
HAL Id: hal-00504449
https://hal.univ-brest.fr/hal-00504449

Submitted on 25 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building an Observatory of Course-of-Action in Software
Engineering: towards a Link between ISO/IEC Software

Engineering standards and a Reflective Practice
François-Xavier Bru, Gaëlle Frappin, Ludovic Legrand, Estéban Merrer,

Sylvain Piteau, Guillaume Salou, Philippe Saliou, Vincent Ribaud

To cite this version:
François-Xavier Bru, Gaëlle Frappin, Ludovic Legrand, Estéban Merrer, Sylvain Piteau, et al.. Build-
ing an Observatory of Course-of-Action in Software Engineering: towards a Link between ISO/IEC
Software Engineering standards and a Reflective Practice. EuroSPI 2009, Sep 2009, Spain. pp.185-200.
�hal-00504449�

https://hal.univ-brest.fr/hal-00504449
https://hal.archives-ouvertes.fr

Building an Observatory of Course-of-Action in
Software Engineering: towards a Link between ISO/IEC
Software Engineering standards and a Reflective Practice

François-Xavier Bru1, Gaëlle Frappin2, Ludovic Legrand1, Estéban Merrer1,
Sylvain Piteau3, Guillaume Salou4, Philippe Saliou5 and Vincent Ribaud5

1 Thales Airborne System, 29283 Brest Cedex 2, {François-Xavier.Bru, Ludovic.Legrand,

Esteban.Merrer@thalesgroup.com}
2 Teamlog, Rue Fulgence Bienvenüe, 22300 Lannion, Gaëlle Frappin @teamlog.com

3 Direction des Constructions Navales - DCNS, route de la corniche, 29200 Brest,
Sylvain.Piteau@dcnsgroup.com

4 Groupe Arkéa, 32 rue Mirabeau 29480 Le Relecq Kerhuon, Guillaume.Salou@arkea.com
5 University of Brest, CS 93837, 29238 Brest Cedex, France

{Vincent.Ribaud@univ-brest.fr , Philippe.Saliou@univ-brest.fr}

Abstract. As a help to compete in an evolving market, small software
companies may use an observatory of their course-of-action. The course of
action considers the observable aspect of the actor’s activity. Its analysis
provides a description of actors’ activity and it can express recommendations
concerning both the individual situations and the collective situation. The
observatory is an articulated set of data collecting methods supported with
semantic wikis and a dedicated application. A case study, based on the activity
of a team of 6 young software engineers, depicts some aspects of the building
and the filling of the course-of-action observatory. As primary results of this
work, we may think that observing and analyzing software engineer’s activity
help to reveal his/her theory-in-use – what governs engineers’ behavior and
tends to be tacit structures – That may help engineers to establish links between
“Project Processes-in-use” and a simplified Process Reference Model and
contribute to reduce the fit between a project-in-action and espoused SE
standards.

Keywords: course-of-action, theory-in-use, espoused theory, reflective
practitioner, software engineering processes.

1 Introduction

For many small software companies, software process improvement (SPI) is often out
of reach due to prohibitive costs and lack of SPI knowledge. However, to survive in
this competitive market, software developers must improve their productivity, time to
market and customer satisfaction. A help could be provided through a reflective
attitude (D. Schön [1]). A question occurs: “How to bring this reflective (and
learning) attitude into organizations and everyday work?”

Theories of action study what an actor do, in a given situation, in order to achieve
consequence or objectives. A distinction can be made between two kinds of theories
of action. Espoused theories are those that an individual claims to follow. Theories-in-
use are those that can be inferred from action [2]. Espoused theory and theory-in-use
may be inconsistent, and the agent may or may not be aware of any inconsistency. By
definition, the agent is aware of espoused theory. Theories-in-use can be made
explicit by reflecting on action [2]. In the software engineering field - and especially
in Very Small Enterprises – the horizon of standards or the corporate baseline of
processes and practices constitute the espoused theory, since it is what engineers
claim to follow. Although an emerging standard “Software Engineering - Lifecycle
Profiles for Very Small Enterprises (VSE)” [7] may facilitate the use of SE standards
in a VSE, what engineers do (and this action is designed and do not “just happen”)
may reveal a different theory-in-use. We believe that making explicit theories-in-use
may help software engineers to learn more suitable theories-in-use, thus contributes to
improve productivity and performance.

