N

N

Building an Observatory of Course-of-Action in Software
Engineering: towards a Link between ISO/TEC Software
Engineering standards and a Reflective Practice
Francois-Xavier Bru, Gaélle Frappin, Ludovic Legrand, Estéban Merrer,

Sylvain Piteau, Guillaume Salou, Philippe Saliou, Vincent Ribaud

» To cite this version:

Frangois-Xavier Bru, Gaélle Frappin, Ludovic Legrand, Estéban Merrer, Sylvain Piteau, et al.. Build-
ing an Observatory of Course-of-Action in Software Engineering: towards a Link between ISO/TEC
Software Engineering standards and a Reflective Practice. EuroSPI 2009, Sep 2009, Spain. pp.185-200.
hal-00504449

HAL Id: hal-00504449
https://hal.univ-brest.fr /hal-00504449
Submitted on 25 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.univ-brest.fr/hal-00504449
https://hal.archives-ouvertes.fr

Building an Observatory of Course-of-Action in
Software Engineering: towards a Link between ISO/IEC
Software Engineering standards and a Reflective Prtice

Francois-Xavier Bry Gaélle Frappi Ludovic Legrany Estéban Merréy
Sylvain Pitea® Guillaume Salot) Philippe Salioband Vincent Ribaud

! Thales Airborne System, 29283 Brest Cedex 2, {Frarsavier.Bru, Ludovic.Legrand,
Esteban.Merrer@thalesgroup.com}
2 Teamlog, Rue Fulgence Bienveniie, 22300 Lannion |&B&ppin @teamlog.com
3 Direction des Constructions Navales - DCNS, routa®rniche, 29200 Brest,
Sylvain.Piteau@dcnsgroup.com
4 Groupe Arkéa, 32 rue Mirabeau 29480 Le Relecq KamhGuillaume.Salou@arkea.com
5> University of Brest, CS 93837, 29238 Brest Cedex, ¢&an
{Vincent.Ribaud@univ-brest.fr , Philippe.Saliou@ wikest.fr}

Abstract. As a help to compete in an evolving market, snsaftware
companies may use an observatory of their coursetidn. The course of
action considers the observable aspect of the 'sctmtivity. Its analysis
provides a description of actors’ activity and @incexpress recommendations
concerning both the individual situations and thadlective situation. The
observatory is an articulated set of data collgctmethods supported with
semantic wikis and a dedicated application. A csdy, based on the activity
of a team of 6 young software engineers, depiatsesaspects of the building
and the filling of the course-of-action observatofyg primary results of this
work, we may think that observing and analyzingwafe engineer’s activity
help to reveal his/her theory-in-use — what goveengineers’ behavior and
tends to be tacit structures — That may help eegine establish links between
“Project Processes-in-use” and a simplified ProcRs$erence Model and
contribute to reduce the fit between a projectdtiem and espoused SE
standards.

Keywords: course-of-action, theory-in-use, espoused theorgfleative
practitioner, software engineering processes.

1 Introduction

For many small software companies, software procegsovement (SPI) is often out
of reach due to prohibitive costs and lack of Sidwledge. However, to survive in
this competitive market, software developers muongtrove their productivity, time to
market and customer satisfaction. A help could bevided through a reflective
attitude (D. Schon [1]). A question occurs: “How koing this reflective (and
learning) attitude into organizations and everydayk?”

Theories of action study what an actor do, in @&gigituation, in order to achieve
consequence or objectives. A distinction can beentsetween two kinds of theories
of action. Espoused theories are those that awichdil claims to follow. Theories-in-
use are those that can be inferred from actionggpoused theory and theory-in-use
may be inconsistent, and the agent may or may @etare of any inconsistency. By
definition, the agent is aware of espoused thediheories-in-use can be made
explicit by reflecting on action [2]. In the softreaengineering field - and especially
in Very Small Enterprises — the horizon of standaod the corporate baseline of
processes and practices constitute the espousedytrgince it is what engineers
claim to follow. Although an emerging standard “Seafre Engineering - Lifecycle
Profiles for Very Small Enterprises (VSE)” [7] méacilitate the use of SE standards
in a VSE, what engineers do (and this action isgihesl and do not “just happen”)
may reveal a different theory-in-use. We believat tinaking explicit theories-in-use
may help software engineers to learn more suitdigleries-in-use, thus contributes to
improve productivity and performance.

In this perspective, after several years of infdrmathods to analyze and improve
software engineers’ activities, we are now usirggadburse-of-action analysis in order
to understand the structural coupling of a softweargineer with his/her environment
and especially lifecycle software processes. Latitesa short definition of course-of-
action: “the activity of one (or several) specifictor(s), engaged in a specific
situation, belonging to a specific culture, whishsignificant for the latter, in other
words, that can be related or commented by hinth@m) at any moment [4].” The
course-of-action analysis is based on an obsemvatioat we consider in this
introduction as a system of data collecting methdde data necessary to study the
course of action includes continuous observatiohshe behavior of action and
communication in a work situation as well as difertraces of other elements such
as interpretations, feelings, and judgments [4} Bhalysis of this data produces a
decomposition of the global dynamic in terms of Benaunits and the relations of
sequencing and embedding between these units. ety of this analysis may (i)
help to design better interactions or correctivéuagions; (ii) facilitate the
reconstruction by the actor of his/her own activitg. going from “pre-reflective
consciousness” towards a reflective attitude [1].

