
HAL Id: hal-00504448
https://hal.univ-brest.fr/hal-00504448

Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Model II Theory-in-use for young software
engineers and small sofware teams

Vincent Ribaud, Philippe Saliou

To cite this version:
Vincent Ribaud, Philippe Saliou. Towards a Model II Theory-in-use for young software engineers and
small sofware teams. CISE 2009, Jun 2009, Bulgaria. pp.26.1-8. �hal-00504448�

https://hal.univ-brest.fr/hal-00504448
https://hal.archives-ouvertes.fr

Towards a Model II Theory-in-use for young software engineers and small sofware
teams

Vincent Ribaud, Philippe Saliou
Département d’informatique (Computer Science)

Université de Bretagne Occidentale
Brest, France

{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract— Small teams have to transform in a learning
organization to cope with the changes in IT. Argyris and Schön
distinguish single-loop and double-loop learning [9]. Single
loop learning happens when unintended or counterproductive
consequences lead to a change in action but not in the
governing variables. Another possibility is to change the
governing variables themselves and is called double-loop
learning. Single-loop learning is induced from Model I, a
prevalent model of theories-in-use - those that can be inferred
from action -. Argyris and Schön look to move people from a
Model I to a Model II that fosters double-loop learning. In the
software engineering field - and especially in small teams,
developing a reflective thinking and enhanced learning is a
vital issue. We intended to develop these issues in the course of
a Master program in Information Technology and Software
Engineering. The last year of this program is performed under
‘sandwich’ conditions with an alternation of study periods in
university and training periods in industry. Moreover,
alternated university periods are dedicated to a long-term team
software project. The education system is a reflective
practicum. Such a practicum provides students, working in
groups, with the possibility to reflect on her/his action and that
may help making explicit theories-in-use. Several reflective
practices are seamed in the course of the project providing an
students with education of reflective thinking. The work
placement system introduces a new challenge that is to relate
the university and industrial phases of the student’s
experience. We propose to use journal writing as a tool to
record young engineers’ behavior and to extract meaning from
events and experiences. The first goal of these different
practices is to sustain a reflective thought that may help to
question espoused theories and to reveal theories-in-use; a
more ambitious goal is that the whole team acts as a learning
organization with a theory-in-use mastered by Model II. We
report on an experimental case study using a project journal
supported by semantic wikis.

Keywords-component; reflective practitioner, software
engineering processes, organizational learning, journal writing.

I. INTRODUCTION

Argyris and Schön define learning as the detection and
correction of error. “Single-loop learning occurs when errors
are corrected without altering the underlying governing
values. [...] Double-loop learning occurs when errors are
corrected by changing the governing values and then the
actions [1]”. Small organizations – and especially small

software project teams – need constantly to adapt their task
force to products or services to be delivered. The notion of
‘learning organization’ is a central point in this challenge and
is defined as an ideal “towards which organizations have to
evolve to be able to respond to the various pressures [they
are faced to]” [2]. This paper presents elements of a work
placement Master program in Software Engineering focusing
on aspects that may favor double-loop learning, individually
as apprentices or collectively working in a small team.

In a work placement program, apprentices alternate study
periods at the academy with work periods in the industry. A
major challenge is to avoid that apprentices will ‘climb two
ladders simultaneously’. Our system organizes all academic
apprenticeships inside a “learning by doing” environment,
very similar to software development studios [3], but
embracing, as far as possible, most software lifecycle
processes defined in the ISO/IEC 12207 standard [4].

Schön’s reflective practitioner perspective [5, 6] guides
professional creative people to reflect about their
professional creations during (reflection-in-action) and after
(reflection-on-action) the accomplishment of the creation
process. To educate the reflective practitioner, Schön
recommended looking at traditions of education for artistry –
and especially the architecture studio. “Studios are typically
organized around manageable projects […]. They have
evolved their own rituals, such as master demonstration,
design review, desk crits, and design juries, all attached to a
core process of learning by doing” [3, p. 43]. Schön
qualified as a reflective practicum this learning environment.
This analogy was used to provide a suitable educational
environment for software design by Tomayko at Carnegie-
Mellon [3], Kuhn at MIT [7] or Laplante [8] at PSU.

We designed and implemented, in 2002, an education
system called “Software Engineering by Immersion”. The
system is entirely based on performing complete
development cycles of a software project and accomplished
in two iterations followed with an operational internship in a
firm. Students work in teams to analyze, design, implement,
test and document a software project relying on strong
software engineering principles. No regular software
engineering courses are delivered. During the first iteration
(4½ months), students are swapped around among the
different tasks required by engineering activities, with strong
guidance from the coach. During the second iteration (2
months), teams are autonomous in completion of the project.
A process reference model simplified from the ISO/IEC

12207 provides a breakdown into process groups - processes
- apprenticeship scenes. Issuing from professional didactics,
the analysis of activity distinguishes two kinds of activities
[10]: productive activity, which is transformation of the
reality, and constructive activity, which is transformation of
the subject through its own practice. Our approach tries to
combine learning through environmental immersion -
intended to offer to students a reflective practicum - and a
well-structured learning process - that aims to organize
productive and constructive activities. As realistic working
situations were experienced, it provides students with
progressive understanding of software engineering. In order
to develop a reflective analysis, several reflective practices
have been borrowed from different educational system and
seamed into development processes, mainly the apprentice-
coach dialogue, students peer review, activity tailoring, retro-
engineering.