In this perspective, after several years of informal methods to analyze and improve
software engineers’ activities, we are now using the course-of-action analysis in order
to understand the structural coupling of a software engineer with his/her environment
and especially lifecycle software processes. Let us cite a short definition of course-of-
action: “the activity of one (or several) specific actor(s), engaged in a specific
situation, belonging to a specific culture, which is significant for the latter, in other
words, that can be related or commented by him (or them) at any moment [4].” The
course-of-action analysis is based on an observatory that we consider in this
introduction as a system of data collecting methods. The data necessary to study the
course of action includes continuous observations of the behavior of action and
communication in a work situation as well as different traces of other elements such
as interpretations, feelings, and judgments [4]. The analysis of this data produces a
decomposition of the global dynamic in terms of smaller units and the relations of
sequencing and embedding between these units. The results of this analysis may (i)
help to design better interactions or corrective situations; (ii) facilitate the
reconstruction by the actor of his/her own activity, i.e. going from “pre-reflective
consciousness” towards a reflective attitude [1].

This paper is organized as follow. Section 2 presents the course-of-action
framework and its application to software engineering. Section 3 drafts some related
work. Section 4 discuss about the observatory of course-of-action of software
engineers. Section 5 present excerpts of a case study. We finish with perspectives.

2 Course-of-action Applied to Software Engineers’ Activity

2.1 The Course-of-action in a Nutshell

Pinsky and Theureau, ergonomists, initiated the theoretical and methodological
framework of "course-of-action", summarized in one directing idea, that of the
necessity of an analysis of the actual operators’ activities in real work situations for

the design of new work situations [5]. An important theoretical hypothesis is that the
course-of-action framework states about human activity, is that human activity is
dynamically situated, i.e. always appeals to resources, individual as well as
collectively shared to varied degrees, which stem from constantly changing material,
social, and cultural circumstances. The course-of-action analysis add to various
theories of “situated activity” the consideration of the domain of experience, i.e. that
of the agent's course-of-experience, of the constructing process of this experience at
any moment, and takes an interest in the articulation between the cognitive domain
and the course-of-experience. Theureau in [6] defines the theoretical object called
"course of action" as follows: “what, in the observable activity of an agent in a
defined state, actively engaged in a physically and socially defined environment and
belonging to a defined culture, is pre-reflexive or again significant to this agent, i.e.
presentable, accountable and commentable by him/her at any time during its
happening to an observer-interlocutor in favourable conditions”.

2. 2 The Observatory of Course-of-action

This paragraph is reproduced from [7].

The course-of-action analysis is based on an observatory that allows to specify the
material conditions of situated recall (time, place, material elements of the situation),
the follow up and the guiding of presentations, accounts and commentaries by the
agents as well as the cultural, ethical, political and contractual conditions that are
favorable to observation, interlocution, and creation of a consensus between the agent
and the observer-interlocutor [6].

A methodology has been developed to collect data on the courses-of-action. It
connects continuous observations and recordings of the agents’ behavior, the
provoked verbalizations of these agents in activity (from the "thinking aloud" for the
observer-interlocutor to the interruptive verbalizations at privileged moments) and the
agents' comments in self confrontation with recordings of their behavior [6].

Continuous observations and recordings together with verbalizations and self-
confrontation let us access to a representation of dynamics of the structural coupling
between the actor and his/her situation (including other actors) [9]. A “semiological
framework” [6] provide us with a theory of activity allowing to describe the activity
in abstract terms expressing hypothetical invariants. Explaining and using this theory
is out of the scope of this paper focused on the observatory of course-of-action. It is
sufficient to tell that this semiologic stems from the hypothesis that any period of
course-of-action may be described in smaller units. This description of the intrinsic
organisation of the course of action articulates two complementary descriptions: a
description of its global dynamics, characterising the units of the course of action and
the relations of sequencing and embedding between these units; a description of its
local dynamics, characterising the underlying structure of the elementary units [5].

2.3 An Observatory of Software Engineers’ Activity

The intervention of an ergonomist in an organization intended to produce software
concern the analysis of human-system interaction – of the software engineer with
his/her organization’s processes – and the design of the system in order to optimize
human well-being and overall system performance. In our case, we use the theoretical
and methodological framework of course-of-action in order to analyze the activity of
software engineers within Very Small Enterprises (VSEs, up to 15-25 employees).

Recall the definition of the course-of-action in §2.1: what, in the observable
activity of an agent […] is pre-reflexive or again significant to this agent, i.e. (i)
presentable, (ii) accountable and (iii) commentable by him/her at any time during its
happening […]. Software workers do not achieve complex technical gestures or do
not have to progress along a detailed procedure. So (i) presentations to an observer are
quite difficult to reproduce and presentable artifacts that are most notable and
representative of the job are the outputs of software activities and tasks. (ii) Accounts
are easier to collect and observe because a minimum of traceability and reporting is
performed in any organization and if it is not sufficient, accounting can be provoked
without significantly modify the course of the activities. (iii) Comments are not
natural objects and have to be provoked: reports, self competency assessment (§ 4.3).

