N

N

Towards a Model II Theory-in-use for young software
engineers and small sofware teams
Vincent Ribaud, Philippe Saliou

» To cite this version:

Vincent Ribaud, Philippe Saliou. Towards a Model II Theory-in-use for young software engineers and
small sofware teams. CISE 2009, Jun 2009, Bulgaria. pp.26.1-8. hal-00504448

HAL Id: hal-00504448
https://hal.univ-brest.fr /hal-00504448
Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-brest.fr/hal-00504448
https://hal.archives-ouvertes.fr

Towards a Model Il Theory-in-use for young softwareengineers and small sofware
teams

Vincent Ribaud,

Philippe Saliou

Département d’informatique (Computer Science)
Université de Bretagne Occidentale
Brest, France
{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract— Small teams have to transform in a learning
organization to cope with the changes in IT. Argys and Schon
distinguish single-loop and double-loop learning [P Single
loop learning happens when unintended or counterprductive

consequences lead to a change in action but not ithe

governing variables. Another possibility is to chage the
governing variables themselves and is called doubleop
learning. Single-loop learning is induced from Modk I, a

prevalent model of theories-in-use - those that cabe inferred

from action -. Argyris and Schon look to move peom from a
Model | to a Model Il that fosters double-loop leaning. In the

software engineering field - and especially in smialteams,
developing a reflective thinking and enhanced leaiing is a
vital issue. We intended to develop these issuestire course of
a Master program in Information Technology and Softvare

Engineering. The last year of this program is perfamed under

‘sandwich’ conditions with an alternation of study periods in

university and training periods in industry. Moreover,

alternated university periods are dedicated to a log-term team
software project. The education system is a refleoe

practicum. Such a practicum provides students, workg in

groups, with the possibility to reflect on her/hisaction and that
may help making explicit theories-in-use. Several eflective
practices are seamed in the course of the projectqviding an

students with education of reflective thinking. The work

placement system introduces a new challenge that is relate
the wuniversity and industrial phases of the studens

experience. We propose to use journal writing as #ool to

record young engineers’ behavior and to extract meang from

events and experiences. The first goal of these faifent

practices is to sustain a reflective thought that my help to
question espoused theories and to reveal theorigsise; a
more ambitious goal is that the whole team acts as learning

organization with a theory-in-use mastered by Modell. We

report on an experimental case study using a projégournal

supported by semantic wikis.

Keywords-component; reflective practitioner, software
engineering processes, organizational learning, journal writing.

l. INTRODUCTION

Argyris and Schon define learning as the detectind
correction of error. Single-loop learning occurs when errors
are corrected without altering the underlying gavieg
values. [...] Double-loop learning occurs when egare
corrected by changing the governing values and tten
actions [1]". Small organizations — and especially small

software project teams — need constantly to adwegit task
force to products or services to be delivered. fib&on of
‘learning organization’ is a central point in tlrisallenge and
is defined as an ideatdwards which organizations have to
evolve to be able to respond to the various pressjtiney
are faced to]” [2]. This paper presents elementa efork
placement Master program in Software Engineeringsmg
on aspects that may favor double-loop learningyiddally
as apprentices or collectively working in a smedir.

In a work placement program, apprentices altersiaigy
periods at the academy with work periods in theigtg. A
major challenge is to avoid that apprentices walimb two
ladders simultaneously’. Our system organizes Gldamic
apprenticeships inside a “learning by doing” enwinent,
very similar to software development studios [3utb
embracing, as far as possible, most software Iiflecy
processes defined in the ISO/IEC 12207 standard [4]

Schon’s reflective practitioner perspective [5,dblides
professional creative people to reflect about their
professional creations duringeflection-in-action and after
(reflection-on-actiop the accomplishment of the creation
process. To educate the reflective practitionerhéSc
recommended looking at traditions of educationdidistry —
and especially the architecture studiStudios are typically
organized around manageable projects [...]. They have
evolved their own rituals, such as master demotistia
design review, desk crits, and design juries, iiéhed to a
core process of learning by doihd3, p. 43]. Schon
qualified as a reflective practicum this learnimyieonment.
This analogy was used to provide a suitable edurtalti
environment for software design by Tomayko at Cgiee
Mellon [3], Kuhn at MIT [7] or Laplante [8] at PSU.

We designed and implemented, in 2002, an education
system called “Software Engineering by Immersionhe
system is entirely based on performing complete
development cycles of a software project and actishga
in two iterations followed with an operational imehip in a
firm. Students work in teams to analyze, desigmplément,
test and document a software project relying omngtr
software engineering principles. No regular sofevar
engineering courses are delivered. During the fiesation
(4%2 months), students are swapped around among the
different tasks required by engineering activitisgh strong
guidance from the coach. During the second itana{@
months), teams are autonomous in completion optbgct.

