus is responsible for spoilage of many different products, such as cheese (Northolt et 

al., 1980), stored cereals (Borjesson et al., 1992), maize (Mislivec & Tuite, 1970),  rice 

(Kurata et al., 1968), jam (Udagawa et al., 1977), commercially marketed chestnuts (Overy et 

al., 2003), soda (Ancasi et al., 2006) and mineral water (Cabral & Fernandez Pinto, 2002). 

Numerous intrinsic factors (water activity, pH, preservatives, etc.) in foods, provide ideal 

conditions for micro-organisms to develop. Combined with extrinsic factors (temperature, 

humidity, atmosphere composition, etc.), modification of these conditions are potential 

sources of stress that can directly affect the physiology (growth, sporulation, synthesis of 

secondary metabolites, etc.) of spoilage micro-organisms. In vitro data obtained with different 

Penicillium strains, have shown significant variation in the production of secondary 

metabolites among substrate (Chang et al., 1991; Kokkonen et al., 2005). Environmental 

conditions may also modify mycotoxin production as reported in Fusarium species (Magan et 

al., 2002). Some modification, such as osmotic stress have been shown to influence the 

synthesis of secondary metabolites in P. notatum (Fiedurek, 1997).  
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Temperature and water activity are the most important factors that determine the 

ability of moulds to grow (Dantigny et al., 2005). Fungi and more generally, every organism 

in each kingdom, have developed strategies to respond rapidly to environmental fluctuations. 

Among them, elevated temperatures are one of the foremost and best-known stress inducers at 

the cellular level. The general response to thermal stress is characterised by acquired 

thermotolerance, which increases survival capacity during subsequent exposure to high 

temperatures (Piper, 1993). Response to thermal stress has been described as a tolerance 

mechanism against adverse growth conditions and associated with synthesis of heat shock 

proteins (HSPs) (Lindquist, 1986). This mechanism aims to stabilize cell metabolism and 

prevents the accumulation of denatured proteins which can be toxic for the cell. Heat shock 

response appears to be widespread, spanning many taxonomic ranks and is found in  

drosophila (Ashburner & Bonner, 1979), rabbit (Cosgrove & Brown, 1983), E. coli 

(Yamamori & Yura, 1982), Saccharomyces cerevisae (McAlister & Finkelstein, 1980), 

Aspergillus nidulans (Newbury & Peberdy, 1996), etc. To our knowledge, no data are 

available on the heat shock transcriptional response of food-contaminating moulds, such as P. 

glabrum. From a food industry perspective, understanding the effects of various factors on the 

growth and physiology of a spoilage mould, is crucial to better manage the risk of alteration 

and toxicity of food products. It would therefore be useful to gain more insight on the 

mechanisms involved in thermal stress and to identify the genes that are differentially 

regulated  in response to thermal stress. 

In the present study, the effects of temperature on the transcriptional response of P. 

glabrum was investigated by using two complementary techniques: suppression subtractive 

hybridization (SSH) and cDNA microarrays. Transcriptional response to heat shock was 

compared between thermal stress conditions (40°C, 120 min) and the optimal growth 

temperature of 25°C. SSH is a powerful method based on suppression PCR where subtracted 
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cDNA libraries can be constructed to identify differentially expressed genes in response to an 

experimental  variation in physiological, environmental or other factores (Diatchenko et al., 

1996). This method has been previously used in fungi to isolate differentially expressed genes 

associated with different morphologies or different growth conditions. It has been applied in 

Aspergillus nidulans to characterise genes specifically expressed in conidiating cultures and 

mature conidia (Osherov et al., 2002). SSH has been also used to investigate the differential 

gene expression between mycelium and yeast forms of the human pathogens Penicillium 

marneffei (Liu et al., 2007) and Paracoccidioides brasiliensis (Marques et al., 2004) with 

respect to temperature (25° or 37°C). 

 

Expressed Sequenced Tags (ESTs) isolated by SSH, were then investigated, in 

different thermal stress conditions, by assessing their expression with the cDNA microarray 

technique and confirmed with real-time reverse transcription PCR (qRT-PCR) on few selected 

ESTs. The advent of cDNA microarrays has provided the possibility of analysing the global 

changes in gene expression that occur in a cell, under different conditions (Shalon et al., 

1996). Transcriptional studies using whole-genome microarrays have been conducted on a 

wide range of environmental conditions (e.g. thermal, osmotic and oxidative stresses) in the 

yeasts S. cerevisiae (Gasch et al., 2000; Causton et al., 2001; Sakaki et al., 2003) and 

Schizosaccharomyces pombe (Chen et al., 2003). As the whole genome of P. glabrum is not 

available, we constructed a custom-made cDNA microarray and we report here the results 

obtained. This work represents, to our knowledge, the first study investigating the 

transcriptional response of a food spoilage fungus under  thermal stress.  
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Methods 

 

Biological material and culture conditions  

 

The fungal strain used in this study was isolated from contaminated aromatized mineral 

water and precisely characterised as Penicillium glabrum (Wehmer) Westling according to the 

reference method used for classifying Penicillium species (Pitt, 2000). It was registered as 

LMSA 1.01.421 in the fungi collection „‟Souchothèque de Bretagne‟‟ (Brest, France). For 

conservation and collecting spores, the fungus was cultured in tubes of potato dextrose agar 

medium (PDA) (Difco Laboratories) at 25°C. Spores were collected from seven-day-old 

mycelium by adding, 2 mL of sterile water containing 0,01 % of Tween 80 (Sigma-Aldrich) 

to each tube and flooding with agitation at 250 rpm. Mycelia were cultured from a suspension 

of 5∙10
6 

spores of P. glabrum inoculated in 250 ml Erlenmeyer flasks containing 50 ml of 

potato dextrose browth medium (PDB) (Difco Laboratories). For suppression subtractive 

hybridization, P. glabrum was exposed briefly to two different conditions: stress (40°C, 120 

min) and control (25 °C), hereafter referred as S and C, respectively. In both case, mycelia 

were first grown in 50 ml of PDB medium shaken at 25°C, 120 rpm for 48 h, then sterile-

filtered, transferred into 50 ml of sterile PDB media and grown for 120 min at 25°C or 40°C 

shaking at 120 rpm. Mycelia were then aseptically harvested by filtration, washed thoroughly 

with sterile water, quickly frozen in liquid nitrogen and stored at –80°C. For microarray 

experiments, five different thermal stress conditions were studied, as defined in a reduced 

central composite design (CCD) (Box et al., 1978): S1 (33 °C, 42 min), S2 (33 °C, 198 min), 

S3 (40 °C, 120 min), S4 (47°C, 42 min) and S5 (47°C, 198 min) (Fig. 1). These five culture 

conditions were defined from a previous CCD used for physiological investigations of 

thermal stress in P.glabrum (unpublished data). For each condition, mycelia were grown 48 h 
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in triplicate (a, b and c), heat shocked according to the different conditions and harvested 

following the method previously described above. Mycelia referred as „‟Reference‟‟(R) and 

„‟Control‟‟ (C) were also grown in triplicate, at 25°C, in order to constitute respectively the 

unique reference pool (pool R) or the Ca, Cb, Cc samples used for statistical comparison with 

results obtained under stress conditions. 