The course-of-action framework proposes self confrontation as an indirect means
to document actor’s experience or pre-reflective consciousness or immediate
understanding of his/her activity at every instant t; the fact is highlighted that the
experience at instant t differs from what is called the reflective consciousness, which
concerns particular and situated periods of the actor’s activity, when he/she considers
his/her past activity with a given purpose [8].

However, considering these two levels of consciousness, we may think that there
are two different levels of description of software processes. The first level – on
which this paper is focused – is concerned with the day-to-day course of a software
project and its associated activities while the second level – on which most Software
Engineering standards are focused – is concerned with a description of these
activities. We believe that the first level is related with theories-in-use, those that can
be inferred from action [2]. And we think that the second level is related with
espoused theories, those that an individual claims to follow. The purpose of our work
is to provide an observatory of existing processes and practices that could help to
situate project processes and practices in-use regarding to espoused standards.

2.4 Application for Software Engineers in VSEs

The semiological framework of course-of-action makes it possible to describe the
courses of action in general structural terms, expressing underlying regularities. It
allows on the one hand, such a description of the global dynamics of the courses of
action, and on the other hand, such a description of their local dynamics. It also links
these two descriptions. As we discuss in §5.3, the smaller units, based on individual
courses-of-action, describe the carrying out of all or part of software engineering base
practices. Hence, the global dynamic, which is related to the composition of these
performed practices, is a description of what we may call process-in-action.

The course-of-action analysis operates on what, in the observable activity of an
agent, is presentable, accountable and commentable by him/her. A sound analysis
may work only with sound collected data and, because most accurate data are
collected by the team itself, it requires the team commitment to this self-observation.
This team commitment can only be effective if the team is the main beneficiary of this
overwork, collectively - with a valuable result on team processes-in-action - and
individually - with an added-value on competency development -.

Thus, as presented in figure 1, this analysis shall lead to (i) help to specify the
modalities of engineers’ interaction with project processes leading to the design of
better interactions or of corrective situations; (ii) contradict or support the
reconstruction by the engineer of his/her own activity, i.e. going from “pre-reflective
consciousness” of the actor towards a reflective practitioner attitude [2]. Both results
have a valued impact on the project processes.

VSE’s Process

Reference Model

Project

Processes-in-

action

is related to

Observatory and

analysis of the

course-of-action

is recorded in

and examined by

Design corrective

situations

leads to

Team competency

development

leads to

motivates

acts facilitates

Fig. 1. The project’s observable activities are self-recorded by team members. The analysis of
the project-in-action provides a decomposition of the global dynamic in terms of smaller units
and the relations of sequencing and embedding between these units. Two benefits are expected:
(i) a reflective consciousness of competency maturity level; (ii) a support to design corrective
actions. Both consequences may improve and facilitate the project processes.

3 Related Work

The “course-of-action” research framework [6] consists in several empirical and
technological research programs in various domains (work analysis [4], traffic control
[5], sport [8], and music composition [21]). The work described in this paper uses
plentifully results of these research programs.

It would be impossible to reference all the research work that has been inseminated by
Argyris and Schön’s theories [10]. In the software engineering field, Halloran [11]
investigates the relationship between a software process assessment and improvement
model and organizational learning. This work points out the difference between
“engineer’s espoused theory” and his/her “theory in use” but it does not develop this
matter as we did and rather focuses on the use of organizational learning to promote a
proactive approach culturally to continuous improvement and learning procedures.

Many propositions have been made for Process Improvement or Process
Assessment in small software companies ([12], [13], [14]). Many small organizations
are unaware of existing SPI& SPA standards and assumes that assessments
conformant to these standards can be expensive and time consuming, difficult to
perform in small companies. We think that while building the observatory of course-
of-action, foundations are set-up that will facilitate further SPI & SPA programs.
There are similitude with the SPA process proposed in [l] based on an initial self-
evaluation and following structured interviews and the observatory as we use it.

4 Observing Software Activities

4.1 Software Engineering Standards

Fig. 2. The objects of software engineering, suggesting a categorization of standards in the
subject areas of customer, process, product, and resource [15].

A very concise definition of the objects of software engineering is “a project uses
resources in performing processes to produce products for a customer [15].” It gives a
model in figure 2, centered on the software engineering project as the focal point for

applying software engineering standards. This suggests a categorization of standards
in four major areas: customer, process, product, and resource.