This paper is organized as follow. Section 2 presethe course-of-action
framework and its application to software enginegriSection 3 drafts some related
work. Section 4 discuss about the observatory aframof-action of software
engineers. Section 5 present excerpts of a cadg. &Mk finish with perspectives.

2 Course-of-action Applied to Software EngineersActivity

2.1 The Course-of-action in a Nutshell

Pinsky and Theureau, ergonomists, initiated therdteeal and methodological
framework of "course-of-action”, summarized in odiecting idea, that of the
necessity of an analysis of the actual operatarsvities in real work situations for

the design of new work situations [5]. An importéiméoretical hypothesis is that the
course-of-action framework states about human iagtiis that human activity is
dynamically situated, i.e. always appeals to resgsr individual as well as
collectively shared to varied degrees, which stemmfconstantly changing material,
social, and cultural circumstances. The coursectiba analysis add to various
theories of “situated activity” the consideratiohtibe domain of experience, i.e. that
of the agent's course-of-experience, of the coastiy process of this experience at
any moment, and takes an interest in the arti@ratietween the cognitive domain
and the course-of-experience. Theureau in [6] defithe theoretical object called
"course of action" as follows:what, in the observable activity of an agent in a
defined state, actively engaged in a physically sodally defined environment and
belonging to a defined culture, is pre-reflexiveagain significant to this agent, i.e.
presentable, accountable and commentable by him#teany time during its
happening to an observer-interlocutor in favourabtaditions”.

2. 2 The Observatory of Course-of-action
This paragraph is reproduced from [7].

The course-of-action analysis is based on an obagewvthat allows to specify the
material conditions of situated recall (time, plac&terial elements of the situation),
the follow up and the guiding of presentations,catts and commentaries by the
agents as well as the cultural, ethical, politiaat contractual conditions that are
favorable to observation, interlocution, and cr@abf a consensus between the agent
and the observer-interlocutor [6].

A methodology has been developed to collect datahencourses-of-action. It
connects continuous observations and recordingghef agents’ behavior, the
provoked verbalizations of these agents in actiffitym the "thinking aloud" for the
observer-interlocutor to the interruptive verbdiiaas at privileged moments) and the
agents' comments in self confrontation with reaagdiof their behavior [6].

Continuous observations and recordings togetheh wiérbalizations and self-
confrontation let us access to a representatiatypémics of the structural coupling
between the actor and his/her situation (includittger actors) [9]. A “semiological
framework” [6] provide us with a theory of activigllowing to describe the activity
in abstract terms expressing hypothetical invasiaBikplaining and using this theory
is out of the scope of this paper focused on treenkatory of course-of-action. It is
sufficient to tell that this semiologic stems fratre hypothesis that any period of
course-of-action may be described in smaller ufiitds description of the intrinsic
organisation of the course of action articulates m@mplementary descriptions: a
description of its global dynamics, characteridiing units of the course of action and
the relations of sequencing and embedding betwieesetunits; a description of its
local dynamics, characterising the underlying stiecof the elementary units [5].

2.3 An Observatory of Software Engineers’ Activiy

The intervention of an ergonomist in an organizatiotended to produce software
concern the analysis of human-system interactiosf the software engineer with
his/her organization’s processes — and the dedigheosystem in order to optimize
human well-being and overall system performanc@umncase, we use the theoretical
and methodological framework of course-of-actiororder to analyze the activity of
software engineers within Very Small EnterpriseSIPg, up to 15-25 employees).

Recall the definition of the course-of-action in.B2what, in the observable
activity of an agent [...] is pre-reflexive or agasignificant to this agent, i.e. (i)
presentable, (i) accountable and (iii) commentddylénim/her at any time during its
happening [...]. Software workers do not achieve dempechnical gestures or do
not have to progress along a detailed proceduré) poesentations to an observer are
quite difficult to reproduce and presentable actdathat are most notable and
representative of the job are the outputs of softvetivities and tasks. (ii) Accounts
are easier to collect and observe because a miniafunaceability and reporting is
performed in any organization and if it is not siéfnt, accounting can be provoked
without significantly modify the course of the atfiies. (i) Comments are not
natural objects and have to be provoked: repatscempetency assessment (8 4.3).

The course-of-action framework proposes self conétion as an indirect means
to document actor's experience or pre-reflectivensoiousness or immediate
understanding of his/her activity at every instgnthe fact is highlighted that the
experience at instant t differs from what is called reflective consciousness, which
concerns particular and situated periods of theracactivity, when he/she considers
his/her past activity with a given purpose [8].