In 2007, local employers in Brest demanded for
employees under ‘sandwich’ (or work placement) conditions
and we adapted the “Software Engineering by Immersion”
programme to run as a work placement course. During 12
months, the work placement student is a full-time employee,
although also attending university for certain periods. Salary
is about 80% of the salary corresponding to the job that the
course leads to. We assigned the second iteration to the
industrial periods and first iteration (at the university) and
second iteration (in the industry) were intertwined with a two
weeks / two weeks rhythm.

Nearly all young engineers engaged in our program are
working in large companies with a structured corporate
baseline. Despite of this fact, we observed last year that most
of them worked either alone, or in very small teams. Thus,
we found the situation of our young engineers very similar to
what could happen in a Very Small Enterprise (VSE). Also,
the reflective practicum where students are plunged during
the university periods reproduces as far as possible a small
software company with its proper equipments, tools,
methods, culture and people. So, we decided to revisit our
system in order to satisfy, as far as possible, challenges of
learning and producing in a VSE. The key point is to not
overload software engineers with practices they would feel
useless but to seam reflective practices in the course of the
project in order to make them natural and value-adding to
engineers. Faced to the problems to relate the university and
industrial phases of the student’s experience, we choose to
promote journal writing to enhance reflective practice.

The next section overviews Argyris and Schön theory of
action, their application to software engineering and some
related work. In section 3, we discuss about reflective
practices. Observing the course of apprentices’ projects is
discussed in section 4. We conclude the paper with a
discussion and perspectives.

II. ACTION THEORY AND SOFTWARE ENGINEERING

A. Software Engineering by Immersion

Authors defined an apprenticeship/production framework
called ILI (Ingénierie du Logiciel par Immersion, Software
Engineering by Immersion), based on a reference model, a

development cycle, a WBS (Working Breakdown Structure:
deliverable-oriented hierarchical decomposition of the work
to be executed by the project team to accomplish the project
objectives and create the required deliverables [11]).

The Process Reference Model (PRM) is adapted and
simplified from the ISO/IEC 12207:1995 standard and its
amendments [9]; we are using 3 process groups organizing
13 processes: Software Project Management (Project
Management, Quality Assurance, Configuration
Management); Software Development Engineering
(Requirements capture, Software Requirements Analysis,
Software Architectural Design , Software Detailed Design,
Software Construction, Software integration; Software
qualification testing); and Software Development Support
(Infrastructure Management, Life Cycle Model Management,
Documentation Management, Installation-Operation).

We use a Y-shaped life cycle that separates resolution of
technical issues from resolution of feature issues [12].

The WBS has a structural and a temporal decomposition.
Each process is structurally decomposed in exemplar
Software Engineering activities (SE activities to distinguish
it from the activities in the 12207 sense) that may have
slightly variation from a project to another. A current issue is
to align SE activities with Base Practices of the 15504
standard [13]. The level of detail of a PRM such the 12207 is
not sufficient. Therefore it needs to be supported with a
comprehensive set of base practices: “an activity that, when
consistently performed, contributes to achieving a specific
process purpose [13-1, p. 3].

The WBS is temporally organized in stages (in our case,
9 of 2 week each). The planning of each stage is divided in
several work scenes that carry on SE activities. Scenes will
be performed by team members and ought to produce
artifacts. We introduce this year a project journal intended to
record all elements of interest in the course of the project.
Boud presents journal writing “as a form of reflective
practice, that is, as a device for working with events and
experiences in order to extract meaning from them” [14, p.
9]. The project journal uses semantic wikis in order to record
information. Team members can record events as they
happen but have to systematically fill the wiki at the end of
each phase. Semantic wiki is the most flexible tool in order
to record and shape a structured content. The journal records
the “historical” context of resources’ use and products’
production. An unusual usage is the recording of products
and documentary resources itself because they are main
components of software engineers’ activity as they describe
the inputs and outputs of the activity. We provide the journal
with a hierarchical structure. At the first level, each
participant records her/his individual course of action in
semantic wiki pages of the class Performed Activity. At a
second level, a collective action is recorded in pages of the
class Course-of-action Unit; it involves parts of several
individual Performed Activity taking place synchronically or
sequentially. At the higher level, complex and collective
interactions are recorded in Step-of-action pages sequencing
and embedding Course-of-action Units. These pages are
created and updated at different rhythms: each 2-3 days for
Performed Activity; each 2 weeks - at the end of a stage - for

Course-of-action Unit; three times per project for Step-of-
action. The latter writing is more an activity analysis than
diary writing and apprentices establish links with the PRM.
A picture of these interlinked concerns is given in figure 1.