For VSEs, each category contains a number of standards that put them out of reach.
There is a need for an umbrella standard within each category. The IEEE/IEC 12207,
Software Life Cycle Processes [16], provides this umbrella for all of the customer and
process standards. An on-going initiative of ISO should provide lifecycle profiles for
Very Small Enterprises (VSEs) [7].

4.2 VSEs Faced to the 12207

Confronted to the 12207, a software engineer in a VSE is at a loss (1“like a goose
finding a knife” as French people say). First, this standard has received major changes
since 1995: Amendment 1 in 2002, Amendment 2 in 2004, and a complete revision in
2008. Secondly, there are currently 43 processes in the 12207:2008 [16], organized in
7 process groups. As an example of the gap with the VSEs needs, the emerging
standard “Software Engineering - Lifecycle Profiles for Very Small Enterprises
(VSE)” [7] contains 2 processes: Project Management (PM.1) and Software
Implementation (SD.1). PM.1 is subdivided in 4 sub-processes (Project Planning,
Project Plan Execution, Project Assessment and Control, Project Closure) and SD.1 is
subdivided in 6 sub-processes (Software Implementation Initiation, Software
Requirements Analysis, Software Architecture and Detailed Design, Software
Construction, Software Integration and Tests Product Delivery).

It is not sure that a software engineer in a VSE share the same meaning of these 10
names of sub-processes (from Project Planning to Software Integration and Tests
Product Delivery) with a client or a colleague of a major company engaged in any SPI
program such as ISO/IEC 15504 or CMMI. However, they will try to communicate
and may sign a contract, but they don’t speak about the same things. This lack of
understanding illustrates the existence of two theories of action – for a software
engineer as for any practitioner -, as defined by Argyris and Schön. They have
established a distinction between those theories that are implicit in what we do as
practitioners and managers (theories-in-use), and those on which we call to speak of
our actions to others (espoused theory). “When someone is asked how he would
behave under certain circumstances, the answer he usually gives is his espoused
theory of action for that situation. This is the theory of action to which he gives
allegiance, and which, upon request, he communicates to others. However, the theory
that actually governs his actions is this theory-in-use [10].” We may ask question
about the extent to which theory-in-use fits espoused theory. Reflection may be a help
to discover the theory-in-use and to reveal the nature of the ‘fit’. We believe that the
observatory of course-of-action – adapted to the software engineering field – may
support this process.

4.3 What Can Be Observed?

This significant activity for the actors includes action and communication, but also
other elements: interpretations, feelings, judgments, …The data necessary to study the
course of action must include continuous observations of the behavior of action and
communication in a work situation as well as different kinds of instigated
verbalizations from the actors which would provide access to other elements [4].

Software development never uses a repeated scheme and it may be difficult to
interrupt a software engineer at work and to provoke a verbalization of what he/she is
doing and why. In §2.3 we gave an overview of what, in the observable activity is (i)
presentable, (ii) accountable and (iii) commentable by the actor.

Products and documentary resources are main objects of (i) presentation as they
describe the inputs and outputs of the activity. The “historical” context of resources’
use and products’ production has to be recorded too. This can be described in terms of
events and processes, involving occurrences of agents (people) and artifacts (products
and resources) meeting in space (in case of distributed cooperation) and time. As a
first stage, we may consider individual courses of action of the various participants.
At a second level, a collective action involves parts of several individual courses of
action which take place synchronically or sequentially. We need to divide individual
course-of-action in smaller units, that we call course-of-action unit. Each event of
interest has to be (ii) accounted in an instance of Course-of-action Unit in relation
with people and artifacts involved. It provides a kind of project journal. A journal
may be seen as a kind of reflective practice that is a device for working with events
and experiences in order to write (iii) comments and extract meaning from them.

5 A Case Study

5.1 Introduction

In spring 2007, local employers in Brest decided to implement a recent French law
on professional training. This law requires that 3% of employees be under ‘sandwich’
(or work placement) conditions. A lot of companies choose to use a system called
“Contrat de professionnalisation” (professionalization contract) over a period of 12
months. During these 12 months, the full-paid employee is attending university for
certain periods. For contracts involving our computing department, we dedicated an
innovative program called “Software Engineering by Immersion” (‘Ingénierie du
Logiciel par Immersion’). The main feature of this last year of the Masters
programme is to learn software engineering by doing, without any computing course
but with a long-term project as the foundation of all apprenticeships. Alternating
employees are attending university in 9 periods of 2 consecutive weeks and work in
team of 6 in order to build a complete information system.