However, considering these two levels of conscieaspnwe may think that there
are two different levels of description of softwgseocesses. The first level — on
which this paper is focused — is concerned withdhg-to-day course of a software
project and its associated activities while theosdclevel — on which most Software
Engineering standards are focused — is concerngld avidescription of these
activities. We believe that the first level is tel with theories-in-use, those that can
be inferred from action [2]. And we think that tlsecond level is related with
espoused theories, those that an individual clanisllow. The purpose of our work
is to provide an observatory of existing processed practices that could help to
situate project processes and practices in-usediegao espoused standards.

2.4 Application for Software Engineers in VSEs

The semiological framework of course-of-action nmkepossible to describe the
courses of action in general structural terms, esging underlying regularities. It
allows on the one hand, such a description of thba dynamics of the courses of
action, and on the other hand, such a descripfidheir local dynamics. It also links
these two descriptions. As we discuss in §5.3sthaller units, based on individual
courses-of-action, describe the carrying out obafpart of software engineering base
practices. Hence, the global dynamic, which isteglao the composition of these
performed practices, is a description of what weg ol process-in-action.

The course-of-action analysis operates on whathénobservable activity of an
agent, is presentable, accountable and commentgbl@m/her. A sound analysis
may work only with sound collected data and, beeao®st accurate data are
collected by the team itself, it requires the te@mmmitment to this self-observation.
This team commitment can only be effective if tharh is the main beneficiary of this
overwork, collectively - with a valuable result @@am processes-in-action - and
individually - with an added-value on competencyalepment -.

Thus, as presented in figure 1, this analysis dballl to (i) help to specify the
modalities of engineers’ interaction with projecbgesses leading to the design of
better interactions or of corrective situationsi) (contradict or support the
reconstruction by the engineer of his/her own &@gtiv.e. going from “pre-reflective
consciousness” of the actor towards a reflectiatiioner attitude [2]. Both results
have a valued impact on the project processes.

VSE’s Process
Reference Model

is reléted to

Project
Processes-in-
action

is recorded in
and examined by

acts facilitates

Observatory and
analysis of the
course-of-action
leads to leads to

Design corrective
situations

eam competency

<4¢—motivates
development

Fig. 1. The project’'s observable activities are self-rdedrby team members. The analysis of
the project-in-action provides a decompositionhaf global dynamic in terms of smaller units
and the relations of sequencing and embedding ketWesse units. Two benefits are expected:
(i) a reflective consciousness of competency mgtlevel; (i) a support to design corrective
actions. Both consequences may improve and faeilitee project processes.

3 Related Work

The “course-of-action” research framework [6] cetsiin several empirical and
technological research programs in various dom@iask analysis [4], traffic control
[5], sport [8], and music composition [21]). The nkalescribed in this paper uses
plentifully results of these research programs.

It would be impossible to reference all the reseavork that has been inseminated by
Argyris and Schoén’s theories [10]. In the softwamggineering field, Halloran [11]
investigates the relationship between a softwapegqss assessment and improvement
model and organizational learning. This work poiotst the difference between
“engineer’s espoused theory” and his/her “theoryse” but it does not develop this
matter as we did and rather focuses on the usggahzational learning to promote a
proactive approach culturally to continuous improeat and learning procedures.
Many propositions have been made for Process Ingpnewt or Process
Assessment in small software companies ([12], [i13]]). Many small organizations
are unaware of existing SPI& SPA standards and nassuthat assessments
conformant to these standards can be expensivetianed consuming, difficult to
perform in small companies. We think that whilelthnig the observatory of course-
of-action, foundations are set-up that will facié further SPI & SPA programs.
There are similitude with the SPA process propasefl] based on an initial self-
evaluation and following structured interviews dhe observatory as we use it.

4 Observing Software Activities

4.1 Software Engineering Standards

Ll Process ————————transforms——

A

performs
\ 3

Customer |[«—Interacts with—~P—{ Project produces—» Product

aids uses

Resource ————————appliesto

L]

Fig. 2. The objects of software engineering, suggestirgatagorization of standards in the
subject areas of customer, process, product, aodiree [15].

A very concise definition of the objects of softe@agngineering is “a project uses
resources in performing processes to produce ptedioica customer [15].” It gives a
model in figure 2, centered on the software engingeproject as the focal point for

applying software engineering standards. This ssigge categorization of standards
in four major areas: customer, process, productrasource.

For VSEs, each category contains a number of stdadlhat put them out of reach.
There is a need for an umbrella standard withirh eategory. The IEEE/IEC 12207,
Software Life Cycle Processes [16], provides timbrella for all of the customer and
process standards. An on-going initiative of 1IS@Wt provide lifecycle profiles for
Very Small Enterprises (VSES) [7].

