
HAL Id: hal-00504455
https://hal.univ-brest.fr/hal-00504455v1

Submitted on 27 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resources Annotation, Retrieval and Presentation: a
semantic annotation management system

Marc Albert, Ceddrik Allery, Nicolas Freiss, Grégory L’Azou, Alban Moreau,
Jonathan Piron, Vincent Ribaud, Philippe Saliou

To cite this version:
Marc Albert, Ceddrik Allery, Nicolas Freiss, Grégory L’Azou, Alban Moreau, et al.. Resources An-
notation, Retrieval and Presentation: a semantic annotation management system. CSTST 2008, Oct
2008, France. pp.303-309. �hal-00504455�

https://hal.univ-brest.fr/hal-00504455v1
https://hal.archives-ouvertes.fr

Resources Annotation, Retrieval and Presentation:
a Semantic Annotation Management System

M. Albert
C. Allery

Software Engineering by
Immersion Masters

 mxalbert@gmail.com
ceddrik.allery@gmail.com

N. Freiss
G. L’Azou

Software Engineering by
Immersion Masters

nicolas.freiss@gmail.com
gregory.lazou@gmail.com

A. Moreau
J. Piron

Software Engineering by
Immersion Masters

moreaualb@gmail.com
jonathanpiron@gmail.com

V. Ribaud
Ph. Saliou

Computing Department
University of Brest

ribaud@univ-brest.fr
saliou@univ-brest.fr

ABSTRACT
This paper addresses the problem of the management of
resources metadata. A variety of responses are discussed, and
we describe one possible way forward, which uses a semantic
annotation management tool. The term ‘semantic’ describes the
ability to create, retrieve, query and navigate knowledgeably
about things identified by a Web URI. The support for this
semantic tool is RDF, through the integration of Jena, an open-
source RDF API provided by HP laboratory. Thanks to RDF
capabilities, this tool offers new search features such as
hierarchical browsing based on the structure of RDF
vocabularies and faceted-browsing using properties lists defined
by the end-user. The navigation inside annotations uses
intuitive modes such as left/right and backward/forward
movements. Presentation is controlled by the user using a
subset of the Fresnel language to specify how RDF graphs are
presented. This work is ongoing; certain open issues are raised.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Web-based interaction.

General Terms
Languages.

Keywords
RDF, semantic web, annotation.

1. INTRODUCTION
Tim Berners-Lee interviewed by [9] about his vision of the
Semantic Web answered that “the goal of the Semantic Web
initiative is to create a universal medium for the exchange of
data where data can be shared and processed by automated tools
as well as by people”. As [3] pointed out, one of the basic
milestones on the road to a Semantic Web is the linking of
metadata to content. The Dublin Core Metadata Initiative is one
of the most important organizations dedicated to promoting
interoperable metadata standards and developing specialized
metadata vocabularies for describing resources that enable more
intelligent information discovery systems [1]. According to [1],
a metadata record consists of a set of attributes, or elements,

necessary to describe the resource in question. For example, a
metadata system common in libraries - the library catalogue -
contains a set of metadata records with elements that describe a
book or other library item: author, title, date of creation or
publication, location of the item on the shelf …

 RDF (Resource Description Framework) [6] is a W3C (World
Wide Web Consortium) standard intended for the management
of metadata. RDF models metadata as 3-tuples (triples) which
assert that a resource (identified by URI - Uniform Resource
Identifier) has a property (identified by URI) which has a value
identified either by URI, or given literally. RDF is suitable for
the management of metadata records, each attribute of the
record being represented by one or more triples. The linkage
between a metadata record and the resource it describes may
take one of two forms: elements may be contained in a record
separate from the item, as in the case of the library's catalogue
record; or the metadata may be embedded in the resource itself
[1]. Hence, there are two main solutions for the management of
metadata records, either the building of an independent system
or the addition of an extension to the resource management
system itself.

Expressing metadata records in RDF allows us to see metadata
as semantic annotations. RDF annotations allow expression of
valued properties on resources and/or typed links between
resources. From a conceptual viewpoint, it is possible to
organize properties, links and concepts in a vocabulary through
the use of the RDF Schema (RDFS) language.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.The Semantic
Web - as hypertext - is based on the idea that knowledge must
be represented in a formal way and cannot be centrally created
and stored. The motivation behind our work is to provide a
group of persons with an easy-to-use metadata management
system. This system will support the process of building and
sharing collective knowledge related to the group’s concerns.

