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In this paper, we extend the uniqueness theorem for meromorphic mappings to the case where the family of hyperplanes depends on the meromorphic mapping and where the meromorphic mappings may be degenerate.

Introduction

The uniqueness problem of meromorphic mappings under a condition on the inverse images of divisors was first studied by Nevanlinna [START_REF] Nevanlinna | Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen[END_REF]. He showed that for two nonconstant meromorphic functions f and g on the complex plane C, if they have the same inverse images for five distinct values, then f ≡ g. In 1975, Fujimoto [START_REF] Fujimoto | The uniqueness problem of meromorphic maps into the complex projective space[END_REF] generalized Nevanlinna's result to the case of meromorphic mappings of C m into CP n . He showed that for two linearly nondegenerate meromorphic mappings f and g of C m into CP n , if they have the same inverse images counted with multiplicities for (3n + 2) hyperplanes in general position in CP n , then f ≡ g.

In 1983, Smiley [START_REF] Smiley | Geometric conditions for unicity of holomorphic curves[END_REF] showed that Theorem 1. Let f, g be linearly nondegenerate meromorphic mappings of C m into CP n . Let {H j } q j=1 (q ≥ 3n + 2) be hyperplanes in CP n in general position. Assume that a) f -1 (H j ) = g -1 (H j ) , for all 1 ≤ j ≤ q (as sets), b) dim f -1 (H i ) ∩ f -1 (H j ) ≤ m -2 for all 1 ≤ i < j ≤ q , c) f = g on q j=1 f -1 (H j ) . Then f ≡ g.

In 2006 Thai-Quang [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF] generalized this result of Smiley to the case where q ≥ 3n + 1 and n ≥ 2. In 2009, Dethloff-Tan [START_REF] Dethloff | Uniqueness theorems for meromorphic mappings with few hyperplanes[END_REF] showed that for every nonnegative integer c there exists a positive integer N(c) depending only on c such that Theorem 1 remains valid if q ≥ (3n + 2 -c) and n ≥ N(c). They also showed that the coefficient of n in the formula of q can be replaced by a number which is smaller than 3 for all n >> 0. Furthermore, they established a uniqueness theorem for the case of 2n + 3 hyperplanes and multiplicities are truncated by n. At the same time, they strongly generalized many uniqueness theorems of previous authors such as Fujimoto [4], Ji [START_REF] Ji | Uniqueness problem without multiplicities in value distribution theory[END_REF] and Stoll [START_REF] Stoll | On the propagation of dependences[END_REF]. Recently, by using again the technique of Dethloff-Tan [START_REF] Dethloff | Uniqueness theorems for meromorphic mappings with few hyperplanes[END_REF], Chen-Yan [START_REF] Chen | Uniqueness theorem of meromorphic maps into P N (C) sharing 2N + 3 hyperplanes regardless of multiplicities[END_REF] showed that the assumption "multiplicities are truncated by n" in the result of Dethloff-Tan can be replaced by "multiplicities are truncated by 1". In [START_REF] Quang | Unicity problem of meromorphic mappings sharing few hyperplanes[END_REF], Quang examined the uniqueness problem for the case of 2n + 2 hyperplanes.

We would like to note that so far, all results on the uniqueness problem have still been restricted to the case where meromorphic mappings are sharing a common family of hyperplanes. The purpose of this paper is to introduce a uniqueness theorem for the case where the family of hyperplanes depends on the meromorphic mapping. We also will allow that the meromorphic mappings may be degenerate. For this purpose we introduce some new techniques which can also be used to obtain simpler proofs for many other uniqueness theorems.