4.2 VSEs Faced to the 12207

Confronted to the 12207, a software engineer inSE\s at a loss'{ike a goose
finding a knife” as French people say). First, $tsndard has received major changes
since 1995: Amendment 1 in 2002, Amendment 2 B42@nd a complete revision in
2008. Secondly, there are currently 43 processt#ini2207:2008 [16], organized in
7 process groups. As an example of the gap withvMBEs needs, the emerging
standard “Software Engineering - Lifecycle Profilem Very Small Enterprises
(VSE)” [7] contains 2 processes: Project Managem@i.1l) and Software
Implementation (SD.1). PM.1 is subdivided in 4 subeesses (Project Planning,
Project Plan Execution, Project Assessment andr@loitroject Closure) and SD.1 is
subdivided in 6 sub-processes (Software Implemiematnitiation, Software
Requirements Analysis, Software Architecture andtaided Design, Software
Construction, Software Integration and Tests ProBetivery).

It is not sure that a software engineer in a VS&ralthe same meaning of these 10
names of sub-processes (from Project Planning fowv8ee Integration and Tests
Product Delivery) with a client or a colleague ahajor company engaged in any SPI
program such as ISO/IEC 15504 or CMMI. Howeverythdl try to communicate
and may sign a contract, but they don't speak abimaitsame things. This lack of
understanding illustrates the existence of two rilesoof action — for a software
engineer as for any practitioner -, as defined bgyfis and Schon. They have
established a distinction between those theoriat ahe implicit in what we do as
practitioners and managers (theories-in-use), hadet on which we call to speak of
our actions to others (espoused theory). “When someas asked how he would
behave under certain circumstances, the answershally gives is his espoused
theory of action for that situation. This is thesthy of action to which he gives
allegiance, and which, upon request, he commursdatethers. However, the theory
that actually governs his actions is this theoryde [10].” We may ask question
about the extent to which theory-in-use fits espdubieory. Reflection may be a help
to discover the theory-in-use and to reveal theneadf the ‘fit'. We believe that the
observatory of course-of-action — adapted to théwsme engineering field — may
support this process.

4.3 What Can Be Observed?

This significant activity for the actors includegtian and communication, but also
other elements: interpretations, feelings, judgmentThe data necessary to study the
course of action must include continuous obseruaatiof the behavior of action and
communication in a work situation as well as diéf@r kinds of instigated
verbalizations from the actors which would provadeess to other elements [4].

Software development never uses a repeated schedhdé anay be difficult to
interrupt a software engineer at work and to prevalkverbalization of what he/she is
doing and why. In 82.3 we gave an overview of wirathe observable activity is (i)
presentable, (ii) accountable and (iii) commentdiyi¢he actor.

Products and documentary resources are main olgé¢ts presentation as they
describe the inputs and outputs of the activitye Thistorical” context of resources’
use and products’ production has to be recordedTiois can be described in terms of
events and processes, involving occurrences oftagpeople) and artifacts (products
and resources) meeting in space (in case of dis#ibcooperation) and time. As a
first stage, we may consider individual coursesatfon of the various participants.
At a second level, a collective action involvestparf several individual courses of
action which take place synchronically or sequéigtidVe need to divide individual
course-of-action in smaller units, that we call is@dof-action unit. Each event of
interest has to be (ii) accounted in an instanc€atirse-of-action Unit in relation
with people and artifacts involved. It provides iadkof project journal. A journal
may be seen as a kind of reflective practice that device for working with events
and experiences in order to write (iii) commentd artract meaning from them.

5 A Case Study

5.1 Introduction

In spring 2007, local employers in Brest decidedriplement a recent French law
on professional training. This law requires that 8%&mployees be under ‘sandwich’
(or work placement) conditions. A lot of compan@®ose to use a system called
“Contrat de professionnalisation” (professionali@atcontract) over a period of 12
months. During these 12 months, the full-paid ewygdois attending university for
certain periods. For contracts involving our compgitdepartment, we dedicated an
innovative program called “Software Engineering Iloymersion” (‘Ingénierie du
Logiciel par Immersion’). The main feature of thiast year of the Masters
programme is to learn software engineering by domithout any computing course
but with a long-term project as the foundation 8fapprenticeships. Alternating
employees are attending university in 9 period? ebnsecutive weeks and work in
team of 6 in order to build a complete informatsystem.

The program’s rhythm is based on the lifecycle gfr@ject organized into stages.
Each stage was arbitrary sized to 2 weeks dueet@adinstraints of alternation. The

cycle is: Stage 0: Warm-up; Stage 1: Project setSipge 2: Requirement capture;
Stage 3: Requirement analysis; Stage 4: DesiggeSaSoftware construction; Stage
6: Software construction; Stage 7: Integration ¥edfication; Stage 8: Qualification
and Deployment.

This case study is based on the activity of a tefd young software engineers
(the six formers authors) accompanied with the tlatter authors acting as
participants-to-observe: one having a direct cdntdcthe team members, sharing
their environment and taking part in the activitiek the team, the other one
conducting reviews and formal assessments as tapyem. This case study depicts
some aspects of the building and the filling of tbeirse-of-action observatory.