The KnowKnow software described in this paper is intended to
manage metadata records as an independent system. Thanks to
RDF capabilities, this tool offers new search and retrieve
features allowing views, navigations and queries along semantic
annotation rather than simply keyword and text searching and
indexing. The KnowKnow software has been developed by a
team of 6 graduate students on a Masters program in Software
Engineering work placement. They worked half-time from
September 2007 to May 2008 and delivered a first version of
the system.

The main contribution of this software system is to provide
hierarchical and faceted browsing; intuitive navigation inside
the metadata space, and to offer the end-user the possibility of
controlling presentation of results. This paper presents related
work, the main features of the software, current limitations and
perspectives.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Post-print submitted to CSTST’08, October, 2008, Cergy-Pontoise,
Paris, France.
Copyright 2008 ACM 1-58113-000-0/00/0008.

2. METADATA MANAGEMENT
The semantics of Dublin Core have been established by an
international, cross-disciplinary group of professionals and we
must understand the issues that they were faced with.

The Dublin Core basic element set comprises fifteen elements.
Each element is optional and may be repeated. Most elements
also have a limited set of qualifiers or refinements - attributes
that may be used to further refine (not extend) the meaning of
the element. Metadata record management should take into
account the following features:

1. property-centred: annotating resources is not classifying
resources; users have some knowledge about a resource and
this can be expressed with an element (a property) but it
does not mean that the resource belongs to an identified
class of a taxonomy.

2. multi-valued: zero, one or several values can be provided
for the same property (e.g. author) and there is often no way
of knowing the authorized cardinality of a property in
advance.

3. sub-properties: different communities of metadata experts
will create and administer different metadata sets,
specialized to the needs of their communities; hence, a
mechanism has to be provided for extending a common
element set for additional resource discovery needs.

4. value types: we need schemes that aid in the interpretation
of an element value; these schemes include controlled
vocabularies and formal notations or parsing rules.

Relational or object-relational management information systems
are not suitable for the implementation of these features.
Fortunately, RDF-based systems are fully compliant with these
needs and can be used as the core of metadata management
systems.

3. RELATED WORK
Semantic Web tools fall into several categories: semantic
browsers, semantic annotations tools and semantic search tools
are of particular interest in our context. Semantic annotation
stores information about resources using semantic information
from domain ontologies (called vocabularies in RDFS).
Searches exploit ontologies to orient information retrieval and
to make inferences about metadata. Semantic browsers present
interfaces from a combination of relevant information,
ontological specifications, and presentation knowledge [4].

3.1 RDF Browsers
Browsing an RDF-based repository requires the presentation of
many small pieces of information linked together through
named relationships. Rutledge et al. [8] provide a good survey
of semantics browsers classified into three categories: global,
local or integrated interfaces. Our system uses an integrated
interface with a global view based on the underlying structure
(queries or vocabularies or facets) and a local view focused on
the selected resource and those directly hyperlinked with this
focal point.

[8] states that most assume the Semantic Web can have no such
immediate accessibility as with general-purpose browsers, being
instead accessible only indirectly through user interfaces
encoded for specific domains. One key factor in this assumption
is that RDF lacks the document structure HTML and other
XML formats have: primarily, that of hierarchy and sequence.
Converting RDF structure to document structure in a domain-
independent manner would give the information it encodes the

same accessibility and approachability HTML enjoys. Our
system follows a different approach: the hierarchical structure
(vocabulary/class/property) is always available to the user but
he/she mostly defines and uses his/her own structure.

3.2 Semantic Annotation Tools
Uren et al. [10] provide a complete survey of semantic
annotation for knowledge management. They state that a
document centric process must handle three classes of data:
ontologies, documents and annotations and that they need to be
supported by different kind of tools: semantic search tools,
ontology maintenance tools, annotation tools required to cope
with the re-versioning and reuse of documents, the evolution of
ontologies and the users’ and rights management. In our case,
documents are managed outside our system. The required tools
are provided but the evolution of both ontologies (vocabularies)
and annotations related to the evolving vocabulary represents a
weak point of our system, and needs to be improved.

