N

N

A project-based immersion system
Vincent Ribaud, Philippe Saliou

» To cite this version:

Vincent Ribaud, Philippe Saliou. A project-based immersion system. CSEET 2008 - Workshop, Apr
2008, United States. pp.25-28. hal-00504453

HAL Id: hal-00504453
https://hal.univ-brest.fr /hal-00504453
Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.univ-brest.fr/hal-00504453
https://hal.archives-ouvertes.fr

A project-based immersion system

Vincent Ribaud and Philippe Saliou
Département informatique, Université de Brest, O©337, 29238 Brest Cedex 3
{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract

We present features of an education system enthabed on a 7-months project,
performed by a 6-students team within a virtual pany and tutored by an experimented
software engineer. We describe some aspects ofsa aject: functions of the system,
technology, deliverables, and assessment. Studmuttsdmes are drafted in term of roles.

1. Introduction

Recognizing a core body of knowledge is pivotalit®e development and accreditation of
university curricula and the licensing and ceréfion of professionals. The Software
Engineering 2004 Volume [1] provides two major aumes:

* SEEK: Software Engineering Education Knowledge atdvery SE graduate must know

e Curriculum: ways that this knowledge and the sKillsdamental to software engineering
can be taught in various contexts

In the SE2004 volume, Guidelines for SE Curriculdesign and Delivery emphasize that
how SEEK topics should be taught may be as impbgarwhat is taught. The Guideline 14
states that the curriculum should have a significeal-world basis.

Several analyses of software engineering teachimghasise the advantages of a long-term
team project (one semester or a year) [2]. Theistiglthe central training method in
architecture schools and this analogy was usedovide a suitable educational environment
for software design [6]. Students work in teamsadarge-scale project supervised by faculty
members, and generally for an external client. Bethsoftware studios is Donald Schén’s
idea of the reflective practitioner perspective. [bhe generalized educational setting is a
reflective practicum, where students learn mairlylbing, with the help of coaching.

This paper briefly presents an education systeriged from this perspective and shows
an example of a project performed.

2. Apprenticeship by immersion

2.1. Overview

Since 2002, the curriculum of the last year of Bidasters’ in Software Engineering is
entirely based on a real-world basis, which is mofiths project, performed by 6-students
team within a virtual company and tutored by anegipented software engineer. We call
this education system “Software engineering apeship by immersion” [4].

The learning process is achieved in two iterati@hging the first iteration (4.5 months),
students are swapped around the different taskdeddsy engineering activities and strongly
guided by the tutor. During the second iteratioom@nths), roles are fixed within each team,
and teams are relatively autonomous in completiegproject, with the tutor fulfilling a role
that is mainly a supervising and rescuing activity.



We designed and built the immersion system with tmajor objectives in mind: to guide
and accompany learners as they build knowledgeséitid - the learning process - and to
provide an educational environment in which reiligtorking situations are experienced -
the reflective practicum.

This paper will focus on two of the six essentildngents of the immersion system:
a breakdown of apprenticeships into three SE psasesubdivided in SE activities, and a set
of apprenticeships scenes providing the learningiremment and defining tasks;
a project environment reproducing the context bfamagement Information System project.

2.2. Softwar e engineering process

We use a hierarchical process/activity/scenes madelpted from the ISO/IEC 12207) as
a reference framework [3]. From the 25 processéSOfIEC 12207, we concentrate on those
related to software development cycle, that is:Ze8elopment, 6.1 Documentation, 6.2
Configuration Management, 6.3 Quality Assurancé \@&rification, 6.5 Validation, 7.1
Management, and 7.2 Infrastructure. We reorgartizedelected processes in 3 processes:
Development Engineering, Project Management anceRpwment Support.

Roughly speaking, an apprenticeship scene is ietbhal ‘set to music’ the learning goals
of an apprenticeship situation related to a sofwamgineering activity. A scene involves
roles, activities and resources. Several scenes gidce simultaneously. During the same
period of time, students work in subgroups on diff¢ activities belonging to different
processes. Furthermore, the learning objectiveanofctivity could require the cut out in
different scenes closely coupled.

The complete cycle of scenes is temporally orgahiat stages. Each stage (from 1 to 3
weeks) groups several scenes and carries on @diielonging to the three processes. The
cycle of the first iteration is: Stage O : Introtlon (1.5 week) ; Stage 1 : Project and means
set-up (1 week) ; Stage 2 : Requirement captunehifecture choices (2.5 weeks) ; Stage 3 :
Requirements consolidation (2.5 weeks) ; StageAhalysis - Technical exploration (3
weeks) ; Stage 5 : Design tailoring (1.5 weekS}age 6 : Design (1.5 week ) ; Stage 7 :
Realization - Integration (2.5 weeks) ; Stage &lidation (1 week) ; Stage 9 : Deployment -
Verification (1 week).

With this work model and the progress reality, theor defines the set of tasks at the
beginning of the stage and prepares apprenticestigs describing the scenes of the stage.
Then, the tutor’'s assigns tasks to students anergisps progress.