 

Suppressive Subtractive Hybridization 

 

For each sample, the frozen mycelium was reduced to a fine powder by grinding in a 

mortar containing liquid nitrogen and total RNA was extracted with Trizol (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer‟s instructions. Total RNA was quantified 

using Nanodrop spectrophotometer (Labtech) and their integrity was verified with 

Bioanalyser (Agilent Technologies) and RNA Nano LabChip (Agilent Technologies). Poly 

(A)
+
 RNAs were then isolated with PolyATtract kit (Promega) according to the 

manufacturer‟s instructions. The Poly (A)
+
 RNAs were then precipitated overnight at –20°C 

with 0.1 volume of 3 M sodium acetate (pH 5.2) and 1 volume of isopropanol. Poly (A)
+
 

RNAs were then washed twice in 75 % (v/v) ethanol and finally re-suspended with 12µL of 

RNase-free water. The Poly (A)
+
 RNAs extracted were then quantified using  Nanodrop 

spectrophotometer (Labtech).  

 

Two reciprocal subtractive cDNA libraries were constructed by SSH on poly (A)
+
 RNAs 

corresponding to C (25°C) and S (40°C, 120 min) conditions using the PCR-Select cDNA 

subtraction kit (BD Biosciences–Clontech) according to the manufacturer‟s instructions. After 

subtraction, isolated cDNA fragments were amplified by PCR with Advantage cDNA PCR kit 



 8 

(BD Biosciences–Clontech), purified with QIAquick PCR purification kit (Qiagen) and 

cloned into pGEM-T easy vector (Promega) in JM 109 Bacteria (Promega) according to the 

manufacturer‟s instructions. Bacterial clones of both forward and reverse libraries were 

cultured for 24 h at 37°C, in Luria-Bertani (LB) medium (supplemented with 100 mg 

ampicillin l
-1

). Plasmids were then extracted from these bacterial clones using an alkaline lysis 

plasmid minipreparation (Birnboim & Doly, 1979). Positive clones containing a single insert 

were then selected after EcoRI digestion and 1% agarose gel electrophoresis. 

  

  

DNA manipulations and sequence analysis 

 

The cDNAs isolated from positive clones, were sequenced with BigDye Terminator 

chemistry on an AB 3130 xl sequencer (Applied Biosystems). All sequencing was performed 

with the Sp6 primer (5‟-GATTTAGGTGACACTATAG-3‟, Tm = 56°C) at a concentration of 

5 µM for each reaction. The obtained raw sequences were trimmed using Phred software 

(Ewing et al., 1998), plasmid sequences were eliminated with SeqClean software (TIGR 

software tools, http://www.tigr.org/tdb/tgi/software). The cleaned sequences were then 

compared using BLASTx program (Altschul et al., 1990) with non-redundant GenBank and 

Swiss-Prot protein sequence databases. Sequences of cDNA contained in both subtracted 

libraries were annotated and the corresponding ESTs were classified based on the function of 

their putative encoded proteins. Functional classification used in this work comes from a 

similar study on Paracoccidioides brasiliensis (Felipe et al., 2005) and is originally based on 

MIPS clustering (Ruepp et al., 2004). 

 

 

http://www.tigr.org/tdb/tgi/software
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cDNA microarray construction  

 

In order to normalise the amount of cDNA used for microarray, the bacterial clones used 

for the subtracted libraries, were cultured in LB medium (with 100 mg ampicillin l
-1

) for 6 h 

at 37°C, at 140 rpm. Twenty microliters of each culture were diluted in 80 µL of sterile water, 

then incubated at 95°C for 8 min and 4°C for 10 min. Two microliters of each lysed bacterial 

clone solution, were used in duplicate as cDNA template for PCR amplification in 50 µL of 

final reaction volume with an initial denaturation at 94 °C, 3 min , 40 cycles of 94°C for 20 s , 

56°C for 30 s, 68°C for 2 min and a final elongation step at 68°C for 5 min. The reaction was 

performed with Taq DNA polymerase Kit (Amersham-Pharmacia Biotech): 3 U Taq 

polymerase per reaction, 0.25 mM dNTP, 0.01 µM T7 primer (5'-

TAATACGACTCACTATAGGG-3', Tm = 56°C) and 0.01 µM Sp6 primer (5‟-

GATTTAGGTGACACTATAG-3‟, Tm = 56°C). PCR product duplicates were then pooled. 

Amplified cDNAs were purified using Multiscreen plate MSNU 03010 (Millipore) and re-

suspended in 3X saline sodium citrate (SSC) (Invitrogen) containing 1.5 M betaine (Sigma-

Aldrich). A semi-quantitative estimation was then performed on agarose gel electrophoresis 

with Smart Ladder SF (Eurogentec) in order to validate for each clone, the presence of single 

amplified cDNA band and its normalised intensity in each clone. Purified PCR products, were 

then spotted in triplicate onto GAPS II coated slides (Corning) with Eurogrid Spotter 

(Eurogentec). 

 

Target preparation and hybridization 

 

For target preparation, total RNAs were extracted from biological triplicates (a, b, c) of 

each mycelium sample grown in control (C and R) and stress conditions (S1, S2, S3, S4, S5), 
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as previously described. Total RNA from each sample was extracted with Trizol (Invitrogen) 

and genomic DNA leftovers were eliminated by DNase I treatment with RNase-free DNase 

set (Qiagen) and RNeasy MinElute Cleanup kit (Qiagen) according to the manufacturer‟s 

instructions. Purified total RNAs were then analysed with Nanodrop spectrophotometer 

(Labtech) and Bioanalyser (Agilent Technologies). Total RNAs extracted from the 3 distinct 

samples Ra, Rb, Rc were then pooled in order to form a single reference pool (pool R). This 

pooled sample was used as a unique reference for hybridizations against samples  

corresponding to different conditions (C, S1, S2, S3, S4, S5). Five hundred nanograms of 

each RNA sample were used to prepare cDNAs by Reverse Transcription (RT). Those 

cDNAs were then „in vitro transcribed‟‟ and labelled in amplified RNA (aRNA) targets with 

Amino-Allyl MessageAmp II kit (Ambion) and Cy3 / Cy5 dye (Amersham-Pharmacia 

Biotech), according to the manufacturer‟s instructions.  

 

Before target hybridization, the cDNA microarray slides were first hydrated (10 s), dried 

(10 s) and fixed for 20 s at 60 000 µJoules with Spectrolinker UV Crosslinker (Spectroline). 