We shall prove the following uniqueness theorem: Theorem 2. Let f, g be nonconstant meromorphic mappings of C m into CP n . Let {H j } q j=1 and {L j } q j=1 (q > 2n + 2) be families of hyperplanes in CP n in general position. Assume that a)

f -1 (H j ) = g -1 (L j ) for all 1 ≤ j ≤ q , b) dim f -1 (H i ) ∩ f -1 (H j ) ≤ m -2 for all 1 ≤ i < j ≤ q , c) (f,H i ) (g,L i ) = (f,H j ) (g,L j ) on q k=1 f -1 (H k ) \ f -1 (H i ) ∪ f -1 (H j ) for all 1 ≤ i < j ≤ q .
Then the following assertions hold :

i) dim Imf = dim Img Def.
=: p, where for a subset X ⊂ CP n , we denote by X the smallest projective subspace of CP n containing X.

ii)

If ( * ) q > 2n + 3 -p + (2n + 3 -p) 2 + 8(p -1)(2n -p + 1) 2 (≥ 2n + 2), then (f, H 1 ) (g, L 1 ) ≡ • • • ≡ (f, H q ) (g, L q ) .
Furthermore, there exists a linear projective transformation L of CP n into itself such that L(f ) ≡ g and L(H j ∩ Imf ) = L j ∩ L( Imf ) for all j ∈ {1, . . . , q}.

Remark. 1.) In Theorem 2 condition c) is well defined since, by condition a), (f,H i ) (g,L i ) is a (nonvanishing) holomorphic function outside f -1 (H i ).

2.) The condition ( * ) is satisfied in the following cases: +) q ≥ 2n + 3 and p ∈ {1, 2, n -1, n}, n ∈ Z + . +) q ≥ 2n + p + 1 and p ∈ {2, 3, . . . , n}, n ∈ Z + . 3.) If there exists a subset {j 0 , . . . , j n } ⊂ {1, . . . , q} such that H j i ≡ L j i for all i ∈ {0, . . . , n}, then the proof of Theorem 2 implies that f ≡ g.

4.) For the special case where f, g are linearly nondegenerate (i.e. p = n) and H j ≡ L j , from Theorem 2 we get again the results of Dethloff-Tan [START_REF] Dethloff | Uniqueness theorems for meromorphic mappings with few hyperplanes[END_REF] and Chen-Yan [START_REF] Chen | Uniqueness theorem of meromorphic maps into P N (C) sharing 2N + 3 hyperplanes regardless of multiplicities[END_REF].

Preliminaries

We set z :

= |z 1 | 2 + • • • + |z m | 2 1/2 for z = (z 1 , . . . , z m ) ∈ C m and define B(r) := z ∈ C m : z < r , S(r) := z ∈ C m : z = r for all 0 < r < ∞. Define d c := √ -1 4π (∂ -∂), υ := dd c z 2 m-1 σ := d c log z 2 ∧ dd c log z 2 m-1 .
Let F be a nonzero holomorphic function on C m . For each a ∈ C m , expanding F as F = P i (z -a) with homogeneous polynomials P i of degree i around a, we define ν F (a) := min i : P i ≡ 0 .

Let ϕ be a nonzero meromorphic function on C m . We define the zero divisor ν ϕ as follows: For each z ∈ C m , we choose nonzero holomorphic functions F and G on a neighborhood U of z such that ϕ = F/G on U and dim

F -1 (0) ∩ G -1 (0) m -2.
Then we put ν ϕ (z) := ν F (z). Let ν be a divisor in C m and k be positive integer or +∞. Set |ν| := z : ν(z) = 0 and ν [k] (z) := min{ν(z), k}.

The truncated counting function of ν is defined by

N [k] (r, ν) := r 1 n [k] (t) t 2m-1 dt (1 < r < +∞),
where

n [k] (t) =          |ν|∩B(t) ν [k] • υ for m 2, |z| t ν [k] (z) for m = 1.
We simply write N(r, ν) for N [+∞] (r, ν).

For a nonzero meromorphic function ϕ on C m , we set

N [k] ϕ (r) := N [k] (r, ν ϕ ) and N ϕ (r) := N [+∞] (r, ν ϕ ).
We have the following Jensen's formula:

N ϕ (r) -N 1 ϕ (r) = S(r) log|ϕ|σ - S(1)

log|ϕ|σ.