Id : string

Title : string

Purpose : string

Outcomes : string

ReferencesProcess

ReferencesActivity

ILI Process

Id : string

Title : string

Description : string

Step-of-action

Title : string

SE Activity

Title : string

DtStart : Date

DtEnd : Date

CMSWorkSpace : string

Stage

Id : string

Title : string

DtStart : Date

DtEnd : Date

WorkCard : Object

Scene

*

Id : string

Title : string

Description : string

CMSWorkSpace : string

Artifact

*

Input-Output *

*

Happens

*

-Decomposed Into

*

*

*

**

Id : string

Title : string

Description : string

Course-of-action Unit

PrefName : string

Mbox : string

Person

Title : string

Description : string

Project

*

-Collective *

-Organizes*

* Input-Output*

Performed

Activity

*

Works

*

Id : string

Title : string

ILI Process Group*

Id : string

Title : string

Description : string

Exemplar Activity

*

1

*

Id : string

Title : string

Purpose : string

Outcomes : string

12207 Process
Id : string

Title : string

12207 Activity

Id : string

Form : string

12207 Task **

Id : string

Title : string

12207 Process Group*

*
ComesFrom1Id : string

Title : string

Description : string

Outcomes : string

15504 Base Practices

*

*

IsInspiredFrom*
*

IsInspiredFrom

*

1

IsPartOf*

Figure 1. The upper half depicts reference models. Within process groups,

processes are defined with purposes, outcomes, activities and tasks. The
15504 Process Assessment Model expands the 12207 Process Reference
Model by including a set of base practices. ILI processes, drawn from

12207 processes, are performed through exemplar activities.
The lower half represents the enacted project. The lifecycle of a project is

organized into stages composed of scenes. During a scene, persons perform
a SE activity inspired from an exemplar activity but contextual to the

project. Input and output work product (artifact) are associated to the scene,
the activity and the process. Self-observing the action leads to a rebuilding

of project processes into steps of course-of-action units.

B. Argyris and Schön’s Theory of Action

According to Argyris and Schön, people design and
guide their behavior by the use of theories of action.
“Espoused theories of action are the theories that people
report are governing their actions. Theories-in-use are the
theories of action that actually govern their actions” [15, p.
7]. Argyris and Schön argued that, if espoused theories vary
widely, theories-in-use do not. They labeled the most
prevalent theory-in-use Model I. “Model I theories-in-use
are theories of top-down, unilateral control of others for the
actors to win, not to lose, and to control the environment in
which they exist to be effective” [15, p. 7]. They argued that
with such a theory-in-use, problem solving works for issues
that do not require that the underlying assumptions of Model
I be questioned (single-loop learning). Model II theories-in-
use make possible for people “to have problem-solving skills
that question the governing values of their theory-in-use”
[15, p.7] (double-loop learning).

Models of theory-in-use
Model I and Model II looked to three elements. Governing variables are

values that actor seek to satisfy [1]. Each governing variable can be thought
as a continuum with a preferred range (e.g. not too anxious, but not too
indifferent) that people are trying to keep in these acceptable limits. Actions
strategies are sequences of moves used by actors in particular situations to
satisfy governing variables [1], there are the moves and plans used by people
to keep the governing variables in the preferred range (e.g. to practice a
physical exercise to eliminate stress). Consequences happen as results of
action. Consequences can be intended – those that the actor believes will
result from the action and will satisfy governing variables (e.g. to feel
him/herself better after a sportive effort). Consequences can be unintended
but they are designed because they depend on the theories-in-use of
recipients as well as those of actors.

Single and double-loop learning
When the consequences of an action strategy are as the actor wanted,

then the theory-in-use of that person is confirmed. If there is a mismatch
between intention and outcomes, consequences are unintended. Argyris
defines learning as the detection and correction of error. The first response to
error is to search another action strategy. “Single-loop learning occurs when
errors are corrected without altering the underlying governing variables”
[2, p. 206]. An alternative is to question to governing variables themselves,
to subject them to critical scrutiny (e.g. to emphasize open inquiry of the
anxiety rather than trying to suppress it). “Double-loop learning occurs
when errors are corrected by changing the governing variables and then the
actions” [2, p. 206]. Argyris and Schön argued that many people espouse
double-loop learning, but are unable to produce it, and are unaware of it.

Model I and Model II
Briefly, Model I is composed of four governing variables: (1) achieve

the purpose as the actor defines it; (2) win, do not lose; (3) suppress negative
feeling; and (4) emphasize rationality [1]. The primary behavioral strategies
are to control the relevant environment and tasks unilaterally and to protect
one-self and others unilaterally. Thus most used action strategy is unilateral
control over others. Characteristics ways of implementing this strategy are
making unillustrated attributions and evaluations (e.g. “your work is poor”),
advocating courses of action in ways that discourage inquiry (e.g. “surprise
me, but don’t take risks”), treating one’s own views as obviously correct,
leaving potentially embarrassing facts unstated [1]. The consequences are
likely to be defensiveness, misunderstanding, and self-fulfilling and self-
sealing processes [2]. Model I leads to low-learning and double-loop
learning does not tend to occur. Argyris and Schön look to move people
from a Model I to a Model II that fosters double-loop learning.

The governing variables of Model II include (1) valid information, (2)
free and informed choice, and (3) internal commitment: vigilant monitoring
of the implementation choice to detect and correct error [2]. The behavioral
strategies involve sharing control with those who have competence and who
participate in designing or implementing the action [1]. As in Model I,
prominent behaviors are advocate, evaluate, and attribute. Unlike Model I
behaviors, Model II behaviors stem from action strategies where attributions
and evaluations are illustrated with observable data, and the surfacing of
conflicting view is encouraged in order to facilitate public testing of them.
The consequences include minimally defensive interpersonal and group
relationship, high freedom of choice, and high risk taking. Defensive
routines are minimized and genuine learning is facilitated [1, 2].