3.3 Semantic Search Tools
In a recent work, Uren et al. [11] review the four modes of user
interaction in existing semantic search systems, namely
keyword-based, form-based, view-based and natural language-
based systems. [11] concludes that future development should
focus on multimodal search systems, which exploit the
advantages of more than one mode of interaction, and on
developing search systems capable of searching heterogeneous
semantic metadata on the open semantic Web. Our system uses
a combination of keyword-based and view-based searches. It
needs to be enhanced with a pseudo-natural language based on
vocabularies’ structure which would guide the user in
formulating searches.

4. AN ANNOTATION SYSTEM

4.1 Semantic Annotation of Resources
An annotated system is a system which “knows about” its own
content in order that automated tools can process annotations to
improve use of the system. For example, semantic annotations
can describe documents’ authors and their relationships, as well
as including traditional metadata, such as the document subject
and date of publication. With statements written in RDF, we
can then support SPARQL queries like “give me all the married
people who have written documents on the Semantic Web”.

4.2 Overview of the Project

4.2.1 The Team
The Master program called “Software Engineering by
Immersion” provides software engineering learning by doing,
with a long-term project as the foundation of all
apprenticeships. Young engineers make up two teams of 6; each
team is led by one associate professor acting as project
manager. This year, one team’s project aims to provide a
semantic annotation management system called KnowKnow.

4.2.2 Project Objectives and Outcomes
Each person or group manages a space of information that
covers all information items (or resources) that he/she uses. The
use of semantic annotations can considerably help to manage
spaces of information. Annotations help to acquire, organize,
maintain and retrieve information for everyday use. The main
goal of KnowKnow is to enhance existing resources
management systems with semantic annotations. KnowKnow
use several kinds of tools:

� Vocabularies maintenance tools are used to input
vocabularies to the system and maintain vocabularies.

� Semantic search tools are used to connect and exploit
annotations on resources. They are based on the SPARQL
language and the building of queries relies on vocabularies
managed by the system.

� Semantic annotation tools also rely on the system’s
vocabularies, and allow the annotation of resources using
RDF triples. Import of existing triples is provided.

� The presentation tool aims to display part of RDF graphs
and link to other parts with a detail level parameterized by
the end-user.

4.3 Components of KnowKnow

4.3.1 Jena: a Semantic Web Toolkit
RDF and RDFS management is based on the Jena API. Jena is a
leading Semantic Web programmers’ toolkit. It is an open-
source project, implemented in Java, and available for
download from http://jena.sourceforge.net/.

4.3.2 Triples
The small chunks of information called triples form the basis of
an RDF-based system. A semantic annotation in RDF is a triple
<subject, property, object>. The object value can be a literal or
a URI; if the object is a URI , it can be used as the subject of
another triple. We get a graph of annotations linked together
(called a Model in Jena).

4.3.3 Vocabularies
A vocabulary (or schema) contains properties. RDF provides no
mechanisms for describing these properties, nor does it provide
any mechanisms for describing the relationships between these
properties and other resources. That is the role of the RDF
vocabulary description language, RDF Schema. RDFS provides
constructs to describe groups of similar resources (classes) and
to describe links between resources or between resources and
literals (valued properties).

The RDFS system of classes and properties is very similar to
the type system of a language like Java but a fundamental
difference in RDFS is that a vocabulary describes properties
relative to the classes that properties apply to, rather than
describing classes relative to the properties that class instances
share. This enables the addition of new properties to existing
resources without the need to update a centralized description.
RDFS is a frame-centred language and not a class-centred
language. Vocabularies without classes (with properties only)
such as the Dublin Core are very common.

4.3.4 SPARQL Queries
SPARQL is a query language for getting information from RDF
graphs. SPARQL contains capabilities for querying by triple
patterns, conjunctions, disjunctions, and optional patterns.
Results of SPARQL queries can be ordered and presented in
several different forms. Through the integration of the Jena
SPARQL engine, KnowKnow offers triple querying and queries
management.

4.3.5 Profiles
A profile is an execution context for a user, which the user
wishes to keep, so as to be able to re-apply it in similar
situations. Profile management enables it to be deleted,
duplicated or to request that it be treated as the default profile.