Microarrays were then agitated 15 min at 100 rpm in a solution containing 130 mL 1-methyl-

2-pyrrolidone (Sigma-Aldrich), 0.22 M succinic anhydride (Sigma-Aldrich) and 10 mL 1 M 

borate buffer, pH 8. The arrayed cDNA fragments were then denatured by placing the slides 

in milliQ water at 95°C for 2 min, washed in 95 % (v/v) ethanol (Prolabo) and immediately 

dried by centrifugation at 700 rpm for 3 min at room temperature. Slides were then pre-

hybridized by incubating at 42°C for 1 h in a solution containing 3X SSC, 0.3 % SDS, 1 % 

Bovine Serum Albumine (BSA) sterilized by 0.22 µm filtration. Microarrays were then 

washed in 5 different milliQ water baths and then immediately dried by centrifugation at 700 

rpm for 3 min at room temperature.  
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Competitive hybridizations were then realised by first mixing 500 ng of Cy3-labeled 

aRNA targets (S) and 500 ng of Cy5-labeled aRNA targets (C), denaturing 2 min at 100°C 

and incubating 30 min at 37°C. Mixed targets were then transferred onto the microarray 

surface, a cover slip was applied on top and microarrays were then incubated for 12 h at 42°C. 

After hybridization, microarrays were rinsed for 2 min at 100 rpm in four successive baths 

(respectively 2 X SSC, 0.1 % SDS; 1 X  SSC, 0.2 X  SSC twice) and immediately dried by 

centrifugation at 700 rpm for 3 min at 25°C.  

 

 

Microarray data analysis 

 

Hybridized slides were scanned at 10-µm resolution with ScanArray 4000 (Perkin Elmer) 

and ScanArray Express software (Perkin-Elmer). Pixel fluorescence intensity and differential 

expression ratios were determined from the picture files (.tiff) for both channel (Cy3 and Cy5) 

by using GenePix Pro 6.0 software (Molecular Devices Corporation). Lowess fitness 

regression (Yang et al., 2002) was applied for global normalisation of raw expression ratios. 

Normalised data for the 913 cDNAs were log2 transformed and where an EST was 

represented by more than one cDNA, the median value was recorded. A statistical analysis of 

the results obtained for each experimental condition, was carried out with Microsoft Excel. A 

global ANOVA on results obtained for C, S1 and S2 conditions followed by a LSD test, were 

applied  in order to isolate ESTs which were, significantly (p0.05) differentially expressed 

between S1-C and S2-C. Among these ESTs, only those with S:C expression ratios, 

corresponding with differences of at least 0.7 log2 (i.e. 1.62 fold change) were selected to 

make the up- and down-regulated EST lists. 

 



 12 

 

qRT-PCR experiments 

 

Reverse transcription (RT) was performed on 50 µg of  poly (A)
+
 RNA purified from 

total RNA samples used for preparing microarray labeled targets. ImProm-II Reverse 

Transcription System (Promega) was used according to the manufacturer‟s instructions, Real-

time PCR (qPCR) experiments were performed with a Mini-Opticon thermocycler (Bio-Rad). 

Experiments were performed on 1 µl of two twice-diluted cDNA samples with 0.5 M each 

primer and 7.5 µl 2X iQ SYBR Green Supermix (Bio-Rad) in a final reaction volume of 15 

µl. Cycling conditions were 2 min at 50°C, 2 min at 95 °C, 40 cycles (15 s at 95 °C, 1 min at 

60 °C) and 15 s at 95 °C.  

 

In the first step of the qRT-PCR experiments, the internal normalisation control was 

determined. A set of eight genes was chosen and composed of β-actin (frequently used as a 

housekeeping gene) and seven other genes presenting  relative thermal stability according to 

microarray results. This group contained  seven heterogeneous genes encoding adenosine 

kinase, 14-3-3 protein homolog, FAD-dependent sulfhydryl oxidase, copper-fist DNA binding 

domain protein, ATP synthase gamma chain, pre-mRNA splicing factor ini1 and S-phase 

kinase-associated protein 1A. The sequences of these genes inr P. glabrum were unavailable 

in public databases. Nevertheless, for β-actin gene, partial sequences were obtained from a 

previous study. Moreover, the seven other genes were previously cloned and partially 

sequenced for SSH experiments. 

Another set of ten ESTs was also selected from the microarray analysis in order to assess 

their expression by qRT-PCR and validate our results. These ESTs were selected because 

their expression appeared to vary significantly with thermal stress. These ESTs encode for 
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heat shock protein 70, heat shock protein 98, trehalose-6-phosphate synthase, import 

translocase tim 50, NADP alcohol dehydrogenase, DMP phosphatase, hypothetical protein 

AN5480.2, hypothetical protein EAL 90164.1, AAA family ATPase, transcriptional activator 

HAA1.  

For each gene, a pair of specific primers was designed using Primer 3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi) (Rozen & Skaletsky, 2000) in order to 

produce 120-180 bp amplicons (Table 1a and 1b). 

 

Each primer pair was first tested with qRT-PCR in order to check that its PCR 

amplification efficiency was superior than 0.90. For each gene, the melting curve profile was 

first inspected in order to verify amplification specificity. Standard curves were then 

determined by plotting the threshold cycle (Ct) values of serial 10-fold dilutions (5, 50, 500, 

5000) of a calibrator cDNA template as a linear function of the log of the dilution factor. The 

calibrator cDNA was obtained by reverse transcription on a mix of different stressed or 

control RNAs. Expression values were then calculated with the threshold cycle (Ct) of the 

fluorescence measures obtained. Normalised data were calculated with the 2
−ΔΔCt

 method 

(Livak & Schmittgen, 2001) using the expression of an internal control gene. Microarray and 

qRT-PCR results obtained for the ten selected genes, were then compared using a Bland–

Altman plot (Bland & Altman, 1996) as implimented by others (Steenman et al., 2005). 
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Results 

 

Subtracted cDNA libraries  

 

More than 1300 clones were randomly selected from the forward and reverse cDNA 

subtracted libraries constructed for Penicillium glabrum after comparison between C (25 °C) 

and S (40 °C, 120 min). Among them, 1056 positive clones were sequenced and finally 913 

clean and useful cDNA sequences were obtained. Using BLASTx on GenBank and Swiss-

Prot protein databases, 80 % of these sequences matched with ORFs of other fungi: 

Aspergillus nidulans, Aspergillus fumigatus, Emericella nidulans, Neurospora crassa, 