The program’s rhythm is based on the lifecycle of a project organized into stages.
Each stage was arbitrary sized to 2 weeks due to the constraints of alternation. The

cycle is: Stage 0: Warm-up; Stage 1: Project set-up; Stage 2: Requirement capture;
Stage 3: Requirement analysis; Stage 4: Design; Stage 5: Software construction; Stage
6: Software construction; Stage 7: Integration and Verification; Stage 8: Qualification
and Deployment.

This case study is based on the activity of a team of 6 young software engineers
(the six formers authors) accompanied with the two latter authors acting as
participants-to-observe: one having a direct contact of the team members, sharing
their environment and taking part in the activities of the team, the other one
conducting reviews and formal assessments as they happen. This case study depicts
some aspects of the building and the filling of the course-of-action observatory.

The whole observatory is supported with several electronic tools such as semantic
wikis, content management system and dedicated applications. Semantic wikis offers
a lightweight authoring plate-form and will be used to record most events of the day-
to-day life in the project journal.

5.2 The Horizon of Software Engineering Standard

As told in section 4.1, the 12207:2008 standard acts as a standard umbrella and was
used during the introductory stage to define the framework of a software engineer’s
activity. The 12207:2008 was preferred to CMMI because the former (used jointly
with the 15504 standard [17]) separates processes and capability levels in two
dimensions while CMMI handles them in one dimension. This separation was
preferred because it defines processes “(set of interrelated or interacting activities
which transforms inputs into outputs” [16]) independently from base practices (“an
activity that, when consistently performed, contributes to achieving a specific process
purpose [17]”).

The 43 processes are too many and complex to be used as the reference model and
we concentrate on 16, those related to the software development cycle, that is: 6.2.2
Infrastructure Management, 6.3.1 Project Planning, 6.3.2 Project Assessment and
Control, 6.4.1 Stakeholder Requirements Definition, 6.4.4 Implementation Process
replaced by 7.1.1 Software (SW) Implementation Process and its 6 sub-processes,
7.2.1 SW Documentation Management, 7.2.2 SW Configuration Management, 7.2.3
SW Quality Assurance, 7.2.4 and 7.2.5 SW Verification & Validation, 6.4.7 SW
Installation. Processes are grouped into process groups (five 12207 group processes
are concerned that we regrouped in three).

The 6 young engineers chosen for this case study have a Bachelor in Information
Technology (4-year studies in the field) and they work in large companies with a
structured corporate baseline. However, there is a need for a common reference of the
terms used, either because they have different significations in the different
companies, or because their signification is unknown or fuzzy. We choose to use the
ISO/IEC FCD 24765, “Systems and software engineering – Vocabulary [18]”.

We dispose of a PDF version of the 12207:2008, licensed by ISO and of a
electronic version of the 24765, copyrighted by ISO but free of use as long as the
copyright is cited. As the project goes along and its events are recorded in the project
journal, and in order to facilitate links between the project journal and Software

Engineering standards used at the horizon, the whole team filled two semantic wikis
with a subset of the two standard used :

• the 12207 wiki (http://oysterz.univ-brest.fr/12207) is an hypertext reference
of the ISO/IEC 12207:2008 for the process level : title, purpose, list of
outcomes and process decomposition in activities and tasks;

• the 24765 wiki (http://oysterz.univ-brest.fr/24765) is a subset of the ISO/IEC
24765 vocabulary, it is actually under reengineering but on-line SEVOCAB
is provided by ISO (http://pascal.computer.org/sev_display).

The structure of these two semantic wikis is given in figure 4.

Fig. 4. A model of 12207 and 24765 semantic wikis.

5.3 The Project in Action

The two latter authors both worked for nearly ten years at Thales Information

System (formerly Syseca Inc), a software services company. They led projects and
developed several management information systems under the control of Thales
Information System corporate baseline.

The authors have defined an apprenticeship/production framework called ILI
(Ingénierie du Logiciel par Immersion, Software Engineering by Immersion), based
on a reference model, a development cycle and a typical WBS (Working Breakdown
Structure: a deliverable-oriented hierarchical decomposition of the work to be
executed by the project team to accomplish the project objectives and create the
required deliverables. It organizes and defines the total scope of the project [18]).

The Process Reference Model (PRM) is adapted and simplified from ISO/IEC
12207; we are using 3 process groups organizing 13 processes: Software
Development Engineering (Requirements capture, Software Requirements Analysis,
Software Architectural Design , Software Detailed Design, Software Construction,
Software integration; Software qualification testing); Software Project Management
(Project Management, Quality Assurance, Configuration Management); and Software
Development Support (Infrastructure Management, Life Cycle Model Management,
Documentation Management, Installation-Operation).

