N
N

N

HAL

open science

A few elements in software development engineering
education
Vincent Ribaud, Philippe Saliou

» To cite this version:

Vincent Ribaud, Philippe Saliou. A few elements in software development engineering education.
Workshop on the Roles of Student Projects and Work Experience in Undergraduate and Taught

Postgraduate Programmes - CSEET 2008, Apr 2008, United States. pp.18-21. hal-00504451

HAL Id: hal-00504451
https://hal.univ-brest.fr /hal-00504451
Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.univ-brest.fr/hal-00504451
https://hal.archives-ouvertes.fr

A few elementsin softwar e development engineering education

Vincent Ribaud and Philippe Saliou
Département informatique, Université de Brest, O©337, 29238 Brest Cedex 3
{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract

Brest University offers the software engineeringrbgnersion paradigm as an alternative
to other education systems. The idea is that stsdefow through a project from A to Z,
relying on an ISO9001 quality management systemgaide methods and tools associated
with present n-tier architecture - but under apgieeship conditions. Software engineering
activities are structured around three main proesssDevelopment Engineering, Project
Management, and Development Support. FocussingemelBpment Engineering, we report
on certain challenges and difficulties, illustrated a real-scale project.

1. Introduction

Industry complains that graduates take at leastyeae to become productive once hired.
So, the main idea of our education system is tprdetessional realities inside our university
walls. Except for English and communication courseslectures are given. Students work in
teams to analyze, design, implement, test and decum software project relying on strong
software engineering principles. The educationateay imitates real-world phenomena as
closely as possible: a professional working envirent, the client-supplier relationship, the
application of a development baseline, the use ethods and associated tools, and
cooperation within the team. We call this educatisystem ‘Software engineering
apprenticeship by immersion’ [6]. The main goaklod system is to educate skilled but also
reflective practitioners, as defined by D. Schéh Fcussing on Development Engineering,
we report on certain challenges and difficultilastrated on a real-scale project.

2. Elements of the Softwar e Engineering Programme

2.1. Structure of the programme

Our programme leads to the Software EngineeringtéfasDegree. This short paper
discusses only the final year of the programme.ug&ea hierarchical process/activity/scenes
model (adapted from the ISO/IEC 12207 [3]) as armice framework for this final year.
Software engineering activities are structured adothree main processes: Development
Engineering, Project Management and Developmenp@&tipFrom the university point of
view, this division is the reference framework imiploma-awarding perspective. Processes
are course categories within the programme, aigtividre courses and scenes are classes.

2.2. Objectives of the Development Process Category

We use a decomposition issuing from the Developnpeotess in the ISO/IEC 12207
(without the system-level activities): software uggments analysis; software design;
software construction; software integration; sofevgualification testing.

The concerns of each course are not describehemn be found in the SEEK [2] or the
SWEBOK [10]. We reproduce our educational objectigéthe Development Process [12]:



. Requirements: to use specification methods asdcésted tools within the context of
an 1SO 9001 quality management system; to managgreenents.

* Analysis: to perform a domain analysis and a ireguent analysis intended to define
detailed requirements and the business data model.

. Design: to use design methods and design and llimgddools, linked with
requirement management, in order to produce expeairéverables: general (architectural)
design and detailed design.

. Construction: to transform the detailed design wbject code; to help debugging and
testing activities through programmeming disciplamel the use of tools.

. Integration — Qualification: to design and wriéa Integration and Qualification
Plan; to master an integration framework and is@eiated tools; to write qualification tests.

3. A few elementsfor discussion

3.1. Project objectives and constraints
We took one of the projects (called KnowKnow) cadlrbut this year as an example.

The main goal of KnowKnow is to provide a semaratimotation tool able to annotate
(indexing through metadata), search (on metadatn)different modes, browse
(hierarchically or with facets), manage RDF vocabids (semantic schemas), and deal
with the scope of annotations (public or private).

RDF is a W3C standard intended to manage meta@®id#&. models metadata as 3-
tuples which assert that some resource (identifmd URI) has some property
(identified by URI) which has a value identifieceither by URI or given literally. We
use Jena - a leading Semantic Web programmerskitoohs RDF API. Jena is an open-
source project, implemented in Java, and availfdrieownload from SourceForge [4].

The KnowKnow system uses a three-tier architeciarevhich the user interface,
functional process logic, computer data storage dath access are developed and
maintained as independent modules, on separatéoptet. Sub-systems are: Oracle
database, Hibernate persistent layer, Spring frasnewunning on Tomcat, JSF for the
user-layer.

3.2. Some challenges

Legacy and complexity. A major challenge for students is to deal withe th
complexity of legacy systems. As the new projeetrtst one part of the team has to
work on the project carried out the previous yeéhwhe (little) help of documentation
written by past students. Students have to re-ingta system, put it into service, set
up the development environment and begin fixing s@xisting defects.

The KnowKnow system is intended to replace a seimagttension of the Sakai
Collaboration and Learning Environment. Semanti@ansethe ability to create, retrieve,
query and navigate with knowledge about the emtititanaged by Sakai. RDF is the
support of this semantic extension, through thegmtion of Jena within Sakai. The
semantic extension as well as the Sakai environnie®if is a huge bazaar of
technologies, tools, ways of doing and so on.

This legacy environment is a part of the reflectpracticum and an essential element
of learning. “[...] the experience of the studemsany reflective practicum is that they



must plunge into the doing, and try to educate thedies before they know what it is
they're trying to learn. The teachers cannot tedn” [8].

Adaptability. Another challenge is to be able to adapt histhay of doing to the
actual needs. No single software development pmocesists that is universally
applicable. A major difficulty for students is thepecialization of a (theoretical)
reference process so that it fits its situation.