Saccharomyces cerevisiae, Schizosaccharomyces pombe (Fig 2a). Analysis of these data  

allowed isolation of 445 non-redundant Expressed Sequence Tags (ESTs) with E value lower 

than 10
-5

. Only eight of the 445 ESTs were represented by more than eight different cDNA 

clones. The two reciprocal subtracted libraries contained 197 and 275 potentially up- and 

down-regulated ESTs, respectively; 27 of them were shared by both libraries. The results 

obtained were available from our website at http://pagesperso.univ-

brest.fr/~vasseur/Nevarez_et_al_2008/. The 197 potentially up-regulated ESTs were 

composed by 108 identified ESTs, 48 ESTs with hypothetical functions and 41 ESTs that 

appeared unknown in the databases. From the 275 ESTs contained in the down-regulated 

library, 195 matched with annotated sequences, 47 had hypothetical functions and 33 

appeared to be unknown. Of all the isolated ESTs, 64 % showed similarity with annotated 

ORFs, 20 % encoded for hypothetical proteins and 16 % did not match any sequence in the 

public databases (Fig. 2b). 
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The analysis of both subtracted libraries showed a wide variety of ESTs encoding for 

proteins of different functional classes (Fig. 2c and 2d). Several ESTs coding for proteins 

often associated with cellular stress (heat shock proteins, trehalose-6-phosphate synthase, 

superoxide dismutase) appeared up-regulated after thermal stress (Fig. 2c). ESTs encoding 

other categories of proteins (metabolism, protein fate, transport proteins, etc.) showed 

relatively similar representation in both libraries. Some ESTs appeared down-regulated in P. 

glabrum after heat shock (Fig. 2d), as those encoding proteins involved in transcription (RNA 

polymerase, initiation factor, splicing factors, etc.) or implicated in protein synthesis 

(ribosomal proteins, translation initiation factors, elongation factors, etc.). Other ESTs 

isolated in each library coded for hypothetical or unknown proteins 

 

cDNA microarray construction and RNA target preparation 

 

The differential expression of ESTs isolated from SSH was analysed using custom-

made cDNA microarrays. Amplified cDNAs isolated from up- and down-regulated subtracted 

libraries were spotted on cDNA microarrays. Each slide contained, in triplicate, the 913 

subtracted cDNA corresponding to 445 different ESTs isolated from SSH. Many ESTs were 

represented by one to four different cDNA sequences and some were even represented by up 

to eight cDNAs. This redundancy was useful for evaluating the reproducibility of the 

expression results obtained for each EST. 

Before target preparation, the quality of total RNAs extracted was first verified. 

Analysis of total RNA triplicates from C conditions revealed a convenient profile with three 

different and clearly defined peaks, corresponding to migration marker, 18S and 28S rRNAs. 

Similar results were obtained for total RNA triplicates extracted from S1, S2, S3 and S4 (data 

not shown). Analysis of total RNA samples from the more drastic S5 condition (47°C, 42 



 16 

min) showed a migration marker peak and a large amount of very small RNA fragments 

indicating substantial total RNA degradation. We thus excluded the S5 stress condition from 

the central composite design. 

 

 

Determination of housekeeping genes for validation of gene expression using RT-q-PCR  

 

The final validation of the microarray results by qRT-PCR, requires previous selection 

of internal reference genes for qRT-PCR normalisation. Expression of the eight potential 

housekeeping genes selected (β-actin, adenosine kinase, 14-3-3 protein homolog, FAD 

dependent sulfhydryl oxidase, copper-fist DNA binding domain protein, ATP synthase 

gamma chain, Pre-mRNA splicing factor ini1 and S-phase kinase-associated protein 1A) was 

assessed under the different experimental conditions (C, S1, S2, S3, S4) with qRT-PCR. For 

each primer pair tested, PCR specificity was confirmed by melting curve analysis (data not 

shown). Expression results obtained for the eight genes tested were comparable, where Ct 

values were stable under C, S1, S2 conditions but substantially increased under S3 and S4 

conditions (Fig. 3). Given these results, normalisation of qRT-PCR results could not be 

applied to S3 and S4 conditions since stable expression of internal control genes is required 

for each tested condition. As microarray data could not be validated for these thermal stress 

conditions, analysis was only done on S1 and S2 conditions. Beta-actin was selected as 

housekeeping gene for qRT-PCR normalisation, owing to its stable expression under C, S1, 

S2 conditions and its frequent use in the literature. ATP synthase gamma chain and adenosine 

kinase were also useful genes and were used to further confirm qRT-PCR normalisation (data 

not shown).  
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Microarray results for S1 and S2 thermal stress conditions  

 

Based on the 913 cDNA sequences spotted in triplicate representing 445 different 

ESTs, the statistical analysis of results with a global ANOVA and LSD test indicated 35 and 

49 significantly up- and down-regulated ESTs. Their S-to-C expression ratios corresponded to 

at least a +/-0.7 log2 (1.62-fold change). Expression of most of the isolated ESTs represented 

a ca. +/-2-fold change, but a few ESTs showed up to +3.5- and even a -5.0-fold change for 

up- and down-regulated ESTs, respectively. 

 

Analysis of the microarray results revealed 49 highly significant down-regulated ESTs 

under thermal stress conditions S1 and S2 (Table 2). From this set, 26 ESTs encoded 

ribosomal proteins and accounted for 53% of the results. This large group also contained 

ESTs encoding proteins implicated in transcription (bZip transription factor CpscA, 

transcriptional activator HAA1, histone H4, etc.), RNA splicing (U6 small nuclear RNA 

associated protein, mago nashi protein homolog) and protein synthesis (translation elongation 

factors G2). A few proteases (glutamate carboxypeptidase-like protein, candidapepsin 2 

precursor (aspartate protease)) and proteins involved in general metabolism (xanthine 

phophoribosyltransferase 1 and ornithine decarboxylase) were also observed. Few down-

regulated ESTs also encoded miscellaneous proteins and few hypothetical or unknown 

proteins. 

 

From the microarray results, 35 highly significant up-regulated ESTs were identified 

for thermal stress conditions S1 and S2 (Table 3). From this set, six and four ESTs encoded 

heat shock proteins (HSP 30, HSP 60, HSP 70, mitochondrial HSP 70, HSP 90, HSP 98/104) 

and proteins with antioxidant functions (superoxide dismutase, glutathione S-transferase 3, 
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cytochrome c oxidase polypeptide VIa, flavohemoprotein), respectively. The up-regulated 

EST set also included seven other ESTs coding for metabolism proteins (L-xylulose 

reductase, mannitol-1-phosphate-5-dehydrogenase, 2,3-diketo-5-methylthio-1-

phosphopentane phosphatase, carboxylesterase, NADP-dependent alcohol dehydrogenase, 

trehalose-6-phosphate synthase). Up-regulated ESTs were also completed by few ESTs 

encoding proteases (aspergillopepsin A and vacuolar protease A) and other miscellaneous 

proteins. About 37% of identified up-regulated ESTs coded for hypothetical or unknown 

proteins. 