References
[1] C. Argyris, R. Putnam, and D. McLain Smith, “Action Science,

Concepts, methods, and skills for research and intervention”, San
Fransisco: Jossey-Bass, 1985, pp. 4, 80.

[2] C. Argyris, “Double-Loop Learning, Teaching and Research”,
Learning & Education, Vol. 1 (2), Dec. 2002, pp. 206-219

Figure 2. Theory of Action by Chris Argyris and Donald Schön.

C. Application to Small Projects and to Young Engineers

1) Espoused theories and theories-in-use
Our first observation is that, in the software engineering

field - and especially in small software projects – the horizon
of standards of processes and practices such as 12207and
15504 standards may constitute the espoused theory, since it
is what engineers claim to follow. But what engineers do

(and this action is designed and do not “just happen”) may
reveal a different theory-in-use. Espoused theory and theory-
in-use may be consistent or inconsistent. Young engineers
are generally neither aware of her/his theory-in-use nor of
aware any inconsistency although experienced engineers
may be. Theories-in-use can be made explicit by reflecting
on action [1]. We believe that adopting the reflective
practitioner methodology may help young engineers in the
development of software systems. We fully agree with
Hazzan and Tomayko by adopting a reflective practitioner
approach to Software Engineering education: “students’
ongoing reflection of the process of developing software
systems becomes part of their software development process
and consequently, students may improve their understanding
of the essence of the methods that guide software creation
processes” [16].

Related work. Hazzan and Tomayko presents in [16] a
course intended to develop reflective thinking into the
education of software engineers. Lesson 8 is about learning
processes in software engineering; they discuss from the
reflective practice and its relevance to Software Engineering
but theories of action are not evoked.

2) Small projects as a learning organization
Regarding Argyris and Schön theories, our second

concern is about the structure of a Very Small Enterprise
(VSE, up to 15-25 employees), the different roles of its
employees and the VSE behavior as an organizational
learning system. Authors both worked as project managers
for nearly ten years in a small department of a software
services company. The organization was typical of a Very
Small Enterprise: one manager acting as a project manager,
three other software project managers (typically from 2 to 4),
between 8 and 12 software developers. The only difference
with a VSE was the existence of a corporate baseline – but
far unknown of most department employees. As pointed out
in the introduction, the environment of our apprentices either
plunged in their virtual practicum at the university or in their
work situation during the work placement period, is very
similar to a VSE or a small software department. Applied to
a small structure acting as a learning organization, a model
of its theory-in-use can be built from the elements presented
at the beginning of this section.

Our hypothesis is that the whole team acts as a learning
organization with a theory-in-use mastered by Model I or II.
The governing variables are those of Model I or II; project
managers (and any employee with useful knowledge and
skills) design and implement action strategies. Everyone in
the VSE experiments consequences, intended or unintended,
productive or counterproductive. According to this
hypothesis, when a VSE uses Model I as a master program
of its theory-in-use; double-loop learning is inhibited, error
escalates and effectiveness in problem solving and in
execution of actions tends to decrease [17]. But, when
individuals move toward a Model II program, the whole
organization will operate as an Organizational II learning
system – a rare phenomenon [17].

In the new work placement system, the problem of the
learning organization is pregnant for several reasons. First,
the discontinuity of university periods (9 periods of 2 weeks)

requires a solid learning organization to avoid waste of time.
Secondly, although industry periods are focused on
productive activities and under the control of industrial
managers, they are associated to learning objectives and
academics require a kind of distance control on the
constructive activities that happen on these occasions.
Moreover, individual or collective industrial practices that
apprentices trust as efficient have to be re-used in the
practicum because they form an important part of their
experience and theory-in-use. Anchoring each student’s
individual learning path with his/her industrial experience
and exploiting these experiences in a learning organization
system is a crucial issue.

Previous and related work. In the previous system, we
did not pay attention to this challenge. Students were
plunged during 7 full-months in the reflective practicum,
closely coached during the first 4.5-months iteration, still
accompanied in the second iteration where they have to
produce autonomously [18]. As they shifted from
apprenticeship to production, students naturally reused the
reflective practices employed in the first iteration and a kind
of learning organization (probably a hybrid of Model-I and
II) spontaneously occurred.

Halloran [19] investigates the relationship between a
software process assessment and improvement model and
organizational learning. The case study observes the
introduction of SPICE [20] (ISO/IEC 15504) as a Software
Process Assessment and Improvement program in an
Australian multimedia company of approx. 70 employees.
The paper points out the difference between “engineer’s
espoused theory” and his/her “theory in use” but it does not
develop this matter and rather focuses on the use of
organizational learning to promote a proactive approach
culturally to continuous improvement and learning
procedures. In the case study, Halloran attributed the limited
success of the SPA & SPI program to the fact that most of
the “learning” associated with this program was single loop
learning [1] and recommended to change this model.