We use a Y-shaped life cycle that separates resolution of technical issues from
resolution of feature issues [19]. First, the cycle is divided into two branches (tracks):
a functional track and a technical track. Then these two tracks amalgamate for the
realization of the system.

The WBS has a structural and a temporal decomposition. Each process is
structurally decomposed in Software Engineering activities (to distinguish it from the
activities in the 12207 sense) that may have slightly variation from a project to
another. Each Software Engineering activity is further decomposed in sub-activities
that can be fully specified or just named, depending of the scope and goals of the
project. The WBS is temporally organized in stages (in our case, 9 of 2 week each).
The planning of each stage is divided in several work scenes that carry on SE
activities. Scenes will be performed by team members and ought to produce artifacts.

The course-of-action forms a whole that is concerned with all aspects described in
previous paragraphs but we need to divide the continuous development of the course
of action into significant units (cf. §2.3). We decide to divide the whole course-of-
action by replying to the question: "What is this about, from the point of view of the
engineer?" This division is recorded through the central event Course-of-action Unit.
Complex or collective interactions require an intermediate level, called Step-of-action
sequencing and embedding Course-of-action units. Links with PRM are provided.

A picture of all these interlinked concerns is given in figure 4.

Fig. 4. A model of Process Reference Model -PRM- (on the left) and WBS (on the right).
Artifacts are shared between PRM and WBS. The Course-of-action Unit is used as central link.
Steps-in-action characterize the relations of sequencing and embedding between these units.

The project journal uses a semantic in order to record the progress of the project.
The project manager initially fills and updates the WBS of his/her project. Team
members can record events as they happen but have to systematically fill the wiki at
the end of each phase. Semantic wiki is the most flexible tool in order to record and
shape a structured content. Properties (modifying the underlying data model) can be
added, updated or deleted as the project goes along. Information (data) can be
recorded in a bulk mode and the typesetting performed later. Things to do or to report

are created in one Wiki word to indicate that they have to be filled. Information can
be temporary missing or incomplete.

5.4 Recording Assessments

Several kinds of assessment occur in the life of a project. Assessment may be
focused on products or services, on processes or on persons. Assessment itself
provides information on action performed but many other elements significant for the
actors and the course-of-action analysis: interpretations, feelings, judgments, actors’
commitment to the situation and their use of past experience in the course-of- action.

Recording project assessment. The project has to record artifacts produced by

project progress: lecture notes, progress meeting report, peer review reports which
constitute valuable inputs for further analysis.

Recording project assessment. We argue that personal capability determination

(rather than process capability determination) is more suitable to VSEs because
employees may perceive it as a valuable benefit. Using the 2-level structure of our
Process Reference Model (on the left part of figure 4), we analyze carefully SE
activities in order to define abilities mobilized (or competencies: “the ability of a
person to act in a pertinent way in a given situation in order to achieve specific
purposes [20]”). For each process, we defined a family of competencies constituted
with a list of knowledge topics and a set of abilities or skills required to perform the
process (see an example in table 1).

Table 1. An example of a competency family: “Software detailed design’.

Knowledge topics Abilities or skills
Software Design Fundamentals : concepts
and principles, design role in a
development cycle, top-level and detailed
design

To use design methods and tools (in
relation with requirements) to produce
design documents: system and software
architecture and detailed design

Software decomposition configuration
item, software component, software unit

To implement methods and modeling tools
of various aspects of a system (architecture
and decomposition software, data structure)

Software architecture through different
views: conceptual, dynamic, physical,
data.

To implement J2EE development and
technology of associated framework

UML diagrams to describe static and
dynamic views

To implement DBMS concepts, techniques
and tools

Object-oriented design

We believe that a first step in competency development should be made by the

engineer him/herself through a self-assessment of abilities at a maturity level. The
assessment scale grows from 1 to 5: - 1: Smog - 2: Notion - 3: User - 4: Autonomous -
5: Expert. Each young engineer is required to periodically fill the 13 competency
families while auto-analyzing the tasks performed and him/her achievement level

with the abilities defined in the family. This periodic inventory is supported by
eCompas, a tool intended to manage development, assessment and value-added of
competencies over the course of a curriculum or a professional career.

The eCompas tool is intended to store artifacts that may be interesting to illustrate
the ability determination. Each time a software engineer self-assesses a process’s
ability level, he/she has to write an entry associated with the process and may link this
entry with artifacts stored. It constitutes a rudimentary portfolio, but sufficient for our
purposes. This tool needs to be reengineered to work with the wikis’ architecture.