 

Validation of microarray results with RT-q-PCR 

 

The microarray results obtained for S1 and S2 conditions were validated by assessing 

the expression level of a set of 10 differentially expressed ESTs selected from the microarray 

analysis using qRT-PCR. Relative expression ratios of the 10 selected ESTs were normalised 

against β-actin gene expression and results obtained were comparable to results from the 

microarray (Table 4). The Bland–Altman plot (Fig. 4) carried out with values obtained for S1 

and S2 conditions, showed that all of the log2–transformed microarray data and qRT-PCR 

data lay within the „‟95 % confidence intervals‟‟, delimited by a difference of 1. Moreover, 

more than 65% of the comparisons differed by less than 0.5. This similarity between both sets 

of data validate the microarray results for S1 and S2 conditions. Reliability of the data was 

further verified as similar results were also obtained by normalising qRT-PCR results with 

expression of the two other housekeeping genes selected: adenosine kinase and ATP synthase 

(data not shown).  
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Discussion  

 

In the first part of the study, SSH was applied on Penicillium glabrum to isolate 913 

cDNA sequences corresponding to 445 differentially expressed ESTs in response to thermal 

stress (i.e. 40°C, 120 min). SSH is frequently employed to isolate differentially expressed 

genes in response to varying nutritional or environmental conditions. SSH overcomes the 

problem of transcript abundance differences in the mRNA population by incorporating a 

normalisation step which equalises the relative quantity of the cDNA. It enhances the 

probability of identifying the increased expression of low-abundance transcripts (Diatchenko 

et al., 1996; Gurskaya et al., 1996). 

Many of the isolated ESTs encoded proteins with a wide variety of functions while 

some of them corresponded to hypothetical or unknown proteins. The large number of ESTs 

is remarkable compared to results obtained from similar studies on other fungi. For example, 

SSH was used to isolate specific transcripts in either yeast or mycelial forms of Ophiostoma 

piceae or P. marneffei and only revealed 50 and 43 genes, respectively (Dogra & Breuil, 

2004; Liu et al., 2007). Other studies conducted on the effects of different nutritional growth 

conditions, isolated 37 genes implicated in growth with penicillin-repressing or non-

repressing carbon sources in P. chrysogenum (Castillo et al., 2006). The large number of 

ESTs isolated here in P. glabrum under heat shock conditions (i.e. 40°C, 120 min) and their 

wide functional classification, could be explained by the fact that temperature is involved in 

general cellular mechanisms and influences many functional categories. It has been shown 

that two-thirds of the Saccharomyces cerevisiae genome is involved in response to 

environmental changes such as temperature, oxidation, nutriments, pH and osmolarity 

(Causton et al., 2001).  
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Expression of ESTs contained in both subtracted libraries was further assessed, using 

microarrays to confirm their differential expression under thermal stress conditions. Custom 

cDNA microarray is a very convenient tool for studying subtracted libraries in details and are 

more appropriate than Northern blots or qRT-PCR methods for assessing the expression of a 

large number of ESTs. The combination of SSH and custom cDNA microarrays has been 

previously employed in Gibberella zeae to identify genes involved in sexual reproduction 

(mediated by ascospores) and implicated in disease occurring in cereal crops (Lee et al., 

2006). In our study, the custom microarray used in triplicates of the 913 subtracted cDNA 

sequences isolated corresponded to 445 different ESTs. Beyond just confirming the subtracted 

library approach, microarrays were also employed to analyse expression of these ESTs under 

five different thermal stress conditions (S1, S2, S3, S4 and S5).  

Degradation total RNA observed in S5 conditions (47°C, 198min) leads us to 

eliminate this experiment from the study. This result may be correlated with a decrease of 

mycelium growth observed under these conditions: fungal dry weight decreased about 35% 

compared to dry weight in optimal growth conditions (unpublished data). Microarray analysis 

for the four other stress conditions, required final validation by qRT-PCR and prior selection 

of an internal reference gene for normalisation. As no housekeeping genes have yet been 

defined for P. glabrum or closely related fungal species, comparative studies and microarrays 

were used. Other than the seven potential housekeeping genes selected after microarray 

analysis, the β-actin gene was also chosen among other well-known internal reference genes 

such as β-tubulin, glyceraldehyde-3-phosphate dehydrogenase and 18S ribosomal RNA 

(Bustin, 2000; Livak & Schmittgen, 2001). Selection of β-actin was based on its frequent use 

in qRT-PCR normalisation in Candida albicans (Nailis et al., 2006), Phytophthora infestans 

(Armstrong et al., 2005) and Neurospora crassa (Mohsenzadeh et al., 1998).  The systematic 

increase in Ct values observed using qRT-PCR for every gene tested in S3 and S4 conditions 
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compared to C, S1 and S2 conditions in spite of the fact that mRNA quantity and quality was 

validated before RT. Variation in cDNA abundance can be partially explained by mRNA 

instability after exposure to high temperatures (Bond, 2006). For example, substantial decay 

of Hsp70 mRNA was reported in S. cerevisiae after a 3-h exposure to 48°C (Kapoor et al., 

1995). Messenger RNA decay primarily involves deadenylation or decapping (Tucker & 

Parker, 2000; Wilusz et al., 2001).  These processes probably affect mRNA stability and 

reverse transcription (Fleige & Pfaffl, 2006) without any change in the global quantity of 

mRNA. Given the increase in Ct values, housekeeping genes were not stable and microarray 

analyses were not possible for S3 and S4 conditions. This result was surprising since a 

preliminary study in P. glabrum only showed a slight decrease in growth under similar 

conditions (40°C, 120 min; unpublished data). Analysis of the quality of the total RNAs 

extracted from S3 and S4 conditions indicated that RNA integrity appeared conserved under 

both conditions. In addition, other thermal stress studies on fungi have been successfully 

conducted at temperatures close to 40°C: 37°C for S. cerevisiae (Gasch et al., 2000; Causton 

et al., 2001; Sakaki et al., 2003),  39° for Schizosaccharomyces pombe (Chen et al., 2003), 42 

°C for N. crassa (Mohsenzadeh et al., 1998), 45 °C for C. albicans  (Zeuthen & Howard, 

1989) and 50°C for Aspergillus (Bai et al., 2003). Nevertheless, results obtained for S3 and 

S4 conditions clearly showed that defining a standard “housekeeping” gene can be difficult 

for experiments conducted under diverse conditions as reported by some authors (Schmittgen 

& Zakrajsek, 2000; Yan & Liou, 2006). 