5. SOME KNOWKNOW FEATURES

5.1 Architecture

5.1.1 Sub-systems
The KnowKnow system uses a three-tier architecture in which
the user interface, functional process logic, computer data
storage and data access are developed and maintained as
independent modules, on separate platforms. Sub-systems are:
Oracle database, Hibernate persistent layer, Spring framework
running on Tomcat, JSF for the user-layer. The architecture
achieves a clean separation of business logic, page navigation,
and user interface by adhering to a model, view, controller
(MVC) architecture.

5.1.2 Domain Model
An RDF-based system is, at least partially, domain-independent
and provides features available on virtually any RDF repository.
One of the implications of this is that no domain (data) model is
hardly-coded in the system providing users with predefined
concepts and associations of a given domain such as clients,
commands, etc.

End-users import vocabularies to the system and use either new
imported concepts, or existing ones, to annotate resources. For
example, the vocabulary from INRIA used as an example
throughout this paper defines the class Animal, its subclasses
Person, Male, Female ... and their relationships with the use of
RDFS (a UML class-based representation is given in figure 1).

Figure 1. Class-based representation of the sample
vocabulary

5.1.3 Storage Mismatch
Triples are stored in the Oracle database as a large and flat data
store but the Jena API provides object classes (‘model’ in the
MVC sense) to represent graphs, resources, properties and
literals allowing easy object-oriented access to the Jena RDF
store.

RDFS constructs need to be treated differently. An RDFS
vocabulary description is itself expressed in RDF with the use
of concepts such as class, property, domain, range, etc. RDF
provides no easy distinction between a triple describing values
and one which is describing type information. It may be
difficult for the end-user to figure out the underlying domain
model (the structure) of the annotations he/she manages.

The structure of vocabularies is widely used in the KnowKnow
software to adapt user interface and present annotations in
different ways described below: focal point, hierarchical
searches, faceted browsing, and queries management. Although
RDFS constructs exist in the Jena storage sub-system as triples,
they need to be reified and stored in a conventional manner -
such as a data dictionary in a database management system.

This ‘normal’ structure facilitates the development of software
interfaces, especially in a web-based system. Unfortunately, this
means that information about vocabularies exists in two
separate and distinct places: the Jena RDF store and a
vocabulary dictionary that is part of a ‘normal’ Oracle database.
In addition, special attention has to be paid to consistency
between these two representations.

5.2 Search modes
One kind of search is classical and exploits properties used as
annotations. Search criteria can be combined through Boolean
operators. One issue is to facilitate the building of queries.

Searches can use taxonomies. In a taxonomy, a controlled
vocabulary (defined by a group or a community of practice) is
hierarchically organized. Taxonomies are a kind of “a priori”
indexation. The visual presentation of a taxonomy - the user
interface - is a reliable representation of the semantic
organization of the domain.

Faceted classification provides a way to design hierarchies
which are simpler and more lightweight. Facets organization
(criteria and values) is no longer hierarchical, but multi-
dimensional. Classification schemes are not predefined but built
by users. Faceted search provides navigation throughout
different dimensions or “facets” of searched objects.

As pointed out by [8], a user - browsing an RDF repository
storing many small chunks of information with many explicit
relationships among them - cannot succeed without the help of
an interface which makes the underlying structure explicit. The
display giving a global view of these many relationships is
referred to as the global interface, while the display that
presents a small part of the RDF graph related to the current
interest of the user (in greater or lesser detail) is called a local
interface.

These different search modes will be illustrated on a set of
annotations controlled by the vocabulary presented in figure 1.

5.2.1 Multi-criteria Search

Figure 2. Multi-criteria search

A multi-criteria query defines search criteria with property-
value couples (search predicates) associated with a comparison

operator; couples (predicates) being linked with logical
connectors and a priority system. Logical aspects (connectors
and priority) have to be simplified because we argue that most
queries use one or two predicates. Building of the query is
dynamic and based on information stored in a dictionary of
vocabularies. The KnowKnow system displays a textual
representation of the query under construction.

In the example shown in figure 2, we search persons aged 18 or
over and wearing size 7 shoes.

Asking for a query processing yield to generate and then
process a SPARQL query, and finally the display of a list of
URIs (e.g. #Karl and #Laura) matching the search criteria. The
global interface is the query under construction. This request,
once processed, populates the local interface (below the query)
with a list of matching URIs.