On a real-project, tailoring of the developmentqass generally falls to the project
manager. This requires time and continuous effd’diloring practices refer to a
process; they are intended to improve the procéss, their main purpose is to
contribute to the process realization, i.e. to aghithe process goals and deliver
required outputs. In our system, students perfoaitoing practices in order both to
deal with technological and methodological unknownsl enhance team performances.

On the KnowKnow project, students performed seveibring activities:

» requirements: defining use cases format and dealittythe case of CRUD use case

» analysis [respectively (resp.) design]: writing sage guide from the analysis
activity (resp. design activity) as it is proposiedthe Unified Process, then retro-
engineering the design (resp. the code) of a ptgecformed last year in order to
produce an analysis document (resp. a design doni)rfar this project

= tests: retro-engineering a Test Plan of a real strdal project in order to understand
the what and the how of a Validation Plan.

Design. D. Parnas introduces his seminal paper as “Thapep discusses
modularization as a mechanism for improving theifidity and comprehensibility of a
system while allowing the shortening of its devetmmt time” [5]. This seems obvious,
but it was only after performing a large design arsdafferent coding phase that our
final year Masters’ students discovered that sutesysdecomposition is essentially
aimed at splitting and assigning the developmentsobbsystems to different team
members, thereby allowing parallel developmentnalividual subsystems.

So, software design is a critical task - hard tacteand hard to learn. The studio is
the central training method in architecture sch@old this analogy was used to provide
a suitable educational environment for softwareigles‘Students are encouraged to do
the work while being self-aware of the decisionsytimake and of the actions they take
[...] Coaches basically maintain a vision of bestgpiges, observe the student’s efforts
to match that vision, and give advice to help tharater attempts” [11].

Design activity is strongly related to the mastdny students of a complex
development environment. On the KnowKnow projectdabk from one to two full
months of work for each student (performed withiffedtent apprenticeship scenes) to
deal with this technical challenge and to be ablainderstand the technical issues of
the design.

Design is also very strongly related to requirerseahd tests. Students have to
allocate requirements to the software componenty tire designing and demonstrate
traceability over the whole cycle, from validatiém requirements. On the KnowKnow
project, most students find this harder to achigna the technical issues.

3.3. Some difficulties

Several attempts to adopt the studio for softwargireeering education have been
made at different universities. Experiences diffeowever, and some papers report



very satisfactory results. However adopting studinsy raise difficulties either from
within the faculty organization itself, or by revesay resistance from both faculty
members and students.

Ideally, lessons learned in the studio should beduis traditional courses but this
requires closer interaction between courses anchta’ co-operation. This is one of
the reasons why we built an immersion learning ement, but it requires that tutors
be experienced software managers.

Perhaps the hardest thing to manage is the sucddbge projects. Depending on the
variables of student motivation and skills, tut@rformance, project interest, and other
unknowns, the progress of a studio can be veryectoswhat was expected or radically
different - ranking from approximation to disastérom our own experience, a failing
project is a difficult experience for both studemtisd teachers; it may be difficult to
find lessons in the failed studio and tutors may deterred from repeating the
experience.

4. Conclusion

Shaw [9] identifies several challenges and aspiretias targets of progress for
software engineering education: identifying distingles in software development and
providing appropriate education for each; instilinan engineering attitude in
educational programmes; keeping education currenthé face of rapid change, and
establishing credentials which accurately represéility.

Our answer tries to combine learning by immersioninment - intended to offer
to students a reflective practicum - with a wehlustured learning process which aims
to organize productive and constructive (learniagdivities. This paper has discussed
just a few of the many educational challenges dffitdlties.

5. References

[1] ACM and IEEE, Computing Curricula 2001, ComputeScience Volume, chapter 11,
http://www.sigcse.org/cc2001/cs-graduates.htmk @gasessed March 1st, 2008).

[2] ACM and IEEE, Software Engineering 2004, hifgités.computer.org/ccse (last accessed Marct2608).

[3] ISO/IEC 12207:1995, Information technology -ofSvare life cycle processes, International Orgatian for
Standardization (ISO), Geneva, Switzerland.

[4] Jena — A Semantic Web Framework for Java, Migpa.sourceforge.net/ (last accessed March 6082

[5] D. Parnas, “On the criteria to be used in degosing systems into modules”, Communications of Ak
Volume 15 Issue 12, ACM Press, New York, 1972,1)53 - 1058.

[6] V. Ribaud, and Ph. Saliou, “Software Enginegriypprenticeship by Immersion”, International Wdrke on
Patterns in Teaching Software Development, ECOGB20NCS Volume 3013/2004 ,Germany, 2003, p. 137.

[7] Sakai home page, http://sakaiproject.org/ (festessed March 6th, 2008).

[8] D. Schdn, “Educating the Reflective Practitichéleeting of the American Educational Researckdesation,
Washington D. C., 1987.

[9] M. Shaw, “Software Engineering Education: a &wap”, In Proceedings of the Conference on thereutéi
Software Engineering, Limerick (Ireland), 2000, f@1-380.

[10] IEEE Computer Society (2004), Guide to the t®afe Engineering Body of Knowledge, Overview
http://mww.swebok.org/overview/ (last accessed Math, 2008).

[11] J. E. Tomayko, “Carnegie Mellon's software elepment studio: a five year retrospective”, Ind&edings of
the 9th Conference on Software Engineering EducalieEE Computer Society Press, pp. 119-129.

[12] (in French) Université de Brest, Master infatique, Ingénierie de Développement Logiciel, Witept-
info.univ-brest.fr/pages/masque-centre-iup.htnt @g@sessed March 6th, 2008).