The whole observatory is supported with severattedaic tools such as semantic
wikis, content management system and dedicatedcatiphs. Semantic wikis offers
a lightweight authoring plate-form and will be usedecord most events of the day-
to-day life in the project journal.

5.2 The Horizon of Software Engineering Standard

As told in section 4.1, the 12207:2008 standard asta standard umbrella and was
used during the introductory stage to define tlengwork of a software engineer’'s
activity. The 12207:2008 was preferred to CMMI hesm the former (used jointly
with the 15504 standard [17]) separates procesadscapability levels in two
dimensions while CMMI handles them in one dimensidinis separation was
preferred because it defines processes “(set efralited or interacting activities
which transforms inputs into outputs” [16]) indedently from base practices (“an
activity that, when consistently performed, conités to achieving a specific process
purpose [17]").

The 43 processes are too many and complex to licassthe reference model and
we concentrate on 16, those related to the softdavelopment cycle, that is: 6.2.2
Infrastructure Management, 6.3.1 Project Plannih@,2 Project Assessment and
Control, 6.4.1 Stakeholder Requirements Definitiér4.4 Implementation Process
replaced by 7.1.1 Software (SW) Implementation Bsecand its 6 sub-processes,
7.2.1 SW Documentation Management, 7.2.2 SW Cordigan Management, 7.2.3
SW Quality Assurance, 7.2.4 and 7.2.5 SW Verifmat& Validation, 6.4.7 SW
Installation. Processes are grouped into processpgr(five 12207 group processes
are concerned that we regrouped in three).

The 6 young engineers chosen for this case study &dBachelor in Information
Technology (4-year studies in the field) and theyrkvin large companies with a
structured corporate baseline. However, thereniseal for a common reference of the
terms used, either because they have differentifisigtions in the different
companies, or because their signification is unkmawfuzzy. We choose to use the
ISO/IEC FCD 24765, “Systems and software engingefivocabulary [18]".

We dispose of a PDF version of the 12207:2008,nfied by ISO and of a
electronic version of the 24765, copyrighted by 18@ free of use as long as the
copyright is cited. As the project goes along a@sdevents are recorded in the project
journal, and in order to facilitate links betweére tproject journal and Software

Engineering standards used at the horizon, theemaam filled two semantic wikis
with a subset of the two standard used :

e the 12207 wiki littp://oysterz.univ-brest.fr/12207s an hypertext reference
of the ISO/IEC 12207:2008 for the process leveitle,t purpose, list of
outcomes and process decomposition in activitielstasks;

» the 24765 wiki (ittp://oysterz.univ-brest.fr/247%% a subset of the ISO/IEC
24765 vocabulary, it is actually under reenginegbnt on-line SEVOCAB
is provided by ISOHttp://pascal.computer.org/sev_display

The structure of these two semantic wikis is giwefigure 4.

* Narrower
Procefs Group Concept Scheme InScheme
ITdm.esmsr:gn Title : string Concept
- 9 Description : string . . PrefLabel : string
Creator : string AltLabel : string
* -HasPart Definition : string *
Notes : string
Process
Id : string
Title : string rHasPart Activity |HasPart Task
Purpose : string @ [id:string D K string
Outcomes : string * Title : string « Form : string

Fig. 4. A model of 12207 and 24765 semantic wikis.

5.3 The Project in Action

The two latter authors both worked for nearly tezang at Thales Information
System (formerly Syseca Inc), a software serviamspany. They led projects and
developed several management information systenderuthe control of Thales
Information System corporate baseline.

The authors have defined an apprenticeship/praatuctiamework called ILI
(Ingénierie du Logiciel par Immersiprsoftware Engineering by Immersion), based
on a reference model, a development cycle andieaty/BS (Working Breakdown
Structure: a deliverable-oriented hierarchical awegosition of the work to be
executed by the project team to accomplish theeptopbjectives and create the
required deliverables. It organizes and defineddtad scope of the project [18]).

The Process Reference Model (PRM) is adapted angdlifed from ISO/IEC
12207; we are using 3Jprocess groupsorganizing 13 processesSoftware
Development EngineerinfRequirements capture, Software Requirements Arsly
Software Architectural Design , Software Detailedsign, Software Construction,
Software integration; Software qualification teg)inSoftware Project Management
(Project Management, Quality Assurance, ConfigaraManagement); anBoftware
Development Suppoftnfrastructure Management, Life Cycle Model Managet,
Documentation Management, Installation-Operation).

We use a Y-shaped life cycle that separates résolatf technical issues from
resolution of feature issues [19]. First, the cyisléivided into two branches (tracks):
a functional track and a technical track. Then e¢hiego tracks amalgamate for the
realization of the system.