5.2.2 Hierarchical browsing
Web information portals provide a point of access onto an
integrated and structured body of information about a domain.
Many portals use a hardwired navigation structure based on a
single rich classification scheme (e.g. Dublin Core) coupled to
hyper linking of related items and free text search. Yahoo is a
canonical example.

In an RDF-based repository, the classification scheme is
dynamic. Each time a user inserts triples using properties from a
new vocabulary, the classification scheme is enhanced with the
structure of this new vocabulary. Hierarchical browsing
provides users with access to resources through the taxonomy
of classes that resources belong to.

KnowKnow displays the classification in the same way as many
code browsers or ontology browsers do it, and an example is
provided in figure 3. In the global interface (the left part of the
frame), the hierarchical structure is presented to the user. If a
class has subclasses, the sub-tree can be deployed / undeployed.
If a selected class has resources, URIs are presented in the local
interface (the right part of the frame).

Figure 3. Hierarchical browsing

5.2.3 Faceted browsing
Annotations use a richly structured internal descriptive schema
(the structures of different vocabularies) and KnowKnow offers
a rich search interface which can exploit this schema. This
allows search to be tied to specific facets of the descriptive
metadata and to exploit controlled vocabulary terms - leading to
searches that are far more precise [7].

Faceted classification allows the grouping (and retrieval) of
resources into different categories. Each category (or faceted-
list) is organized with the help of a hierarchical list of
properties. The first property in a list constrains the grouping at
the higher level: all resources having the same value for this
highest-level property belong to the same group (within a given
category). Each category builds its own groups in an

independent manner. Thus a single resource belongs to several
different groups, in accordance with its properties values.

Let us take an example of two faceted-lists: the former “Vital
record” uses the age property then the name property; the latter
“Fashion” uses the sequence of shoesize, trousersize, shirtsize
properties. The resource identified by the URI #Laura is 20-
years old, wears size 7 shoes and size 28 trousers. Thus, this
resource belongs simultaneously to the group of twenty-year
olds for the first facet and the group of size 7-shoe for the
second facet. Inside this latter group, #Laura belongs to the
subgroup of size 28-trouser.

If a user chooses to visit a given group, only resources from this
group are selected for the next step. The following properties in
the faceted-list are used to separate the selected group into sub-
groups with the same rule: each sub-group is constituted with
resources of the original group having the same value for the
second property. Thus, the user can browse concepts through
facets that are in fact successive filters on sets of resources.

In figure 4, a user has first selected the value 7 for the property
shoesize, then the value 28 for the property trousersize (as
represented in the History sub-frame). #Lucas and #Laura are
the only matching URIs. The “Fashion” facet thus proposes the
third property of the list (shirtsize) in order to refine the
browsing. Properties of the first list (Vital record) were never
used, hence the first property age is available for and to build
further subgroups (in this example, a 20-year old group and a
12-year old group). The Browse subframe together with the
History subframe yield the global interface; while URIs of
resources whose property values match the values selected are
presented in the local interfaces - the Results subframe.

Figure 4. Faceted browsing (1)

Faceted browsing is not restricted to a unique faceted-list: at
every moment, the current property of any facet can be used to
restrict results; e. g. in the figure 5, a user selected the value 7
for the property age, leading the system to display a restricted
result set in the local interface and the next property (name) of
the “Vital record” facet.

Figure 5. Faceted browsing (2)

5.3 Navigation and Presentation Modes
Navigation provides a route inside annotations along different
roads that link resources. The user can either flit between links,
or browse facets, or explore the hierarchy, or search with
criteria (see previous sections). In order to help him/her to flit
about, it may be necessary to orient the user and to provide
beaconed roads.

The Haystack framework [4] provides a Semantic Web-based
personal information management system, integrating
(Semantic) Web browsing. Haystack authors argue in favour of
separating content (that is under the publisher’s responsibility)
from presentation (an issue for the end user, aware of what
he/she wants to be displayed).

5.3.1 Presentation Choices
W3C’s answer to the presentation problem is the Fresnel
initiative [2]. Fresnel is a simple, browser-independent
vocabulary for specifying how RDF graphs are presented. The
concept is very close to the use of CSS style sheets for the
rendering of HTML pages. Fresnel lenses define which
properties of an RDF resource, or group of related resources,
are displayed and how those properties are ordered.