3) Process assessment
Regarding the understanding of software processes that

students are building, we were faced to a crucial issue. In the
previous system (without work placement), students learned
software processes by doing during the first iteration and
reproduced these processes during the second one. Thus,
links were easy to establish and a practical understanding of
software processes occurs. Now, first iteration (focused on
constructive activities) and second iteration (focused on
productive activities) are performed on different projects.
The former is an apprenticeship project driven by the
university and the latter is an industrial project driven by the
companies with whom students are placed. We need an
assessment framework common to both projects that allows
apprentices to relate and cumulate experiences.

The two authors have defined in [21] that most
productive activities have a constructive part that the human
subject performs in order to build and develop competencies.
We are using assessments fully integrated with the life cycle,
constituted by the reader/author feedback cycle, progress
meeting and peer reviews. We call it regulation assessments

referring to De Ketele “[…] an open process whose priority
function is to improve the working order […] of a part or of
the whole system” [22].

Although we think that process assessment as defined in
ISO/IEC 15504 [13] or CMMI is out of reach of young
engineers and VSEs, we believe that a personal Process
Assessment Model and a simplified Process Reference
Model are necessary to provide a knowledge basis needed
for the practice of software engineering. Furthermore, we
think that these models may provide a model of theory-in-
use, providing students with a link between apprenticeship
and work experiences.

Related work. Von Konsky and Ivins [23] propose an
approach for assessing the capability and maturity of
undergraduate software engineering projects. The approach
is based on an adaptation of the Capability Maturity Model
Integration and a hybrid version of the Team Software
Process. “The approach was shown to focus student attention
on process improvement and on the attainment of realistic
and measurable project management goals” [23]. Our goal
differs because we focus on making explicit theory-in-use.

III. SEAMING THE PROJECT WITH REFLECTIVE PRACTICES

A. Academic assessment

Assessment of student learning has to be based on
making clear distinctions among types of learning outcomes.
Classical types include individual knowledge, process skills,
and products. In our system, individual knowledge is
assessed essentially through individual reports and viva
voice examination. Products (and indirectly processes
involved) are assessed with assessment procedures
mimicking industrial usages; these assessments consist of
evaluations based on the review of apprenticeship stages and
on the qualification of software products. Ideally,
apprentices’ understanding of processes should take the form
of a reflective written essay intended to explain and improve
upon their software processes, along with teamwork and
communication used to support their performance in
performing the processes.

Final reports with in-class presentation may be used for
reflective practices but as they are assessed with a mark,
reports are biased with the students’ assessment strategy. We
found more useful to provoke intermediary reports without
any assessment. Of course, students will reuse analysis,
writings and oral presentation in their final reports and for
required self-assessments (it may be a supplementary
motivation to perform sound intermediary reports) but we
minimize assessment biasing.

During the industrial periods, apprentices have to record
events of interest in an individual journal associated with
significant artifacts they may have used or produced. Each
two months (corresponding to two industry periods of 2
weeks each), the academic period begins with a half-day
where each apprentice (12 at all) presents an intermediary
report of his/her activities at work. S/he has ten minutes to
make an oral presentation in front of other apprentices,
followed by 10 minutes of question from coaches and
eventually other apprentices. Writing a meeting report, called

a sandwich report, is assigned to two students based on
individual report provided by each apprentice. In order to
prepare these meetings, apprentices generally work from the
industrial recording mentioned above.

During academic periods without industrial reporting,
apprentices have to perform a first-level process analysis on
the state of software processes of their academic project.
Each apprentice has to work on two or three processes (13
used at all) and to build an intermediary process element
called Step-of-action based on historical Course-of-action
Units related to a given process (cf. §II.A and Fig.1). This
analysis is intended to produce a re-composition of the
global dynamic in terms of smaller units and relations of
sequencing and embedding between these units.

B. Regulation assessment

1) Apprentice – coach dialogue
Each scene gives rise to one or several deliverables.

When the product is delivered, the coach carefully examines
it and writes an assessment card including a general
assessment together with all the points to improve or to start
over. When apprentices enquire into assessment cards, first
reactions are generally defensive. Worried about avoid
failure, and embarrassing or threatening feelings,
apprentices’ action strategy tend to protect themselves and to
control work to be redo unilaterally, applying strictly each of
the coach remark and perceiving coach’s feedback as orders.
When the apprentices get used with discomfort and fearful of
being vulnerable, and when s/he understands that defensive
routines are limiting her/his ability to understand and to
develop oneself, it becomes possible to make a step towards
Model II. The feedback is given in front of the authors, it
allows authors to deepen, to discuss, eventually to contest
remarks made by the coaches. Following this briefing,
students have to update or start again their product, which
will be assessed again.

2) Peer review
Within industry, the objectives of a peer review are to

detect and to eliminate, early and efficiently, the defects of
products under development. Each undetected defect during
a phase will induce its propagation in the later phases and
will require ulterior supplementary work.

In our system, we adapted and extended the industrial
peer review in order to provide a support for skills transfer
between apprentices of the same team. This kind of peer
review privileges the collecting of questioning, additional
information, improvement proposals rather than the
collecting of potential defects even if that implicitly happens.
This data collecting encourages exchanges between students,
helps to take some improvement proposals into account and
aids to correct major defects in the resulting products of an
apprenticeship stage. When the underlying governing values
of this cooperative work are those of Model II (valid
information, free and informed choice, and internal
commitment, cf. Fig. 2), apprentices’ action strategies
combine advocacy and inquiry. Attributions and evaluations
are illustrated with relatively directly observable data, and
the surfacing of conflicting views is encouraged in order to
facilitate public testing of them. Hence, learning is enhanced.