 

Given these results, both S3 and S4 conditions were excluded from the microarray 

analysis and results obtained for S1 and S2 were then confirmed using qRT-PCR on 10 genes 

as observed in the Bland-Altman plot (see Fig. 4). Statistical treatment of the microarray data, 

identified 35 significantly up-regulated ESTs and 49 significantly down-regulated. Some of 
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the down-regulated ESTs encoded proteases or general metabolism proteins. To our 

knowledge none of these genes have ever been described as being down-regulated in previous 

thermal stress studies performed on fungi. Another group of down-regulated ESTs encoded 

proteins implicated in transcription, RNA splicing and protein synthesis. Several studies 

carried out on S. cerevisiae exposed to thermal stress (25°C to 37°C) have also reported 

down-regulation of genes coding for histone H4 (Gasch et al., 2000; Causton et al., 2001; 

Sakaki et al., 2003), translation elongation factor G2 (Sakaki et al., 2003) and U6 small 

nuclear RNA associated protein (Gasch et al., 2000). The group of ESTs involved in 

translation included a large set of 27 ESTs encoding ribosomal proteins. Down-regulation of 

these ESTs and repression of the corresponding protein synthesis have been frequently 

reported in the literature. In S. cerevisiae, it has been shown that ribosomal protein synthesis 

is repressed after exposure to 33°C for 90 min (Gorenstein & Warner, 1976), seemingly 

linked to a decrease of their corresponding mRNAs (Hereford & Rosbash, 1977) caused by 

inhibition of their transcription (Kim & Warner, 1983). Microarray studies at 25° to 37°C in 

S. cerevisiae and at 30° to 39°C in Sc. pombe (Gasch et al., 2000; Causton et al., 2001; Chen 

et al., 2003; Sakaki et al., 2003) also confirmed down-regulation of this genes in response to 

thermal stress. For example, in S. cerevisiae mRNAs have been reported to represent an 

important part of total poly(A)
+ 

mRNAs; repression of these genes may therefore allow 

energy to be dedicated to increased expression of genes involved in protective response 

(Jelinsky & Samson, 1999). This last group of ESTs encoding for ribosomal proteins, may 

contain some potential candidates for molecular markers of thermal stress in P. glabrum. 

 

In addition, we identified 35 up-regulated ESTs that encoded proteases and some 

proteins implicated in metabolism. As for down-regulated ESTs, and to our knowledge, none 

of these genes have been previously reported in the literature on fungi, except trehalose-6-
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phosphate synthase (tpsA), frequently described as being induced under heat shock conditions 

in yeasts (Gasch et al., 2000; Causton et al., 2001; Chen et al., 2003; Sakaki et al., 2003). 

Trehalose has been described to act as a protectant against various environmental stresses and 

has been showed to stabilize cellular structures under stress conditions (Tereshina, 2005). 

This disaccharide has been previously described in S. cerevisae to play a role in the 

acquisition of stress tolerance (De Virgilio et al., 1994; Hottiger et al., 1994; Singer & 

Lindquist, 1998). For P. glabrum, although it has never been reported in the literature, an 

accumulation of trehalose concurs with our preliminary results (unpublished data).  

A group of up-regulated ESTs encoding HSPs was also identified in our study. These 

highly conserved proteins are certainly the most investigated element of the thermal stress 

response and increase in expression of the corresponding genes has been frequently observed 

in thermal stress studies (Lindquist, 1986). These proteins are classified into several families 

according to their molecular mass and, despite their different roles and proprieties, most HSPs 

have been shown to generally act as molecular chaperones. They are mainly involved in 

folding, assembly, regulation, degradation of other proteins and play an important role in 

thermotolerance (Craig, 1985; Feder & Hofmann, 1999).  

Exposure to elevated temperatures has been previously reported to generate reactive 

oxygen species (ROS) responsible for oxidative damage in yeasts and filamentous fungi 

(Davidson et al., 1996; Noventa-Jordao et al., 1999; Bai et al., 2003). As observed in our 

results, antioxidant systems appear to be extremely important for detoxifying cells. The 

synthesis of enzymes such as superoxide dismutase, glutathione S transferase, cytochrome c 

oxidase VIa, may serve to reduce the level of ROS in cells  (Choi et al., 1998; Marques et al., 

2004). In S. cerevisiae, it was shown that the synthesis of superoxide dismutase is enhanced in 

thermal stress conditions (Piper, 1995) and plays a role in resistance to heat shock from 30°C  

to 50°C (Davidson et al., 1996). Microarray studies on the yeasts S. cerevisiae and Sc. pombe 
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have also confirmed induction of genes encoding superoxide dismutase, cytosolic glutathione 

S-transferase and cytochrome c oxidase popypeptide VIb (which has similarity to cytochrome 

c oxidase popypeptide VIa gene isolated in this study) (Gasch et al., 2000; Causton et al., 

2001; Chen et al., 2003). These ESTs coding for antioxidant proteins also appeared to be 

induced in heat shocked P. glabrum and could be potential molecular markers of thermal 

stress. 

 

Considering these results, the present study provides a preliminary basis for the 

genetic regulation of thermal stress response in P. glabrum. Temperature is one of the most 

important factors for fungal growth and as others may represent potential sources of stress 

that can directly affect the physiology of fungi (growth, conidiation, synthesis of secondary 

metabolites, etc.). The transcriptional analysis performed here combined efficient and 

complementary molecular techniques making it possible to isolate 84 heat-regulated ESTs 

having a wide variety of functions and to assess their expression under thermal stress 

conditions. Some of these ESTs have already been associated with different stress-related 

responses as they encode heat shock proteins, trehalose-6-phosphate synthase, superoxide 

dismutase, ribosomal proteins or proteins involved in transcription/translation. In P. glabrum, 

they may be “common environmental stress response” genes and respond in a similar manner 

to many different environmental changes as those identified in studies on yeasts (Gasch et al., 

2000; Chen et al., 2003). On the other hand, a large number of isolated ESTs encoded general 

metabolism proteins, proteases, miscellaneous proteins and hypothetical or unknown proteins.  

To our knowledge, a large majority of them have never been associated with fungal stress 

before and may represent new potential stress markers to characterise the physiological state 

of P. glabrum (stressed or unstressed). Nevertheless as reported by some authors, caution 

should be taken when analysing microarray results as mRNA stability and decay induced by 
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stress treatments may vary and have some influence gene expression profiling (Monje-Casas 

et al., 2004; Michan et al., 2005). Further investigations may study more precisely the 

stability of each mRNA and investigate the response of the different potential markers 

isolated. 
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Tables : 

Table 1: 

(a) Primer sequences for the set of eight potential housekeeping genes. (b) Primer sequences 

for the set of 10 genes selected for validating the microarray results with qRT-PCR 

a 
    

     

EST    Primer   Primer sequence 5'->3' 

     