Let f : C m -→ CP n be a meromorphic mapping. For an arbitrary fixed homogeneous coordinate system (w 0 :

• • • : w n ) in CP n , we take a reduced representation f = (f 0 : • • • : f n ), which means that each f i is a holomorphic function on C m and f (z) = (f 0 (z) : • • • : f n (z)) outside the analytic set {f 0 = • • • = f n = 0} of codimension 2. Set f = |f 0 | 2 + • • • + |f n | 2 1/2 . The characteristic function T f (r) of f is defined by T f (r) := S(r) log f σ - S(1) log f σ, 1 < r < +∞.
For a meromorphic function ϕ on C m , the characteristic function T ϕ (r) of ϕ is defined by considering ϕ as a meromorphic mapping of C m into CP 1 .

We state the First Main Theorem and the Second Main Theorem in Value Distribution Theory: For a hyperplane H :

a 0 w 0 + • • • + a n w n = 0 in CP n with Imf ⊆ H, we put (f, H) = a 0 f 0 + • • • + a n f n , where (f 0 : • • • : f n ) is a reduced representation of f . First Main Theorem. Let f be a meromorphic mapping of C m into CP n ,
and H be a hyperplane in CP n such that (f, H) ≡ 0. Then

N (f,H) (r) T f (r) + O(1) for all r > 1.
Let n, N, q be positive integers with q ≥ 2N -n + 1 and N ≥ n. We say that hyperplanes H 1 , . . . , H q in CP n are in N-subgeneral position if ∩ N i=0 H j i = ∅ for every subset {j 0 , . . . , j N } ⊂ {1, . . . , q}.

Cartan-Nochka Second Main Theorem ( [START_REF] Noguchi | A note on entire pseudo-holomorphic curves and the proof of Cartan-Nochka's theorem[END_REF], Theorem 3.1). Let f be a linearly nondegenerate meromorphic mapping of C m into CP n and H 1 , . . . , H q hyperplanes in CP n in N-subgeneral position (q ≥ 2N -n + 1). Then

(q -2N + n -1)T f (r) q j=1 N [n] (f,H j ) (r) + o T f (r)
for all r except for a subset E of (1, +∞) of finite Lebesgue measure.

Proof of Theorem 3

We first remark that f -1 (H j ) = g -1 (L j ) = CP n for all j ∈ {1, . . . , q}, and that therefore {H j ∩ Imf } q j=1 (respectively {L j ∩ Img } q j=1 ) are hyperplanes in Imf (respectively Img ) in n-subgeneral position: Indeed, otherwise there exists t ∈ {1, . . . , q} such that f -1 (H t ) = CP n . Then by the assumption b) we have dimf -1 (H j ) ≤ m -2 for all j ∈ {1, . . . , q} \ {t}. Therefore, f -1 (H j ) = ∅ for all j ∈ {1, . . . , q} \ {t}. Then Imf ⊂ H j for all j ∈ {1, . . . , q} \ {t}. Thus, {H j ∩ Imf } q j=1 j =t are hyperplanes in Imf in n-subgeneral position. By the Cartan-Nochka Second Main Theorem, we have

(q -2n + dim Imf -2)T f (r) ≤ q j=1 j =t N [dim Imf ] (f,H j ) (r) + o(T f (r)) = o(T f (r)).
This is a contradiction to the fact that q > 2n + 2.

Since {H j } n+1 j=1 and {L j } n+1 j=1 are families of hyperplanes in general position, f := (f, H 1 ) : • • • : (f, H n+1 ) and g := (g, L 1 ) : • • • : (g, L n+1 ) are reduced representations of meromorphic mappings f and g respectively of

C m into CP n . Furthermore, dim Imf = dim Im f , dim Img = dim Img , T f (r) = T f (r) + O(1) and T g (r) = T g (r) + O(1).
By assumptions a) and c) we that f = g on ∪ q j=1 f -1 (H j ).