Lenses are defined by users and stored in visualization profiles.
In the example of figure 6, a lens is defined on the class Person
and may indicate that only shoesize and age properties are of
interest to the user of this profile and should be displayed.
:exempleInriaLens
 rdf:type fresnel:Lens ;
 fresnel:classLensDomain ex:Person ;
 fresnel:showProperties
 (ex:shoesize
 ex:age) .

Figure 6. A visualization profile lens

5.3.2 Resource Details Display
When a URI appears in the local interface, clicking on the URI
displays details of the resource.

Let’s take the example of the resource identified by #Laura,
where figure 7 displays Laura’s details. Each line of the upper
frame shows the information in an RDF triple. Each triple
appears as a “duple”, because the current resource displayed -
Laura - is the subject of these triples.

Figure 7. Resource display - default case -

Note that wherever the object is a literal (shoesize 7) or a URI
(hasFriend #Alice), the value is displayed. Applying a profile
containing a lens for the class of a given resource indicates that
the user wants to display properties selected in the lens and
literals values only. For example, applying the lens presented in
figure 6 leads to the result presented in figure 8 (shoesize and
age properties only).

Figure 8. Resource display - applying a lens -

The ‘Navigation Mode’ button switches the navigation mode
(§5.3.3) and the ‘Edit’ button links to the annotation
management features (§5.4).

5.3.3 Navigation
When two resources are in a relationship through a property,
there is a kind of hyperlink. In this case, we have to proceed
with a different kind of search, which must be oriented. The
user starts from a plausible point and expects to follow
hyperlinks, flitting from one object to another until the searched
object is attained. The issue is to provide multiple and visible
entry points together with the possibility of taking any route –
left, right, backwards or forwards.

When the user is in a navigation mode, the system understands
that subject or object values which are URIs should be used as
links. Figure 9 shows how these linked URIs are displayed.
When regarding triples <subject, property, object> related to a
given resource (e.g. #Laura), the link (here #Alice) is placed to
the right of the resource when the resource is the subject of the
triple (e.g. < #Laura, hasFriend, #Alice > and to the left of the
resource when the resource is the object of the triple (<
#aWebSite, dc:creator, #Laura). Only values that are literals are
displayed under the URI of the resource.

Figure 9. Navigation possibilities

Displayed URIs (left or right) are navigable and clicking on a
URI shifts the focus to the resource selected. Left and right
links are re-computed according to the new current resource.
For example, in figure 10, a user has selected a left link of
#Laura, which is a Web site created by #Laura. Thus, the focal
point is now this Web site and its properties are displayed and
Laura appears to the right of this focal point because Laura is
the object of the triple (< #aWebSite, dc:creator, #Laura).

Figure 10. A left navigation

Note that a new ‘Previous’ button has appeared. It works like
the navigation history of a Web browser allowing previous (and
next) access to visited resources.

If the check box “Use visualization profile” is selected, the
system looks for a lens that could apply to the current resource.
If there is a lens, it will be used to display only selected

properties. If there is no lens available, all the literal properties
are displayed.

5.4 Annotation Management
The KnowKnow system provides only basic features for the
addition, modification, and removal of annotations of a given
resource. Figure 11 shows the edition of triples related to a
given resource (e.g. #Laura). Properties are drawn from
different vocabularies, allowing the user to permanently
enhance the metadata associated with resources. Manual
annotation is a tedious task, especially with this kind of
interface. We expect the editing of annotations (RDF triples) to
be performed through a normal editor and then imported to the
system - a facility to load (import) a set of RDF annotations is
therefore provided.

Figure 11. Annotation management

6. PERSPECTIVES AND CONCLUSION

6.1 Limits
A special effort has to be made to provide an easy language
querying access to RDF metadata. The multi-criteria search (§
5.2.1) is an attempt to hide the complexity of a query language,
but it needs to be improved.

Providing display facilities to the end-user is a real challenge
(§4.3.2). The whole Fresnel language specification was not
implemented, and we use only a small subset of its features.
Further work is required.