C. Support practices

1) Activity tailoring
Any software development baseline needs to be tailored

to each project. This tailoring process defines the activities to
be performed and products to be developed and delivered.

In our learning process, we transform this tailoring
concept in an “activity tailoring” intended to encourage
reflection on action. Tailoring an activity can be assimilated
to a preliminary work of thought and suggestion for how to
proceed in order to perform the concerned activity. For
example, using a new method or tool begins with an
exploration in order to tailor its usage to the specificities of
the project. Indeed when a production task is hard to
understand such as design (that requires a real experience), it
may be preferable to think “upstream” and to perform the
design of a program, such a technical architecture prototype,
subsequently to its realization issued in a previous stage of
the learning process.

Each tailoring ends with the writing of an usage guide or
implementation guide of the concerned activity. This kind of
tailoring activity favors and encourages students’ initiatives
and creativity on technical, methodological aspects or any
activity of the software development process.

When the student’s repertoire is empty for a given
activity, any new task seems impossible. Activity tailoring
provides a bootstrapping of activity. After tailoring, faced
with the intended activity, even it is perceived as new and
may be threatening, it minimizes defensive reasoning, it
provides an higher freedom of choice.

2) Retro-engineering
In the pedagogical field, retro-engineering is an inductive

approach. It is the reconstruction from back to front of a
process, starting from the result of an activity. “[…] the
retro-engineering approach or intuitive engineering […]
means analyzing, breaking down an activity step by step in
order to ask how it is used in a given situation. This approach
is applied each time we need to understand “how it is
working” or “how it is made”” [24, citing Pinker].

The idea is to confront students with an existing system
whose techniques or associated development environment
they do not know. The aim is to acquire skills that will allow
the maintaining and the evolving of the system. The
approach follows a standard framework: 1) Install, run and
study the system; 2) Install and configure the development
environment that will be used to modify the system; 3)
Perform a prototype satisfying the same technical constraints
with the permanent obligation for students to observe
themselves at work; 4) Write a document for team mates so
that they can understand and continue the prototype.

The retro-engineering of an activity adds iterative and
incremental experiences. When this activity is performed in a
small group, behavioral strategies should share control with
those who have competence.

D. Discussion

This section has presented some points of the immersion
system intended to contribute to the software practitioner
education. These practices are available for the coach and

may be incorporated into or linked with an apprenticeship
situation. Students do not perceive these reflective activities
as software engineering activities but they do not perceive
them as a constraining pedagogical tool whose finality would
be to be reflective “at any cost”. They take them as
comforting steps which allow them to take a proper view and
stabilize their knowledge. They rapidly use them because
they see their immediate interest in order to deal rationally
with the problem they have. They do notice that these
activities contribute improving their own apprenticeship
process, the production process, also indirectly, and finally
the quality of the expected system.

IV. A JOURNAL OF THE COURSE OF A PROJECT

A. An empirical case study

This case study is based on the activity of a team of 6
young software engineering apprentices with the two authors
acting as observers, .This case study observes the whole
course of the project. As pointed out by Singer and Vinson
[41], apprentices’ consent is required and apprentices agreed
to participate.

The project is a semantic annotation tool. The main goal
of the project is to provide a semantic annotation tool able to
annotate (indexing through metadata) Web resources, search
(on metadata) in different modes, browse (hierarchically or
with facets), manage RDF vocabularies (semantic schemas),
and deal with the scope of annotations (public or private).
The project uses Jena - http://jena.sourceforge.net/ an open-
source Semantic Web programmers’ toolkit - as RDF API.

B. Recording the project progress

As the project progress, events of interest are recorded in
a journal associated with significant artifacts they may have
used or produced. As described in III.B.2, each individual
course-of-action is accounted, on a 2-3 days basis, in an
instance of the smaller unit, that we called a Performed
Activity. Apprentices create a wiki page for each individual
activity performed during the stage, fill this page with a short
description of activities performed, link this page with
related other pages (scene, person, artifact), and upload
artifacts in the wiki. At the end of each stage (two weeks),
apprentices account individual and collective work in the
finest grain of collective course-of-action, called a Course-
of-action Unit, which organizes several individual Performed
Activities. This accounting provide a first-level of reflection-
in-action.

Each two months, apprentices have to perform a first-
level course-of-action analysis on the state of software
processes of their academic project. Each apprentice works
on two or three processes and builds an intermediary process
element called Step-of-action based on historical Course-of-
action Units related to this process. This analysis is intented
to develop reflection-on-action.

All information is recorded in two semantic wikis:
• http://oysterz.univ-brest.fr/12207, the 12207 wiki is a

hypertext reference of the ISO/IEC 12207:2008.
• http://oysterz.univ-brest.fr/company, the company wiki

contains Processes group / Processes / Exemplar Activities

and Stages / Scenes decompositions but its most important
part is the journal recording the project progress. Its structure
is based on the model given in the lower-half of Fig. 1.