(3.1)

We now prove that

dim Imf = dim Img Def. = p. (3.2)
This is equivalent to prove that dim Im f = dim Img . Therefore, it suffices to show that for any hyperplane H in CP n then (H, f ) ≡ 0 if and only if (H, g) ≡ 0.

Suppose that the above assertion does not hold. Without loss of the generality, we may assume that there exists a hyperplane H such that (H, f ) ≡ 0 and (H, g) ≡ 0. Then by (3.1) we have

( f , H) = 0 on ∪ q j=1 f -1 (H j ). (3.3) 
By (3.3) and by the First Main Theorem and the Cartan-Nochka Second Main Theorem we have

(q -2n + dim Imf -1)T f (r) + O(1) ≤ q j=1 N [dim Imf ] (f,H j ) (r) + o(T f (r)) ≤ dim Imf q j=1 N [1] (f,H j ) (r) + o(T f (r)) (3.3) ≤ dim Imf N ( f ,H) (r) + o(T f (r)) ≤ dim Imf T f (r) + o(T f (r)) = dim Imf T f (r) + o(T f (r)).
This is a contradiction to the fact that q > 2n + 2. We complete the proof of (3.2). Now we prove that

(f, H 1 ) (g, L 1 ) ≡ • • • ≡ (f, H q ) (g, L q ) . (3.4)
We distinguish the following two cases: Case 1: There exists a subset J := {j 0 , . . . , j n } ⊂ {1, . . . , q} such that

(f, H j 0 ) (g, L j 0 ) ≡ • • • ≡ (f, H jn ) (g, L jn ) Def.
≡ u .

We have Pole(u)∪Zero(u) ⊂ f -1 (H j 0 ) ∩f -1 (H j 1 ), which is an analytic set of codimension at least 2 by assumption b). Hence, Pole(u) ∪ Zero(u) = ∅.

Since H j 0 , ..., H jn are hyperplanes in general position, F := (f, H j 0 ) :

• • • : (f, H jn ) is the reduced representation of a meromorphic mapping F of C m into CP n . Still by the same reason T F (r) = T f (r) + O(1).
Suppose that (3.4) does not hold. Then, there exists i 0 ∈ {1, . . . , q} \ {j 0 , . . . , j n } such that

(f, H i 0 ) (g, L i 0 ) ≡ u. (3.5)
Since the families {H j } q j=1 and {L j } q j=1 are in general position, there exist hyperplanes

H i 0 : a 0 ω 0 + • • • + a n ω n = 0, L i 0 : b 0 ω 0 + • • • + b n ω n = 0 in CP n such that (f, H i 0 ) ≡ (F, H i 0 ), and (g, L i 0 ) ≡ b 0 (g, L j 0 ) + • • • + b n (g, L jn ) ≡ (F,L i 0 ) u
. Therefore, by (3.5) we have

(F, H i 0 ) (F, L i 0 ) ≡ (f, H i 0 ) u(g, L i 0 ) ≡ 1.
By assumption c) and since Pole(u) ∪ Zero(u) = ∅, we have u =

(f,H j 0 ) (g,L j 0 ) = (f,H i 0 ) (g,L i 0 ) = u (F,H i 0 ) (F,L i 0 ) on q k=1 f -1 (H k ) \ f -1 (H i 0 )∪f -1 (H j 0 ) and u = (f,H j 1 ) (g,L j 1 ) = (f,H i 0 ) (g,L i 0 ) = u (F,H i 0 ) (F,L i 0 ) on q k=1 f -1 (H k ) \ f -1 (H i 0 )∪f -1 (H j 1 ) . Then (F,H i 0 ) (F,L i 0 ) = 1 on q k=1 f -1 (H k ) \ f -1 (H i 0 ). Therefore, q k=1,k =i 0 N [1] (f,H k ) (r) ≤ N (F,H i 0 ) (F,L i 0 ) -1 (r) ≤ T (F,H i 0 ) (F,L i 0 ) (r) + O(1) ≤ T F (r) + O(1) = T f (r) + O(1).
Therefore, by the Cartan-Nochka Second Main Theorem we have

T f (r) + O(1) ≥ q k=1,k =i 0 N [1] (f,H k ) (r) ≥ q k=1,k =i 0 1 p N [p] (f,H k ) (r) ≥ q -2n + p -2 p T f (r) -o(T f (r)).
This implies that q ≤ 2n + 2. This is a contradiction. Hence, we get (3.4) in this case.