2.3. Theimmersion environment

“Studios are typically organized around managedgintgects of design, individually or
collectively undertaken, more or less closely pattd on projects drawn from actual
practice” [6]. The immersion environment extende ttoncept of development studio to a
real-scale dimension and aims to achieve the saas,gat a minimum. Tomayko reports that
“the use of a well-established development procassatrix organization, and one-to-one
mentoring give the highest return on investmen}’ The immersion environment reproduces
a software project environment in the field of Management Information System:

» Dedicated rooms constitute the theatre of operstianlandscape room, with individual
working post, for each team; a meeting room; arinengpom.

« A software development process: the 2-Track UniRedcess with a functional way and a
technical architecture way.



» Thanks an agreement with Thales group, an ISO @0@dorate baseline defining good
practices and capitalizing the company’s know-how.

* A working framework including common installatiomsid tool suites intended for the
manufacturing and the documentation of softwareycts.

3. The eCompas proj ect

During the academic year 2006-2007, the eCompdaemywas developed by a team of
students from our immersion system.

3.1. Functions

The eCompas system is intended to help studentspltfa and academic
administrators to manage development, assessmentane-added competencies over
the course of a curriculum. Four main functions éndéeen defined, each of which can
be helped by eCompas functionalities: these fumsticare: competency model
management; personal follow-up of competenciesjasibn analysis of competencies,
and institutional supervision.

3.2. Technical environment

The eCompas system uses a three-tier architecturehich the user interface,
functional process logic, computer data storage dath access are developed and
maintained as independent modules, on separatéoptet. The Oracle Application
Development Framework (Oracle ADF) was used to tgvéhe system. Oracle ADF is
an end-to-end application framework that builds J2EE standards and open-source
technologies. Oracle ADF achieve a clean separatfdiusiness logic, page navigation,
and user interface by adhering to a model, viemtradler (MVC) architecture.

3.3. Documentation

The tutor wrote the invitation to tender includittie statement of work, a response
to solicitation with a technical offer answeringetaxpected needs.

Main deliverables provided by the students are: tihge report, Project Plan,
Requirement Specification, Software Analysis, SaftevDesign, Code, Integration and
Validation Plan, Software User Manual, and Softw@perator Manual.

Besides these engineering documents, students peodther kinds of document
related to their apprenticeship: case study, usggee, evaluation report, book or
article summary, best practices, etc.

3.4. Assessment

When a product is delivered, the tutor carefullaeines it and writes an assessment
card including a general assessment together wittha points to be improved or to
start over. The feedback is given in front of thehars, which allows authors to delve
deeper, discuss, and even contest remarks madeebgutors. Following this briefing,
students have to update or start their productragaiter which it will be assessed
again. Generally, two assessment iterations areessecy in order to guarantee a
satisfactory result — or at least sufficient torgawn with the project.

4. L earning outcomes



The SE 2004 Volume provides a generic list of stugdeoutcomes. Graduates of our
system are able to achieve - at least partialhe-% cited outcomes. Rather than discuss
each outcome, we prefer to present an overall vwéwtudents’ outcomes in terms of
roles.

First of all, students learn to live together. Eathdent lives with their team mates
for a period of 6 months, 5 days a week, 8 houday They learn respect for others,
for their work, for their own workplace and the sbé infrastructure.

Students’ main role is to build the project. Thadsnt is in turn architect, project
manager, manufacturer, inventor, and artist. Hefslust understand that his/her own
work takes place within a structured set and thatduccess of each piece is necessary
to the success of the project as a whole. The wtaeding of long-term issues should
always be kept in mind, and regular and sustairifxitds essential.

Alongside this building activity, the apprenticegémeer must sometimes transform
him/herself into an explorer. Students cannot abviiyd their way through the maze of
educational resources provided, or in the explamatihey can get from tutors. So there
is nothing to help them through the work they hawedo. This situation is aimed at
pushing students to deepen existing knowledge, ogiexc new skills, and invent
personal solutions.

Each of these three previous roles brings us bacihé question of teamwork and
hence to the definition of what ‘a team member'Ssudents become aware of the fact
that nothing can be done without others - or maexisely, that they need the others to
do everything.

5. Conclusion

The immersion system uses a process of learningeaptbration that is central in a
reflective practicum: within which experiential kmtedge is built, through the practice
of a reflexive analysis.

The relevance and resistance to change of our ¢éidacsystem probably comes from
the fact that each viewpoint can be linked to ativitg breakdown at two or three
levels of the envisaged software engineering pifes

6. References

[1] ACM and IEEE, Software Engineering 2004, htgtés.computer.org/ccse (last accessed Februaty, 13
2008).

[2] B. Meyer, “Software Engineering in the AcademyEEE Computer Volume 34 Issue 5, IEEE Computer
Society Press, May 2001, pp. 28-35.

[3] ISO/IEC 12207:1995, Information technology -ofvare life cycle processes, International Orgatian for
Standardization (ISO), Geneva, Switzerland.

[4] V. Ribaud, and Ph. Saliou, “Software Enginegriypprenticeship by Immersion”, International Wdrke on
Patterns in Teaching Software Development, ECOQRB20NCS Volume 3013/2004 ,Germany, 2003, p. 137

[5] D. Schon, The reflective practitioner:, Basiodks, New York, 1983.

[6] J. E. Tomayko, “Carnegie Mellon's software depenent studio: a five year retrospective”, In Rredings of
the 9th Conference on Software Engineering EducalitEE Computer Society Press, pp. 119-129.