The WBS has a structural and a temporal decompaositEach process is
structurally decomposed in Software Engineeringviiets (to distinguish it from the
activities in the 12207 sense) that may have dlighariation from a project to
another. Each Software Engineering activity isHartdecomposed in sub-activities
that can be fully specified or just named, depemdif the scope and goals of the
project. The WBS is temporally organized in stafleour case, 9 of 2 week each).
The planning of each stage is divided in severatkw&cenes that carry on SE
activities. Scenes will be performed by team memilaéd ought to produce artifacts.

The course-of-action forms a whole that is conognwih all aspects described in
previous paragraphs but we need to divide the oatis development of the course
of action into significant units (cf. §2.3). We dtbe to divide the whole course-of-
action by replying to the question: "What is thimat, from the point of view of the
engineer?" This division is recorded through thetie event Course-of-action Unit.
Complex or collective interactions require an intediate level, called Step-of-action
sequencing and embedding Course-of-action unit&ksLwith PRM are provided.

A picture of all these interlinked concerns is give figure 4.

-HasPart
ILI Process Group ILI Process - Stage
- Id : strin: Project -HasPart
Id : string & L 9 r—— Title : string
itle : stri + |Title : string Title : string
Title : string . St et DtStart : Date
Purpose : string Description : string . |Dtend Date
(Outcomes : string CMSWorkS ace : striny
ReferencesProcess kd IsMemberOf pace - 9
et Activi
F y
-HasPart Person
PrefName : string
|AltName : string
-HasPart ' Mbox : string 1
SE Activity |Organization : string > Performed
Id : string i
Title : string ., C dTo [f-action Unit
Description : string Title - string * -HasPart References
USedCMSWorkSpace : string
Input-Output Scene
nput-Outpu N -
P P Artifact * Id : string
- BelongsTo |[Title : string
Concours . Id : string DiStart : Date
Input-Output Title : string DtEnd '-Dale
Step-of-action kzﬁ;&'&'&g;‘c’:?ﬁﬁng HasDelivered njainRole : string
- . WorkCard : Object
Id : string W . - atri
Tile - string 1 ICMSResourceSpace : string
Description : string

Embedded
Fig. 4. A model of Process Reference Model -PRM- (on thg kfid WBS (on the right).

Artifacts are shared between PRM and WBS. The Cenfraetion Unit is used as central link.
Steps-in-action characterize the relations of segjng and embedding between these units.

The project journal uses a semantic in order torgethe progress of the project.
The project manager initially fills and updates W8S of his/her project. Team
members can record events as they happen but bayestematically fill the wiki at
the end of each phase. Semantic wiki is the mesihile tool in order to record and
shape a structured content. Properties (modifytiregunderlying data model) can be
added, updated or deleted as the project goes .alofymation (data) can be
recorded in a bulk mode and the typesetting perarfater. Things to do or to report

are created in one Wiki word to indicate that theye to be filled. Information can
be temporary missing or incomplete.

5.4 Recording Assessments

Several kinds of assessment occur in the life gr@gect. Assessment may be
focused on products or services, on processes opepsons. Assessment itself
provides information on action performed but mattyeo elements significant for the
actors and the course-of-action analysis: integpigts, feelings, judgments, actors’
commitment to the situation and their use of papeédence in the course-of- action.

Recording project assessmentThe project has to record artifacts produced by
project progress: lecture notes, progress meegpgrt, peer review reports which
constitute valuable inputs for further analysis.

Recording project assessmeniWe argue that personal capability determination
(rather than process capability determination) isransuitable to VSEs because
employees may perceive it as a valuable benefingJthe 2-level structure of our
Process Reference Model (on the left part of figdye we analyze carefully SE
activities in order to define abilities mobilizedr(competencies: “the ability of a
person to act in a pertinent way in a given situatin order to achieve specific
purposes [20]"). For each process, we defined dlyaofi competencies constituted
with a list of knowledge topics and a set of alaifitor skills required to perform the
process (see an example in table 1).

Table 1. An example of a competency family: “Software dethdesign’.

Knowledge topics Abilities or skills

Software Design Fundamentals : concefis use design methods and tools (in

and principles, design role in &elation with requirements) to produce

development cycle, top-level and detailetbsign documents: system and software

design architecture and detailed design

Software decomposition configuratiofo implement methods and modeling tools

item, software component, software unitof various aspects of a system (architecture
and decomposition software, data structure)

Software architecture through differerfio implement J2EE development and

views: conceptual, dynamic, physicalechnology of associated framework

data.

UML diagrams to describe static an@lo implement DBMS concepts, techniques

dynamic views and tools

Object-oriented design

We believe that a first step in competency devekpnshould be made by the
engineer him/herself through a self-assessmenbitifieés at a maturity level. The
assessment scale grows from 1 to 5: - 1: SmogdNefion - 3: User - 4: Autonomous -
5: Expert. Each young engineer is required to piécally fill the 13 competency
families while auto-analyzing the tasks performed dim/her achievement level

with the abilities defined in the family. This pedic inventory is supported by
eCompas, a tool intended to manage developmergsseent and value-added of
competencies over the course of a curriculum aoéepsional career.