Case 2: For any subset J ⊂ {1, . . . , q} with #J = n + 1, there exists a pair i, j ∈ J such that (f,

H i ) (g, L i ) ≡ (f, H j ) (g, L j ) .
We introduce an equivalence relation on

L := {1, • • • , q} as follows: i ∼ j if and only if det   (f, H i ) (f, H j ) (g, L i ) (g, L j )   ≡ 0. Set {L 1 , • • • , L s } = L/ ∼. It is clear that ♯L k ≤ n for all k ∈ {1, • • • , s}.
Without loss of generality, we may assume that

L k := {i k-1 + 1, • • • , i k } (k ∈ {1, • • • , s}) where 0 = i 0 < • • • < i s = q.
We define the map σ :

{1, • • • , q} → {1, • • • , q} by σ(i) = i + n if i + n ≤ q, i + n -q if i + n > q.
It is easy to see that σ is bijective and | σ(i) -i |≥ n (note that q > 2n + 2). This implies that i and σ(i) belong to distinct sets of {L 1 , • • • , L s }. This implies that for all i ∈ {1, . . . , q},

P i := det   (f, H i ) (f, H σ(i) ) (g, L i ) (g, L σ(i) )   ≡ 0.
By the assumption and by the definition of function P i , we have

ν P i ≥ min{ν (f,H i ) , ν (g,L i ) } + min{ν (f,H σ(i) ) , ν (g,L σ(i) ) } + q j=1 j =i,σ(i) ν [1] (f,H j ) (3.6)
outside an analytic set of codimension ≥ 2. On the other hand, since f

-1 (H k ) = g -1 (L k ) we have min{ν (f,H k ) , ν (g,L k ) } ≥ min{ν (f,H k ) , p} + min{ν (g,L k ) , p} -p min{ν (f,H k ) , 1} = ν [p] (f,H k ) + ν [p] (g,L k ) -pν [1] (f,H k )
for k ∈ {i, σ(i)}. Therefore, by (3.6) we have

ν P i ≥ ν [p] (f,H i ) + ν [p] (g,L i ) + ν [p] (f,H σ(i) ) + ν [p] (g,L σ(i) ) -pν [1] (f,H i ) -pν [1] (f,H σ(i) ) + q j=1 j =i,σ(i) ν [1] (f,H j )
outside an analytic set of codimension ≥ 2. Then for all i ∈ {1, . . . , q} we have

N P i (r) ≥ N [p] (f,H i ) (r) + N [p] (g,L i ) (r) + N [p] (f,H σ(i) ) (r) + N [p] (g,L σ(i) ) (r) -pN [1] (f,H i ) (r) -pN [1] (f,H σ(i) ) (r) + q j=1 j =i,σ(i) N [1] (f,H j ) (r). (3.7)
On the other hand, by Jensen's formula

N P i (r) = S(r) log |P i |σ + O(1) ≤ S(r) log(|(f, H i )| 2 + |(f, H σ(i) )| 2 ) 1 2 σ + S(r) log(|(g, L i )| 2 + |(g, L σ(i) )| 2 ) 1 2 σ + O(1) ≤ T f (r) + T g (r) + O(1).
Therefore, by (3.7) for all i ∈ {1, . . . , q} we have

N [p] (f,H i ) (r) + N [p] (g,L i ) (r) + N [p] (f,H σ(i) ) (r) + N [p] (g,L σ(i) ) (r) -pN [1] (f,H i ) (r) -pN [1] (f,H σ(i) ) (r) + q j=1 j =i,σ(i) N [1] (f,H j ) (r) ≤ T f (r) + T g (r) + O(1). (3.8)
By summing-up of both sides of the above inequality for all i ∈ {1, . . . , q}, we have