β-actin   β-actin-F  ACGTTGTCCCCATCTACGAA 

  β-actin-R  GCTCAGCCAGGATCTTCATC 

Adenosine Kinase  AK-F  CTGGAGGACTCCGTTGACAT 

  AK-R  TCCCAGAGTGGAAAATCCTG 

14-3-3 protein homolog   14-3-3-F  CCGAGCGCTATGAAGAGATG 

  14-3-3-R  ACTCCTCCTTCTGCTCGATG 

FAD dependent sulfhydryl oxidase   FAD-F  AACCTCATTATGCGCCTCAC 

  FAD-R  GGGCTTCCTGAAGCTTTTCT 

Copper fist DNA binding domain protein  Copper fist-F  AGGTAGTCCGACCAATGACG 

  Copper fist-R  GGCGATATTTCCGAAGTTGA 

ATP synthase gamma chain  ATP synth-F  AACCTCATTATGCGCCTCAC 

  ATP synth-R  GGGCTTCCTGAAGCTTTTCT 

Pre-mRNA splicing factor ini1   Pre-mRNA-F  TACCCCTCCACTCCACAAAG 

  Pre-mRNA-R  GGTACACGCCTTGAGAAGGA 

S-phase kinase-associated protein 1A   S-Phase-F  ATGATGACAATCGTCGCAAG 

  S-Phase-R  GGGGATTTGCCCTTAATCAT 
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b 
    

 
    

EST    Primer   Primer sequence 5'->3' 

     

Heat shock protein 70  Hsp 70-F  CCCGTCATTGAGGTTGAGTT 

  Hsp 70-R  TGGGAGTCGTTGAAGTAGGC 

Heat shock protein 98/104  Hsp 98-F  GAATGATTGGTGCACCTCCT 

  Hsp 98-R  CCATCAGCTGCAAAAGAACA 

Trehalose-6-phosphate synthase   TpsA-F  TGGGTGTCTTGCATTGTGAT 

  TpsA-R  CTTTTCAGGGTCGATTCCAA 

Import inner membrane translocase tim50  Tim50-F  AGGGTAGCCAGATCCCTGTT 

  Tim50-R  AGACCTCGCCATCCATAGTG 

NADP-dependant alcohol dehydrogenase  NADP Alcohol DH-F  TGACAGGCTTGATTTGGTGA 

  NADP Alcohol DH-F  GGTGACCTGAAGGTTCCGTA 

2,3-diketo-5-methylthio-1-phosphopentane phosphatase  2,3 phosphatase-F  TCAAGCCAGCACTGATAACG 

  2,3 phosphatase-R  CGGTCTTTCCGTGAAGTCTC 

Conserved hypothetical protein AN5480.2   AN5480.2-F  AGAATCTTCCAGCCGTTCAA 

  AN5480.2-R  ATCATGACTCGCGGAGAAAG 

Hypothetical protein  EAL90164.1  EAL90164.1-F  CCTCCCAACCTCAAACTCAA 

  EAL90164.1-R  GTCATCATCGGACTGGGACT 

AAA family ATPase  AAA ATPase-F  GCGACACTCTCAGCAGTCAG 

  AAA ATPase-R  CAAGGGTCAGGAGGACTTCA 

Transcriptional activator HAA1  HAA1-F  TCGCATAAAGCGAAAAGGTC 

  HAA1-R  TGTGAATTTGCGGTTGTGTT 

          

 

 

 

 

 

 

 



 34 

Table 2: 

List of ESTs isolated using microarrays as significantly down-regulated in thermal stress 

conditions S1 and S2. 

 

 

Gene homolog Accession number   Fold change    Significance 

  Swiss-prot  Genbank    (S1-C) (S2-C)     

Ribosomal proteins:        

40S ribosomal protein S2 P25443   -1,99 -1,87  *** 

40S ribosomal protein S5 a / b         O14277 / Q9P3T6   -2,20 -1,77  *** 

40S ribosomal protein S8 a / b O14049 / Q9P7B2    -2,21 -1,69  *** 

40S ribosomal protein S9 P52810   -2,44 -1,87  *** 

40S ribosomal protein S11 P79013   -2,05 -1,65  *** 

40S ribosomal protein S12                     O59936   -2,85 -2,20  *** 

40S ribosomal protein S16           Q42340   -2,39 -1,85  *** 

40S ribosomal protein S17 P27770   -2,12 -1,53  *** 

40S ribosomal protein S23 Q873W8   -2,56 -2,19  *** 

40S ribosomal protein S25 Q7SC06   -2,03 -1,68  *** 

60S ribosomal protein L2 Q75AP7   -1,68 -1,40  *** 

60S ribosomal protein L10a Q7RZS0   -3,02 -2,42  *** 

60S ribosomal protein L11 Q758S7   -1,75 -1,76  *** 

60S ribosomal protein L14 a P36105   -2,49 -1,83  *** 

60S ribosomal protein L15 O13418   -2,92 -2,21  *** 

60S ribosomal protein L18b Q8TFH1   -2,17 -1,90  *** 

60S ribosomal protein L23 P04451   -2,50 -1,85  *** 

60S ribosomal protein L26b Q9FJX2   -2,38 -1,92  *** 

60S ribosomal protein L30 Q7S7F1   -4,02 -2,27  *** 

60S ribosomal protein L34 b P40525   -3,76 -2,76  *** 

60S ribosomal protein L35 Q8L805   -2,31 -1,65  *** 

60S ribosomal protein L38 Q9C2B9   -2,90 -2,15  *** 

60S ribosomal protein L44 P52809   -2,83 -2,25  *** 

60S ribosomal protein L5  O59953   -1,83 -1,46  *** 

60S ribosomal protein L8  O13672   -1,90 -1,55  *** 

Ribosome biogenesis protein RPF2 P36160   -1,72 -1,46  ** 

        

Transcription and translation proteins:        

Histone H4 P04914    -1,82 -1,34  *** 
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Translation elongation factor G2  EAL91882.1  -1,85 -1,50  *** 

Translationally controlled tumor protein homolog  P35691   -2,06 -1,58  *** 

Transcriptional activator HAA1               Q12753    -2,77 -2,90  ** 

bZIP transcription factor CpcA   EAL89546.1  -1,93 -1,96  ** 

U6 snRNA-associated protein LSm3 (splicing) Q9Y7M4   -1,92 -1,57  *** 

Mago nashi protein homolog (splicing) P49030   -1,95 -1,64  * 

        

Metabolism proteins:        

Xanthine phosphoribosyltransferase 1  P47165    -1,85 -1,54  ** 

Ornithine decarboxylase  P27121   -2,58 -2,14  * 

        

Proteases:        

Candidapepsin 2 precursor (Aspartate protease ) P28871   -2,01 -1,97  *** 

Glutamate carboxypeptidase-like protein Q9P6I2   -1,63 -1,37  * 

        

Miscellaneous proteins:        

AAA family ATPase  EAL86805.1  -1,73 -2,19  *** 

Guanine nucleotide-binding protein (protein G)  Q01369   -2,01 -1,53  *** 

Prefoldin subunit 6  (actin chaperone protein)  EAL92646.1  -2,18 -1,58  *** 

        

Hypothetical proteins / unknown proteins :       

Hypothetical protein Afu1g07570    EAL88465.1  -1,64 -1,47  *** 

Hypothetical protein AN0409.2    XP_658013.1  -2,13 -1,81  *** 

Hypothetical protein AN5226.2    XP_662830.1  -2,21 -1,64  ** 

Hypothetical protein MG04362.4   XP_361917.1  -2,21 -2,07  * 

Unknown protein F17    -1,94 -1,41  *** 

Unknown protein F26    -1,74 -1,49  *** 

Unknown protein F6    -2,84 -2,60  *** 

Unknown protein F9    -2,08 -1,77  *** 

Unknown protein R16    -3,70 -2,71  *** 

                

        

*   Significant        

**  Highly significant        

*** Very highly significant        
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Table 3: 

List of ESTs isolated using microarrays as significantly up-regulated in thermal stress 

conditions S1 and S2. 