The eCompas tool is intended to store artifacts ey be interesting to illustrate
the ability determination. Each time a software iBegr self-assesses a process’s
ability level, he/she has to write an entry asdedavith the process and may link this
entry with artifacts stored. It constitutes a ruditary portfolio, but sufficient for our
purposes. This tool needs to be reengineered th with the wikis’ architecture.

5.7 Focus on a Process: the Design Process

Recording the project in action. According to ISO/IEC 12207, outcomes of the
7.1.3 Architectural Design and 7.1.4 Software DethiDesign Processes are: a) a
software architectural design is developed andlimn@skthat describes the software
items that will implement the software requirementd internal and external
interfaces of each software item are defined; a)sistency and traceability are
established between software requirements and aadtwesign and d) a detailed
design of each software component, describing tifavare units to be built, is
developed.

For the Design Process, 12207 recommended tasksl3B@4 base practices are
roughly the same:

1) transformation of the requirements for the safevitem into an architecture that
describes its top-level structure and identifiessbftware components.

2) development and documentation of a top-leveigghefor the interfaces external to
the software item and between the software compertdrihe software item.

3) development and documentation of a top-leveltefor the database.

4) development and documentation of preliminargicers of user documentation.

5) definition and documentation of preliminary tesjuirements and the schedule for
Software Integration.

Our ILI framework, considered as representative/8Es processes, decompose
the Design Process in 3 SE Activities: Adjusting thesign, Exemplary Software
Design, and Software Design (including Databasedbess a sub-activity).

If we have a look at the information recorded ia tbservatory by team members,
they performed two kinds of self-confrontations.eTétructure of self-confrontations
of the former kind, performed at the end of thektaflects the structure of
recommended tasks as they may be found in the $Etgaescription. For instance,
for the Exemplary Software Design Activity, the destion stresses the identification
of Computer Software Components, the requiremelfisation to the components
and the components specification. So, each paatitipo this activity recorded its
own participation in a Course-of-action unit keptthe Activity description. The
latter kind of self-confrontation was performed #&®&m members prepared the
Software Design Process Review, a formal revieweyThave to create a synthetic
description of the Design Process and to recoir its associated Work Scenes (see
figure 4). Participants created Steps-in-action esaling individual Course-of-action
units and established inter-wikis links with theresponding 12207 Processes. It is

not sure that the 12207 outcomes and tasks werfeocwed to the performed actions,
but it indicates an attempt to link the course-ctiem at the horizon of SE standards.

Recording team competency development. Periodic inventories of team
members are recorded within the eCompas tool. gy ¢m a Word format) is stored
into the observatory. Focusing on the Design Psjce® may note that a team
member has participated to the 3 SE Activities rafi for the Design Process (see
above). As the year started, he assesses himgbH ataturity level - 1 - (or - nhone)
for the process as a whole and for each assoc#dt#itles. Inside his company, he
acts as a software developer and has very littfopnity to improve design skills.
After the Software Design Process RevieW' (@age), he assesses himself to a
maturity level of 4 - Autonomous - (level 2 - Nat® - was reached at the end of the
3 stage, and level 3 - User — after the ExemplargigieActivity). The availability
of accurate competency level provides valuablermédion for the project manager
in order to assign tasks to team members.

Recording other assessmentsThe most valuable information is provided with
the meeting report. They are recorded using a seéenaiki through a semantic form.
Links to other resources (person, artifact, procesare very easy to establish and to
update. It provides an ordering scheme and newgateh features.

6 Conclusion and Perspectives

We proposed to adapt the course-of-action framewmdoftware engineers’ activity
in Very Small Enterprises (VSESs). An observatorlfemis the data necessary to study
the course of action therefore including continuobservations of the behavior of
action and communication in a work situation aslaeldifferent kinds of instigated
verbalizations (transcript in a written form) frothe actors which would provide
access to other elements such as interpretatieaknds, judgments. As a case study,
the activity of a team of 6 young software engiseaccompanied with two
participants-to-observe is currently recorded ia ¢bservatory. As units of courses
of action are significant units for the actor, wease to breakdown the whole course-
of-action in units based on individual performethaites.

A further study will use these data to proceed whth analysis of course-of-action,
using a theoretical framework, described as seoda:él. This framework will make
possible to explain the global dynamics - or coritjms - of the courses of action
units, their local dynamics - or generation - ahé finkage between these two
dynamics.

The current state of this work — the building ahne filling of an observatory of the
part of the agent's observable activity that is-reflexive (i.e. presentable,
accountable and commentable) — let suggest thiysimavill lead (1) to specify the
modalities of engineers’ interaction with life cggbrocesses leading to the design of
better interaction or of corrective situations af® to contradict or support the
reconstruction by the engineer of his/her own @gtiv.e. going from “pre-reflective
consciousness” of the actor towards a reflectitieude.