2 q j=1 N [p] (f,H j ) (r) + N [p] (g,L j ) (r) + (q -2p -2) q j=1 N [1] (f,H j ) (r) ≤ q T f (r) + T g (r) + O(1). (3.9) Therefore, since f -1 (H j ) = g -1 (L j ) we have 2 q j=1 N [p] (f,H j ) (r) + N [p] (g,L j ) (r) + q -2p -2 2 q j=1 N [1] (f,H j ) (r) + N [1] (g,L j ) (r) ≤ q T f (r) + T g (r) + O(1). (3.10) Then 2 + q -2p -2 2p q j=1 N [p] (f,H j ) (r) + N [p] (g,L j ) (r) ≤ q T f (r) + T g (r) + O(1). (3.11) 
By (3.11) and by the Cartan-Nochka Second Main Theorem we have

(q + 2p -2)(q -2n + p -1) 2p T f (r) + T g (r) ≤ q T f (r) + T g (r) + o T f (r) + T g (r) .
It follows that (q + 2p -2)(q -2n + p -1) ≤ 2pq. Then q 2 -(2n + 3 -p)q -2(p -1)(2n + 1 -p) ≤ 0. This is a contradiction to condition ( * ) of Theorem 2. Thus we have completed the proof of (3.4).

Assume that H j : This implies that L( Imf ∩H j ) = L j ∩L( Imf ) for all j ∈ {1, . . . , q}, which completes the proof of Theorem 2. 2

a j0 ω 0 + • • • + a jn ω n = 0, L j : b j0 ω 0 + • • • + b jn ω n = 0 (j = 1, . . . , q). Set A :=     

  L = B -1 •A.By(3.4), we have A(f ) ≡ B(g), so we get L(f ) ≡ g.Set H * j = (a j0 , . . . , a jn ) ∈ C n+1 , L * j = (b j0 , . . . , b jn ) ∈ C n+1 . We writeH * j = α j1 H * 1 + • • • + α j(n+1) H * n+1 and L * j = β j1 L * 1 + • • • + β j(n+1) L * n+1 . By (3.4) we have α j1 (f, H 1 ) + • • • + α j(n+1) (f, H n+1 ) β j1 (g, L 1 ) + • • • + β j(n+1) (g, L n+1 ) ≡ (f, H 1 ) (g, L 1 ) ≡ • • • ≡ (f, H n+1 ) (g, L n+1 )for all j ∈ {1, . . . , q}. This implies that(α j1 -β j1 )(f, H 1 ) + • • • + (α j(n+1) -β j(n+1) )(f, H n+1 ) ≡ 0 (3.12)for all j ∈ {1, . . . , q}.On the other hand f : C m -→ Imf is linearly nondegenerate and {H j } n+1 j=1 are in general position in CP n . Thus, by (3.12) we have(α j1 -β j1 )(ω, H 1 ) + • • • + (α j(n+1) -β j(n+1) )(ω, H n+1 ) = 0 (3.13)for all ω ∈ Imf for all j ∈ {1, . . . , q}.Let hyperplanes α j :α j1 ω 0 + • • • + α j(n+1) ω n = 0 and β j : β j1 ω 0 + • • • + β j(n+1) ω n = 0 (j = 1, . . . , q). By (3.13) we have (A(ω), α j ) = (A(ω), β j ) (3.14)for all ω ∈ Imf and j ∈ {1, . . . , q}.For any j ∈ {1, . . . , q} and for any ω ∈ Imf we have(ω, H j ) = α j1 (ω, H 1 ) + • • • + α j(n+1) (ω, H n+1 ) = (A(ω), α j )(3.14)= (A(ω), β j ) = (B • L(ω), β j ) = β j1 (L(ω), L 1 ) + • • • + β j(n+1) (L(ω), L n+1 ) = (L(ω), L j ).
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