C. Accounting

This project has completed its 9 stages and quantitative
facts are given in table II – that is the number of instances
(wiki pages) in each category. For each process, we have the
quantity of apprenticeship Scene (SCE), the quantity of
Performed Activity (PAY: individual), the quantity of
Course-of-action Unit (CAU: collective), the quantity of
Step-of-action (STE: higher-level construct). The 6th column
gives an indication of the quantity of Software Engineering
Activities that may be envisaged in the process. 7th (Act) and
8th (Tsk) report the 12207 decomposition of related
processes: number of activities (Act) in (the) process(es) and
number of corresponding tasks (Tsk). The 9th and last
column gives the number of Base Practice (BP) in the
corresponding process of the 15504 standard.

TABLE I. QUANTITATIVE FACTS

Process SCE PAY CAU STE
SE
Act.

Act Tsk BP

Project
management

13 22 13 3 5 7 14 15

Quality
insurance

2 2 1 1 2 4 16 8

Configuration
management

2 2 2 2 3 6 6 10

Requirements
capture

10 18 10 0 5 5 12 6

Software
analysis

2 2 2 2 2 1 3 6

Technical
architecture

7 10 5 3 4 2 2 -

Software
design

7 9 5 4 4 2 15 12

Software
construction

8 16 4 3 5 1 5 4

Integration –
validation

8 12 5 5 5 6 20 20

Technical
support

8 16 2 2 2 3 4 6

Methods and
tools support

3 3 3 2 2 - - 6

Documen -
tation

2 4 2 1 2 4 7 8

Installation -
deployment

1 N/A N/A N/A 2 2 5 6

As noted in §III.B.1, students reports their activity at the

end of each stages (2 weeks). When an activity temporally
crosses over stages (e.g. technical support or coding),
students adopted a simple strategy: they created one single
mid-level structure (Course-of-action Unit) and linked to
individual low-level units (Performed Activity) belonging to
different stages.

45 Steps-of-action are envisaged. Simple processes as
Design are correctly reconstructed. There are complex
processes that may be oversimplified in the practicum (e.g.
Configuration Management or V&V) and the reconstruction
is correct regarding the simplified process but it is partly
inaccurate. For some complex processes involving many

scenes (e.g. Requirements), the reconstruction failed,
probably because apprentices are unable to perceive an
abstract view of the process.

D. Discussion

Table I help to figure a quantitative view of the journal
writing activity. The amount of 12207 tasks (or 15504 Base
Practices as well) give an indication over the density of the
process. The higher are these amounts, the higher is the
complexity; this it should lead to a process reconstruction
involving a higher amount of Step-of-action related to a
roughly amount of Software Engineering Activities. A major
difference between col. 5th (STE) and col. 6th (SE Act.) may
indicate that the reconstruction failed.

On the other hand, amounts of Performed Activity (PAY)
and Course-of-action Unit (CAU) are closely depending on
the pedagogical objectives and on the organization that the
coach put on the process. A high amount of Scene /
Performed Activity / Course-of-action Unit may represent
the complexity of the process but may also indicate that the
process is a supporting process whose activities are
performed all the life cycle along.

V. CONCLUSION AND PERSPECTIVES

Argyris and Schön developed a model of the processes
involved in theories-in-use based on three elements:
governing variables, action strategies, and consequences [2].
Then, in [26] they explored the nature of organizational
learning and defined two kind of learning: simple-loop
learning and double-loop learning. Then they set up two
models (Model I and Model II) that describe features of
theories-in-use that either inhibit or enhance double-loop
learning.

Model I theory-in-use requires defensive reasoning.
Unlike the defensive reasoning, the logic used in Model II is
not self-referential. As a consequence, defensive routines
that are counterproductive to learning are minimized, and
genuine learning is facilitated. Thus, an ultimate goal of our
education system is to promote Model II as a theory-in-use.

Two hypotheses are discussed (1) that theories-in-use can
be made explicit by reflecting on action; (2) that the whole
team acts as a learning organization with a theory-in-use
mastered by Model I or II. As a case study, the activity of a
team of 6 young software engineers accompanied with two
participants-to-observe is shown.

The current state of this work let suggest that (1) a
personal Process Assessment Model and a simplified Process
Reference Model may form an initial structure of the theory-
in-use and support reflective thought (2) when each team
member is going from a “pre-reflective consciousness”
towards a reflective attitude, the whole team may act as a
learning organization.

ACKNOWLEDGMENT

The authors wish to thanks François-Xavier Bru, Gaëlle
Frappin, Ludovic Legrand, Estéban Merrer, Sylvain Piteau,
and Guillaume Salou for their participation to this work.

REFERENCES

[1] C. Argyris, and D. Schön, “Theory in practice: Increasing
professional effectiveness”, San Fransisco: Jossey-Bass, 1974.

[2] M. Finger, and S.B. Brand, “The concept of the “learning
organization applied to the transformation of the public sector” in: M.
Esaterby-Smith, L. Araujo and J. Burgoyne (eds.) Organizational
Learning and the Learning Organization, London: Sage, 1999.

[3] J. E. Tomayko, “Carnegie Mellon's software development studio: a
five year retrospective” in Proceedings of the 9th Conference on
Software Engineering Education, New York: IEEE Computer Society
Press, pp. 119-129, 1996.