A process reference model simplified from the &I

12207 provides a breakdown into process groupscesses
- apprenticeship scenes. Issuing from professiditctics,
the analysis of activity distinguishes two kindsaativities
[10]: productive activity, which is transformatioof the
reality, and constructive activity, which is tramshation of
the subject through its own practice. Our approaes to
combine learning through environmental immersion
intended to offer to students a reflective practicuand a
well-structured learning process - that aims toaonize
productive and constructive activities. As reatistiorking
situations were experienced, it provides studenith w
progressive understanding of software engineetimgrder
to develop a reflective analysis, several reflectractices
have been borrowed from different educational syséed
seamed into development processes, mainly the ratme
coach dialogue, students peer review, activitptaif, retro-
engineering.

In 2007, local employers
employees under ‘sandwich’ (or work placement) ot
and we adapted the “Software Engineering by Imroatsi
programme to run as a work placement course. Dutihg
months, the work placement student is a full-timgpkyee,
although also attending university for certain pési. Salary
is about 80% of the salary corresponding to thetlia the
course leads to. We assigned the second iteratiotinet
industrial periods and first iteration (at the wersity) and
second iteration (in the industry) were intertwineth a two
weeks / two weeks rhythm.

development cycle, a WBS (Working Breakdown Strrectu
deliverable-oriented hierarchical decompositiontioé work
to be executed by the project team to accomplistpthject
objectives and create the required deliveraljles).

The Process Reference Model (PRM) is adapted and
simplified from the ISO/IEC 12207:1995 standard arsd
-amendments [9]; we are usingpBocess group®rganizing
13 processes:Software Project Managemen{Project
Management, Quality Assurance, Configuration
Management); Software Development Engineering
(Requirements capture, Software Requirements Aisalys
Software Architectural Design , Software Detailedsign,
Software Construction, Software integration; Softva
gualification testing); andSoftware Development Support
(Infrastructure Management, Life Cycle Model Managet,
Documentation Management, Installation-Operation).

We use a Y-shaped life cycle that separates résolof

in Brest demanded fortechnical issues from resolution of feature isgtig§

The WBS has a structural and a temporal decompnsiti
Each process is structurally decomposed in exemplar
Software Engineering activitieSE activitiesto distinguish
it from the activities in the 12207 sense) that nieave
slightly variation from a project to another. A gamt issue is
to align SE activities with Base Practices of thHe5Q4
standard [13]. The level of detail of a PRM suah 12207 is
not sufficient. Therefore it needs to be supponégth a
comprehensive set of base practices1 activity that, when
consistently performed, contributes to achievingpecific

Nearly all young engineers engaged in our prograen a process purposg3-1, p. 3].

working in large companies with a structured coaper
baseline. Despite of this fact, we observed laat ffeat most
of them worked either alone, or in very small teaifisus,
we found the situation of our young engineers \gamyilar to
what could happen in a Very Small Enterprise (VSH30,
the reflective practicum where students are plunddihg
the university periods reproduces as far as passitdmall
software company with its proper equipments,
methods, culture and people. So, we decided tcsitesir
system in order to satisfy, as far as possiblellaiges of
learning and producing in a VSE. The key pointdsnbt
overload software engineers with practices theylddeel
useless but to seam reflective practices in theseoaf the
project in order to make them natural and valudaragpdo
engineers. Faced to the problems to relate theetsity and
industrial phases of the student’'s experience, hase to
promote journal writing to enhance reflective pieet

The next section overviews Argyris and Schén thexdry
action, their application to software engineerimgl aome
related work. In section 3, we discuss about réflec
practices. Observing the course of apprenticesjept® is
discussed in section 4. We conclude the paper \with
discussion and perspectives.

II. ACTION THEORY AND SOFTWARE ENGINEERING

A. Software Engineering by Immersion

Authors defined an apprenticeship/production framw
called ILI (Ingénierie du Logiciel par Immersionpf8vare
Engineering by Immersion), based on a referenceeined

The WBS is temporally organized in stages (in aseg
9 of 2 week each). The planning of each stagevislti in
several work scenes that carry on SE activitieen8g will
be performed by team members and ought to produce
artifacts. We introduce this year a project jouingnded to
record all elements of interest in the course ef poject.
Boud presents journal writinga$ a form of reflective

toolspractice, that is, as a device for working with mtgeand

experiences in order to extract meaning from thé, p.
9]. The project journal uses semantic wikis in orgerecord
information. Team members can record events as they
happen but have to systematically fill the wikitla¢ end of
each phase. Semantic wiki is the most flexible toabrder
to record and shape a structured content. Thagbvecords
the “historical” context of resources’ use and prcid’
production. An unusual usage is the recording ofdpcts
and documentary resources itself because they ai@ m
components of software engineers’ activity as ttegcribe
the inputs and outputs of the activity. We provide journal
with a hierarchical structure. At the first levegach
participant records her/his individual course ofiat in
semantic wiki pages of the claBerformed Activity At a
second level, a collective action is recorded iggsaof the
class Course-of-action Unit;it involves parts of several
individual Performed Activitytaking place synchronically or
sequentially. At the higher level, complex and ecive
interactions are recorded 8tep-of-actiorpages sequencing
and embeddingCourse-of-action Units These pages are
created and updated at different rhythms: eachday3 for
Performed Activityeach 2 weeks - at the end of a stage - for