6.2 Consistency
Humans are the metadata creators and they use vocabularies in
different manners. So it may be difficult to find a common
meaning between annotated resources, even those belonging to
neighbouring domains. There is a need to use a domain-
independent manner in order to provide the user with guidance.
Two particularly informative types of literal are: the rdfs:label -
“a human-readable version of a resource’s name” [5], and the
rdfs:comment - “a human-readable description of a resource”
[5]. As noted by [8], inferring label and comment properties
from domain-specific ones will provide an efficient way to
make repositories more accessible to generalized RDF(S)
browsers, without any knowledge of the domain being
necessary.

6.3 Automation
The provision of facilities for automatic mark-up of resources is
easing the metadata acquisition bottleneck. No-one wants to
spend time producing metadata, especially if it is still present
(in one way or another) with the resources. Creators, dates,
description, and keywords are provided within most resource
formats (word processors, spreadsheets, images, etc.) and
metadata are present on many resources. Annotations should be
automatically gleaned where possible.

6.4 Evolution and Extension of Information
Structure
Information requirements change over time. This sort of
evolutionary change requires us to change the metadata and any
associated database schema, not just the descriptive ontology.
This can be complex. We need to permit metadata to be added,
without invalidating existing metadata. This is greatly
facilitated by use of RDF semi-structured data representation.
RDF enables incremental additions of properties and relations
by virtue of its property-centric (rather than record-centric)
approach to representation [8].

6.5 Conclusion
KnowKnow is a first step towards a semantic environment
intended to facilitate metadata management. We brought
together various modes of searching and navigating. A major
challenge is to provide a uniform interface to the user which is
easy to understand and which hides the underlying complexity
of RDF graphs.

The next step is to use this system in order to collectively build
knowledge. A new team has to use it in order to manage the
day-to-day events of their software project from meeting
schedules to document management. The implementation of
some parts of the Semantic Web vision is a contribution to its
achievement. We hope to have taken a step in the right
direction.

7. REFERENCES
[1] Dublin Core metadata element set, version 1.1. July 1999.

URL: http://dublincore.org/documents/1999/07/02/dces/

[2] Fresnel - Display Vocabulary for RDF URL:
http://www.w3.org/2005/04/fresnel-info/manual/

[3] Kahan, J. et al. 2001. Annotea: an open RDF infrastructure
for shared Web annotations. In Proceedings of the 10th

international Conference on WWW (Hong Kong, May 01 -
05, 2001). WWW '01. ACM, New York. DOI=
http://doi.acm.org/10.1145/371920.372166

[4] Quan, D. A. and Karger, R. 2004. How to make a semantic
web browser. In Proceedings of the 13th international
Conference on World Wide Web (New York, NY, USA,
May 17 - 20, 2004). WWW '04. ACM, New York, NY,
255-265.DOI= http://doi.acm.org/10.1145/988672.988707

[5] RDF Vocabulary Description Language 1.0: RDF Schema.
URL: http://www.w3.org/TR/rdf-schema/

[6] Resource Description Framework (RDF): Concepts and
Abstract Syntax. URL: http://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/

[7] Reynolds, D., Shabajee, P., Cayzer, S. SWAD: Semantic
Portals - URL: http://www.w3.org/2001/sw/Europe

[8] Rutledge, L., van Ossenbruggen, J., and Hardman, L.
2005. Making RDF presentable: integrated global and
local semantic Web browsing. In Proceedings of the 14th
international Conference on WWW (Chiba, Japan, May
10-14, 2005). WWW '05. ACM, New York, NY, 199-206.
DOI= http://doi.acm.org/10.1145/1060745.1060777

[9] Updegrove, A. The semantic web: an interview with Tim
Berners-Lee. Consortium Standards Bulletin, 2005. URL:
http://www.consortiuminfo.org/bulletins/semanticweb.php

[10] Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-
Vera, M., Motta, E., Ciravegna, F. 2006. Semantic
annotation for knowledge management: Requirements and
a survey of the state of the art. Web Semantics: Science,
Services and Agents on the World Wide Web 4, 1 (Jan.
2006), 14-28. DOI=10.1016/j.websem.2005.10.002

[11] Uren, V., Lei, Y., Lopez, V., Liu, H., Motta, E.,
Giordanino, M. The usability of semantic search tools: A
review. The Knowledge Engineering Review, 22, 4, (Dec.
2007), 361-377. DOI=10.1017/S0269888907001233