 

 
Gene homolog Accession number   Fold change    Significance 

  Swiss-prot  Genbank    (S1-C) (S2-C)     

Chaperones:             

Heat shock protein 30  P40920   +2,67 +2,51  *** 

Heat shock protein 60 O60008   +1,74 +1,43  *** 

Heat shock protein 70  Q92260   +2,98 +1,93  *** 

Heat shock protein 90  P40292   +3,55 +2,06  *** 

Heat shock protein 98 / 104  P31540   +2,28 +2,06  *** 

Mitochondrial Hsp70 chaperone (Ssc70)  EAL93290.1  +1,66 +1,35  ** 

        

Antioxidant proteins:        

Cytochrome c oxidase polypeptide VIa P32799   +1,65 +1,52  ** 

Superoxide dismutase Q9UQX0   +1,65 +1,62  *** 

Flavohemoprotein (Hemoglobin-like protein)   EAL84490.1  +1,69 +1,26  *** 

Glutathione S-transferase 3  AAX07321  +1,87 +1,60  *** 

        

Metabolism proteins:        

Trehalose-6-phosphate synthase tpsA O59921   +2,36 +1,67  *** 

2,3-diketo-5-methylthio-1-phosphopentane phosphatase  EAL86676.1  +4,34 +2,33  *** 

Carboxylesterase  EAL92659.1  +2,14 +1,60  *** 

L-xylulose reductase Q8NK50   +3,00 +1,92  *** 

Mannitol-1-phosphate 5-dehydrogenase Q6AHH7   +3,22 +2,18  *** 

Plasma membrane ATPase  (proton pump )      P24545   +1,69 +1,42  *** 

NADP-dependent alcohol dehydrogenase  EAL84214.1  +2,64 +1,77  *** 

        

Proteases:        

Aspergillopepsin A Q06902   +1,68 +1,63  ** 

Vacuolar protease A  Q01294   +1,78 +1,63  *** 

        

Miscellaneous proteins:        

Metalloreductase, putative  EAL85757.1  +1,71 +1,60  ** 



 37 

Import inner membrane translocase subunit tim50 Q4WI16   +1,66 +1,66  ** 

Protein bli-3 (blue light-inducible protein)  EAL90736.1   +2,30 +2,05  ** 

        

Hypothetical proteins / unknown proteins:        

Integral membrane protein  EAL87419.1  +2,51 +2,02  *** 

Predicted protein   XP_322336.1  +1,71 +1,86  *** 

Conserved hypothetical protein    EAL90164.1  +3,58 +2,26  *** 

Hypothetical protein AN0677.2    XP_658281.1  +1,76 +1,46  ** 

Hypothetical protein AN5056.2   XP_662660.1  +2,42 +2,00  ** 

Hypothetical protein AN5480.2   XP_663084.1  +3,23 +1,99  *** 

Hypothetical protein AN5537.2    XP_663141.1  +2,12 +1,68  *** 

Hypothetical protein AN9515.2    XP_868897.1  +3,01 +1,87  *** 

Unknown protein F18    +1,77 +1,66  *** 

Unknown protein F23    +1,70 +1,78  ** 

Unknown protein R10    +2,57 +1,71  *** 

Unknown protein R29    +1,96 +1,60  ** 

Unknown protein R36    +2,93 +1,91  ** 

                

        

*   Significant        

**  Highly significant        

*** Very highly significant        
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Table 4: 

Microarray expression ratios and relative expression results obtained with qRT-PCR in S1 

and S2 conditions for the 10 selected ESTs.  β-actin gene expression was used for 

normalisation of qRT-PCR results. 

 

 

 

    S1-C   S2-C 

  Relative expression  Relative expression 

EST  Accession number Microarrays qRT-PCR  Microarrays qRT-PCR 

              

Heat shock protein 70 Q92260 +2,98 +4,41  +1,93 +2,71 

Heat shock protein 98 / 104 P31540 +2,28 +3,34  +2,06 +3,68 

Trehalose-6-phosphate synthase  O59921 +2,36 +4,22  +1,67 +2,07 

Import inner membrane translocase subunit tim50 Q4WI16 +1,66 +1,87  +1,66 +1,98 

NADP-dependent alcohol deshydrogenase EAL84214.1 +2,64 +4,17  +1,77 +2,49 

2,3-diketo-5-methylthio-1-phosphopentane phosphatase EAL86676.1 +4,34 +3,80  +2,33 +2,17 

Hypothetical protein AN5480.2  XP_663084.1 +3,23 +2,19  +1,99 +1,24 

Conserved hypothetical protein  EAL90164.1 EAL90164.1 +3,58 +3,84  +2,26 +1,80 

AAA family ATPase EAL86805.1 -1,73 -2,25  -2,19 -2,81 

Transcriptional activator HAA1 Q12753 -2,77 -2,67  -2,90 -2,91 
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Figure legends: 

 

Fig. 1. The central composite design used to investigate transcriptional effect of thermal stress 

in Penicillium glabrum. 

 

Fig. 2. Transcriptional analysis of Penicillium glabrum under thermal stress (40°C, 120 min) 

with SSH. (a) Global distribution of BlastX best hits of up- and down-regulated subtracted 

libraries among organisms; (b) Global view of proteins encoded by ESTs isolated in both up- 

and down-regulated subtracted libraries. (c) Functional classification of proteins encoded by 

ESTs isolated in the up-regulated library and (d) the down-regulated subtracted library. 

 

Fig. 3.  Results obtained with qRT-PCR (Ct) for potential housekeeping genes in control (C) 

and thermal stress conditions (S1, S2 , S3 and S4). □ ATP synthase gamma chain , ▲ β-actin, 

♦ adenosine kinase, ○ S-phase kinase-associated protein 1A, ■ 14-3-3 protein homolog, ▵ 

copper-fist DNA binding domain protein, ● FAD dependent sulfhydryl oxidase, ◊ pre-mRNA 

splicing factor ini1. 

 

Fig. 4. Bland–Altman plot showing the agreement between expression ratios obtained in S1 

and S2 conditions, with qRT-PCR and microarray analysis for the 10 selected genes. 