[4] ISO/IEC 12207:2008, “Information technology -- Software life cycle
processes”. Geneva: International Organization for Standardization
(ISO), 2008.

[5] D. Schön, “The Reflective Practitioner”, New York: Basic Books,
1983.

[6] D. Schön, D., “Educating the Reflective Practioner: Toward a New
Design for Teaching and Learning In the Professions”, San Fransisco:
Jossey-Bass, 1987.

[7] S. Kuhn, “The software design studio: an exploration”, IEEE
Software, Volume 15 (2), March-April 1998, pp. 65-71.

[8] P. A. Laplante, “An Agile, Graduate, Software Studio Course”, IEEE
Transactions on Education, Vol. 49 (4), Nov. 2006, pp. 417-419.

[9] ISO/IEC 12207:1995, AMD 1:2002, AMD 2:2004, “Information
technology -- Software life cycle processes”, Geneva: International
Organization for Standardization (ISO), 1995, 2002, 2004.

[10] R. Samurçay, and P. Rabardel, “Work competencies: some reflections
for a constructivist theoretical framework” in Proceedings 2nd Work
Process Knowledge Meeting: Theoretical approaches of competences
at work, Courcelle sur Yvette, 1995.

[11] ISO/IEC FCD 24765, “Systems and software engineering –
Vocabulary”. Geneva: International Organization for Standardization
(ISO), 2009.

[12] P. Roques, and F. Vallée, “UML en action”, Paris: Eyrolles, 2002.

[13] ISO/IEC 15504:2004, “Information technology -- Process
assessment”. Geneva: International Organization for Standardization
(ISO), 2004.

[14] D. Boud, “Using Journal Writing to Enhance Reflective Practice”,
New Directions for Adult and Continuing Education, Vol. 90,
Summer 2001, pp. 9-17.

[15] C. Argyris, “Organizational learning and management information
systems”, ACM SIGMIS Database, Vol. 13 (2-3), Winter-Spring
1982, pp. 3-11, ISSN:0095-0033

[16] O. Hazzan, and J.E. Tomayko, “Reflection processes in the teaching
and learning of human aspects of software engineering”, in
Proceedings of 17th Conference on Software Engineering Education
and Training, New York: IEEE Press, pp. 32- 38, 2004,
doi:10.1109/CSEE.2004.1276507

[17] C. Argyris, and D. Schön, “Organizational learning : A theory of
action perspective”, Reading: Addison Wesley, 1978

[18] V. Ribaud, and P. Saliou, “Software Engineering Apprenticeship by
Immersion”, in Proceedings of International Workshop on Patterns in
Teaching Software Development, ECOOP’03, Darmstadt, 2003.

[19] P. Halloran, “Organisational Learning from the Perspective of a
Software Process Assessment & Improvement Program” in: 32nd
Hawaii International Conference on System Sciences. New York:
IEEE Press, 1999.

[20] Software Process Improvement and Capability dEtermination
(SPICE), Software Process Assessment - Version 1.00,
http://www.sqi.gu.edu.au/spice/docs/baseline, 1995

[21] P. Saliou, and V. Ribaud, “Former un praticien réflexif de l’ingénierie
du logiciel (The training of a reflective practitioner in software
engineering)” in Colloque Les pédagogies actives : enjeux et
conditions, pp. 535-545, Louvain: University of Louvain , 2007.

[22] J.M. De Ketele, and X. Roegiers, “ Méthodologie du recueil
d’informations”, Bruxelles: De Boeck, 1993.

[23] B. R. von Konsky, and J. Ivins, “Assessing the Capability and
Maturity of Capstone Software Engineering Projects”, Research and
Practice in Information Technology, Vol. 78. S. and M. Hamilton
(eds.), 2008.

[24] P. Dessus, “La planification des séquences d’apprentissage, objet de
description ou prescription ? ”, Revue Française de Pédagogie, Vol.
133, pp. 101-116, 2000.

[25] D. Schön, “Educating the Reflective Practitioner” in Meeting of the
American Educational Research Association, 1987.

[26] O. Hazzan, “The reflective practitioner perspective in software
engineering education”, Journal of Systems and Software, Vol. 63
(3), September 2002, pp. 161 – 171, ISSN:0164-1212

[27] J. Leplat, “Regards sur l'activité en situation de travail - Contribution
à la psychologie ergonomique”, Paris : Presses Universitaires de
France, 1997.

[28] F. Morandi, “Pratiques et logiques en pédagogie”, Paris: Nathan,
2002.

[29] M. Huo ,H. Zhang, and R. Jeffery, “An exploratory study of process
enactment as input to software process improvement” in Proceedings
of the 2006 international workshop on Software quality table of
contents, pp. 39 - 44, New York: ACM, 2006, ISBN:1-59593-399-9

[30] J. Singer, and N. G. Vinson, “Ethical issues in empirical studies of
software engineering”, IEEE Transactions on Software Engineering,
Vol. 28 (12), Dec 2002, pp. 1171- 1180,
doi:10.1109/TSE.2002.1158289

[31] J. Topping, Sandwich courses, Phys. Educ. Vol. 141 (10), 1975, pp.
141-143, doi:http://iopscience.iop.org/0031-9120/10/3/003