Course-of-action Unitithree times per project fdtep-of-
action The latter writing is more an activity analysisan
diary writing and apprentices establish links witle PRM.
A picture of these interlinked concerns is giveffigure 1.

12207 Task " [12207 Activity 12207 Process 12207 Process Group
Id - string Id - string & Id - string
. Id : string >
Form : strin, [Title : strin : [Title : strin
9 - 9 Title : string 9
" Purpose : string
15504 Base Practices ! rOutcomes : string
Id : string | ComesFrom
I Title : string !
Description : string |
Outcomes : string } SE Activity ILI Process ILI Process Group
! ! Title : string Id : string Wld : string
| 1 » Title : string Title : string
| * | IsinspiredFrom Purpose : string
i stri
IsInspiredFrdm ; IOu‘tc‘or‘nles ';lgggss
L __ |Exemplar Activity ReferencesActivity Project
Id : string Title : string
Title : slr_mg ,,,,, 1 Description : string
Description : string ! .
i
* Isﬂ’anof\ N
]
'\ ! Stage
Step-of-action i Title : string
Id : string : DtStart : Date
Title : string i DtEnd : Date
Description : string [+ | ICMSWorkSpace : string
-Organizes i
AV
Course-of-action Unit Scene
st Id : string
; sting Happens Title : string
Title : string DtStart : Date
Description : string DtEnd : Date
\WorkCard : Object _Decomposed Into
Input-Output
Input-Output *
Artifact
Id : string Person
Title : string PrefName : string
Description : string Mbox : string Works
(CMSWorkSpace : string
~Collective

Figure 1. The upper half depicts reference models. Withircess groups,
processes are defined with purposes, outcomesitiastiand tasks. The
15504 Process Assessment Model expands the 1286&<BrReference

Model by including a set of base practices. ILIgasses, drawn from
12207 processes, are performed through exemplaitiast
The lower half represents the enacted project.lifé®ycle of a project is
organized into stages composed of scenes. Duisegree, persons perform
a SE activity inspired from an exemplar activityt bantextual to the
project. Input and output work product (artifaat associated to the scene
the activity and the process. Self-observing tt®a leads to a rebuilding
of project processes into steps of course-of-aatiuts.

B. Argyris and Schon’s Theory of Action

According to Argyris and Schon, people design amdelationship, high freedom of choice, and high risking. Defensive)

guide their behavior by the use of theories of cacti
“Espoused theories of action are the theories threipfe
report are governing their actions. Theories-in-ime the
theories of action that actually govern their aagb[15, p.

7]. Argyris and Schoén argued that, if espousedrteso/ary

widely, theories-in-use do not. They labeled thesimd

Models of theory-in-use

Model | and Model Il looked to three elemer@&verning variablesre
values that actor seek to satisfy [1]. Each gowgrniariable can be though
as a continuum with a preferred range (e.g. notatexious, but not tod
indifferent) that people are trying to keep in thesceptable limitsActions
strategiesare sequences of moves used by actors in partisitiletions to
satisfy governing variables [1], there are the nscaed plans used by peopje
to keep the governing variables in the preferrethea(e.g. to practice
physical exercise to eliminate stress). Conseqeeheppen as results
action. Consequences can be intended — thosehthactor believes will
result from the action and will satisfy governingriables (e.g. to fee
him/herself better after a sportive effort). Consapes can be unintendgd
but they are designed because they depend on #wiedrin-use off
recipients as well as those of actors.

Single and double-loop learning

When the consequences of an action strategy atfeeaactor wanted
then the theory-in-use of that person is confirmédhere is a mismatcH
between intention and outcomes, consequences anéenofed. Argyris
defines learning as the detection and correcti@rrof. The first response t
error is to search another action strate@mgle-loop learning occurs whe
errors are corrected without altering the underlyigoverning variable's
[2, p. 206]. An alternative is to question to gaeg variables themselve
to subject them to critical scrutiny (e.g. to engibha open inquiry of theg
anxiety rather than trying to suppress itRotible-loop learning occurg
when errors are corrected by changing the governiagables and then thg
actions$ [2, p. 206]. Argyris and Schon argued that maeypmgle espousd
double-loop learning, but are unable to producaniti are unaware of it.