Thus, we may think that observing and analyzingvsare engineer’s activity help
to reveal his/her theory-in-use [10] - what govegngineers’ behavior and tends to be
tacit structures - that we may call Project Proesss-use in a VSE. The unit
breakdown of course-of-action is based on performetivities related to a simple
Process Reference Model issued from the ISO/IE@12P08 standard. We made
the hypothesis that this standard constitutes th&pdused theory” of software
engineers. So, the course-of-action framework nedg Bngineers to establish a link
between his/her “Project Processes-in-use” andolesgd Process Reference Model”
and contribute to reduce the fit between a prdjeetetion and SE standards. When
the upcoming standard “Software Engineering - Litde Profiles for Very Small
Enterprises (VSE)” [7] will be available, we wilbosider how this standard fits in
this proposition.

Argyris and Schon explored the nature of orgarireti learning and defined two
kind of learning: simple-loop learning and doutdep learning [22]. Then they set up
two models (Model | and Model II) that describetteas of theories-in-use that either
inhibit or enhance double-loop learning. Furtherkvis required to consider how
course-of-action analysis is related with theseapizational learning models and
hence, on the VSE's ability to cope with innovai@nd changes.

References
1. Schon, D.: The Reflective Practitioner. Basic Bodeaw York (1983)
2. Argyris, C., Putnam, R., McLain Smith, D: Acti@tience, Concepts, methods, and skills

for research and intervention. Jossey-Bass,San iBcan@985)

3. Software Engineering - Lifecycle Profiles forety Small Enterprises (VSE) -- Part 1
http://www.iso.org/iso/iso_catalogue/catalogue atdtogue_detail.htm?csnumber=51150

4. Theureau, J., Filippi, G., Gaillard, I.: Fronnse-logical analysis to design: the case of
traffic control, communication. In Colloquium "Workctivity in the perspective of
organization and design", M.S.H., Paris (1992)

5. Theureau, J., Filippi, G.: Analysing cooperativork in an urban traffic control room for
the design of a coordination support system, chaptén: Luff, P., Hindmarsh, J., Heath,
C. (eds.) Workplace studies, Cambridge Univ. Pre&s96 (2000)

6. Theureau, J.: Course-of-action analysis & coofsaction centered design. In: Hollnagel
E. (ed.), Handbook of Cognitive Task Design, LaweeBdbaum Ass., New Haven (2003)

7. Ribaud, V., Saliou, P.: Revealing Software Engimge Theory-in-Use through the
Observation of Software Engineering Apprentices' i€ewf-action. In: # International
Multi-Conference on Computing in the Global Inforioat Technology, IEEE Press, New
York (2009)

8. Theureau, J.: Selfconfrontation interview a®mgonent of an empirical and technological
research programme. In : 1I° Journées internatemdes sciences du sport, Paris (2002)

9. Varela, F.: Principles of biological autonomysevier, New York , (1980)

10. Argyris, C., Schon, D.: Theory in practice: kasing professional effectiveness. Jossey-
Bass, San Fransisco (1974)

11. Halloran, P.: Organisational Learning from tRerspective of a Software Process
Assessment & Improvement Program. In: 32nd Hawaérhational Conference on System
Sciences. IEEE Press, New York (1999)

12. Cater-Steel, A.P.: Process improvement in foualls software companies. Software
Engineering Conference, 262-272, IEEE Press, New {1899)

13.

14.

15.

16.

17.

18

19.
20.

21.

22.

Grunbacher, P.: A software assessment prooessriall software enterprises. Euromicro
97. 'New Frontiers of Information Technology', 1228, IEEE Press, New York (1997)

von Wangenheim, C.G., Anacleto, A., Salviano,.CHelping small companies assess
software processes. IEEE Software, 23, 91-98 IEESSY New York (2006)

Moore, J.W.: An integrated collection of saite engineering standards. IEEE Software,
16, 6, pp. 51-57 IEEE Press, New York (1999)

ISO/IEC 12207:2008, “Information technology Software life cycle processes”.
International Organization for Standardization ()SGeneva (2008)

ISO/IEC 15504:2004, “Information technology -foess assessment”. International
Organization for Standardization (ISO), Geneva @00

ISO/IEC FCD 24765, “Systems and software engingeri Vocabulary”. International
Organization for Standardization (ISO), Geneva @00

Roques, P., Vallée, F. : UML en action. Eymllearis (2002)

Meirieu, P. : Si la compétence n’existait plagudrait I'inventer In [IUFM de Paris College
des CPE, 2005, http://cpe.paris.iufm.fr/spip.phpélad 150 (2007)

Donin, N., Theureau, J.: Music composition lire twild: from the horizon of creative
cognition to the time & situation of inquiry. InAEE 05, Créte, 57-64 (2005)

Argyris, C., Schon, D.: Organizational learnidgtheory of action perspective. Addison
Wesley, Reading, Mass. (1978)