5.7 Focus on a Process: the Design Process

Recording the project in action. According to ISO/IEC 12207, outcomes of the
7.1.3 Architectural Design and 7.1.4 Software Detailed Design Processes are: a) a
software architectural design is developed and baselined that describes the software
items that will implement the software requirements; b) internal and external
interfaces of each software item are defined; c) consistency and traceability are
established between software requirements and software design and d) a detailed
design of each software component, describing the software units to be built, is
developed.
For the Design Process, 12207 recommended tasks and 15504 base practices are
roughly the same:
1) transformation of the requirements for the software item into an architecture that
describes its top-level structure and identifies the software components.
2) development and documentation of a top-level design for the interfaces external to
the software item and between the software components of the software item.
3) development and documentation of a top-level design for the database.
4) development and documentation of preliminary versions of user documentation.
5) definition and documentation of preliminary test requirements and the schedule for
Software Integration.

Our ILI framework, considered as representative of VSEs processes, decompose
the Design Process in 3 SE Activities: Adjusting the Design, Exemplary Software
Design, and Software Design (including Database Design as a sub-activity).

If we have a look at the information recorded in the observatory by team members,
they performed two kinds of self-confrontations. The structure of self-confrontations
of the former kind, performed at the end of the task, reflects the structure of
recommended tasks as they may be found in the SE Activity description. For instance,
for the Exemplary Software Design Activity, the description stresses the identification
of Computer Software Components, the requirements allocation to the components
and the components specification. So, each participant to this activity recorded its
own participation in a Course-of-action unit kept to the Activity description. The
latter kind of self-confrontation was performed as team members prepared the
Software Design Process Review, a formal review. They have to create a synthetic
description of the Design Process and to record it in its associated Work Scenes (see
figure 4). Participants created Steps-in-action embedding individual Course-of-action
units and established inter-wikis links with the corresponding 12207 Processes. It is

not sure that the 12207 outcomes and tasks were confronted to the performed actions,
but it indicates an attempt to link the course-of-action at the horizon of SE standards.

Recording team competency development. Periodic inventories of team

members are recorded within the eCompas tool. A copy (in a Word format) is stored
into the observatory. Focusing on the Design Process, we may note that a team
member has participated to the 3 SE Activities defined for the Design Process (see
above). As the year started, he assesses himself at the maturity level - 1 - (or - none)
for the process as a whole and for each associated abilities. Inside his company, he
acts as a software developer and has very little opportunity to improve design skills.
After the Software Design Process Review (6th stage), he assesses himself to a
maturity level of 4 - Autonomous - (level 2 - Notions - was reached at the end of the
3rd stage, and level 3 - User – after the Exemplary Design Activity). The availability
of accurate competency level provides valuable information for the project manager
in order to assign tasks to team members.

Recording other assessments. The most valuable information is provided with

the meeting report. They are recorded using a semantic wiki through a semantic form.
Links to other resources (person, artifact, process ...) are very easy to establish and to
update. It provides an ordering scheme and new navigation features.

6 Conclusion and Perspectives

We proposed to adapt the course-of-action framework to software engineers’ activity
in Very Small Enterprises (VSEs). An observatory collects the data necessary to study
the course of action therefore including continuous observations of the behavior of
action and communication in a work situation as well as different kinds of instigated
verbalizations (transcript in a written form) from the actors which would provide
access to other elements such as interpretations, feelings, judgments. As a case study,
the activity of a team of 6 young software engineers accompanied with two
participants-to-observe is currently recorded in the observatory. As units of courses
of action are significant units for the actor, we choose to breakdown the whole course-
of-action in units based on individual performed activities.

A further study will use these data to proceed with the analysis of course-of-action,
using a theoretical framework, described as semio-logical. This framework will make
possible to explain the global dynamics - or composition - of the courses of action
units, their local dynamics - or generation - and the linkage between these two
dynamics.

The current state of this work – the building and the filling of an observatory of the
part of the agent's observable activity that is pre-reflexive (i.e. presentable,
accountable and commentable) – let suggest that analysis will lead (1) to specify the
modalities of engineers’ interaction with life cycle processes leading to the design of
better interaction or of corrective situations and (2) to contradict or support the
reconstruction by the engineer of his/her own activity, i.e. going from “pre-reflective
consciousness” of the actor towards a reflective attitude.

Thus, we may think that observing and analyzing software engineer’s activity help
to reveal his/her theory-in-use [10] - what governs engineers’ behavior and tends to be
tacit structures - that we may call Project Processes-in-use in a VSE. The unit
breakdown of course-of-action is based on performed activities related to a simple
Process Reference Model issued from the ISO/IEC 12207:2008 standard. We made
the hypothesis that this standard constitutes the “espoused theory” of software
engineers. So, the course-of-action framework may help engineers to establish a link
between his/her “Project Processes-in-use” and “espoused Process Reference Model”
and contribute to reduce the fit between a project-in-action and SE standards. When
the upcoming standard “Software Engineering - Lifecycle Profiles for Very Small
Enterprises (VSE)” [7] will be available, we will consider how this standard fits in
this proposition.

Argyris and Schön explored the nature of organizational learning and defined two
kind of learning: simple-loop learning and double-loop learning [22]. Then they set up
two models (Model I and Model II) that describe features of theories-in-use that either
inhibit or enhance double-loop learning. Further work is required to consider how
course-of-action analysis is related with these organizational learning models and
hence, on the VSE’s ability to cope with innovations and changes.

References

1. Schön, D.: The Reflective Practitioner. Basic Books, New York (1983)
2. Argyris, C., Putnam, R., McLain Smith, D: Action Science, Concepts, methods, and skills

for research and intervention. Jossey-Bass,San Francisco (1985)
3. Software Engineering - Lifecycle Profiles for Very Small Enterprises (VSE) -- Part 1

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51150
4. Theureau, J., Filippi, G., Gaillard, I.: From semio-logical analysis to design: the case of

traffic control, communication. In Colloquium "Work activity in the perspective of
organization and design", M.S.H., Paris (1992)

5. Theureau, J., Filippi, G.: Analysing cooperative work in an urban traffic control room for
the design of a coordination support system, chapter 4. In: Luff, P., Hindmarsh, J., Heath,
C. (eds.) Workplace studies, Cambridge Univ. Press, 68--91 (2000)

6. Theureau, J.: Course-of-action analysis & course-of-action centered design. In: Hollnagel
E. (ed.), Handbook of Cognitive Task Design, Lawrence Erlbaum Ass., New Haven (2003)

7. Ribaud, V., Saliou, P.: Revealing Software Engineering Theory-in-Use through the
Observation of Software Engineering Apprentices' Course-of-action. In: 4th International
Multi-Conference on Computing in the Global Information Technology, IEEE Press, New
York (2009)

8. Theureau, J.: Selfconfrontation interview as a component of an empirical and technological
research programme. In : II° Journées internationales des sciences du sport, Paris (2002)

9. Varela, F.: Principles of biological autonomy. Elsevier, New York , (1980)
10. Argyris, C., Schön, D.: Theory in practice: Increasing professional effectiveness. Jossey-

Bass, San Fransisco (1974)
11. Halloran, P.: Organisational Learning from the Perspective of a Software Process

Assessment & Improvement Program. In: 32nd Hawaii International Conference on System
Sciences. IEEE Press, New York (1999)

12. Cater-Steel, A.P.: Process improvement in four small software companies. Software
Engineering Conference, 262-272, IEEE Press, New York (1999)

13. Grunbacher, P.: A software assessment process for small software enterprises. Euromicro
97. 'New Frontiers of Information Technology', 123-128, IEEE Press, New York (1997)

14. von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping small companies assess
software processes. IEEE Software, 23, 91-98 IEEE Press, New York (2006)

15. Moore, J.W.: An integrated collection of software engineering standards. IEEE Software,
16, 6, pp. 51-57 IEEE Press, New York (1999)

16. ISO/IEC 12207:2008, “Information technology -- Software life cycle processes”.
International Organization for Standardization (ISO), Geneva (2008)

17. ISO/IEC 15504:2004, “Information technology -- Process assessment”. International
Organization for Standardization (ISO), Geneva (2004)

18 ISO/IEC FCD 24765, “Systems and software engineering – Vocabulary”. International
Organization for Standardization (ISO), Geneva (2009)

19. Roques, P., Vallée, F. : UML en action. Eyrolles, Paris (2002)
20. Meirieu, P. : Si la compétence n’existait pas, il faudrait l’inventer In IUFM de Paris Collège

des CPE, 2005, http://cpe.paris.iufm.fr/spip.php?article1150 (2007)
21. Donin, N., Theureau, J.: Music composition in the wild: from the horizon of creative

cognition to the time & situation of inquiry. In: EACE 05, Crète, 57-64 (2005)
22. Argyris, C., Schön, D.: Organizational learning: A theory of action perspective. Addison

Wesley, Reading, Mass. (1978)