Model | and Model Il

Briefly, Model | is composed of four governing \ales: (1) achievd
the purpose as the actor defines it; (2) win, ddos®; (3) suppress negati
feeling; and (4) emphasize rationality [1]. Thenmaiy behavioral strategie
are to control the relevant environment and tasikisterally and to protec
one-self and others unilaterally. Thus most usdidrastrategy is unilateral
control over others. Characteristics ways of imgatimg this strategy ar¢
making unillustrated attributions and evaluatioag(“your work is poor”),
advocating courses of action in ways that discauiaguiry (e.g. “surprisg
me, but don't take risks”), treating one’s own vée@as obviously correct]
leaving potentially embarrassing facts unstated Thie consequences afe
likely to be defensiveness, misunderstanding, aififidfilling and self-
sealing processes [2]. Model | leads to low-leagnand double-loop)
learning does not tend to occur. Argyris and Sclo@k to move peopld
from a Model | to a Model Il that fosters doublejolearning.

The governing variables of Model Il include (1)idainformation, (2)
free and informed choice, and (3) internal commitineigilant monitoring
of the implementation choice to detect and coreeair [2]. The behavioral
strategies involve sharing control with those whwehcompetence and wh
participate in designing or implementing the actf@h As in Model I,
prominent behaviors are advocate, evaluate, antuagt. Unlike Model |
behaviors, Model Il behaviors stem from actionteyges where attribution
and evaluations are illustrated with observablea,dahd the surfacing of
conflicting view is encouraged in order to factitgublic testing of them
The consequences include minimally defensive ietsgnal and grouy

—

S

- O

Yo

=]

routines are minimized and genuine learning idifatad [1, 2].
References

[1] C. Argyris, R. Putnam, and D. McLain Smith, “ActidBcience,

Concepts, methods, and skills for research andviem¢ion”, San

Fransisco: Jossey-Bass, 1985, pp. 4, 80.

C. Argyris, “Double-Loop Learning, Teaching and Bazh”,
Learning & Education, Vol. 1 (2), Dec. 2002, pp62219

(2]

prevalent theory-in-use Model |. Model | theories-in-use
are theories of top-down, unilateral control of etk for the
actors to win, not to lose, and to control the eowiment in
which they exist to be effectid5, p. 7]. They argued that
with such a theory-in-use, problem solving works ifsues
that do not require that the underlying assumptafriglodel

| be questioneds{ngle-loop learninyy Model Il theories-in-
use make possible for peopl® ‘have problem-solving skills
that question the governing values of their thearyse
[15, p.7] double-loop learniny

Figure 2. Theory of Action by Chris Argyris and Donald Schén.

C. Application to Small Projects and to Young Engiseer

1) Espoused theories and theories-in-use
Our first observation is that, in the software @&egirring
field - and especially in small software projectthe horizon
of standards of processes and practices such &@/dR@
15504 standards may constitute the espoused th&nog it
is what engineers claim to follow. But what engisedo

(and this action is designed and do not “just happmay
reveal a different theory-in-use. Espoused thead/theory-
in-use may be consistent or inconsistent. Youngneegs
are generally neither aware of her/his theory-ie-nsr of

aware any inconsistency although experienced eegine

may be. Theories-in-use can be made explicit bigatifig
on action [1]. We believe that adopting the refiext
practitioner methodology may help young enginearshie

requires a solid learning organization to avoid teas time.
Secondly, although industry periods are focused on
productive activities and under the control of isulial
managers, they are associated to learning objectivel
academics require a kind of distance control on the
constructive activities that happen on these oooasi
Moreover, individual or collective industrial prats that
apprentices trust as efficient have to be re-usedhe

development of software systems. We fully agreehwit practicum because they form an important part afirth

Hazzan and Tomayko by adopting a reflective priacigr
approach to Software Engineering educatiostudents’
ongoing reflection of the process of developingvsoke
systems becomes part of their software developprenéess
and consequently, students may improve their uteteisg
of the essence of the methods that guide softwaiian
processes[16].

experience and theory-in-use. Anchoring each stiglen
individual learning path with his/her industrial pexience
and exploiting these experiences in a learning rozgdion
system is a crucial issue.

Previous and related work.In the previous system, we
did not pay attention to this challenge. Studentsrew
plunged during 7 full-months in the reflective piaiem,

Related work. Hazzan and Tomayko presents in [16] aclosely coached during the first 4.5-months iteratistill

course intended to develop reflective thinking irtoe
education of software engineers. Lesson 8 is aleauhing
processes in software engineering; they discuss ftioe
reflective practice and its relevance to Softwangikeering
but theories of action are not evoked.

2) Small projects as a learning organization

accompanied in the second iteration where they Hhave
produce autonomously [18]. As they shifted from
apprenticeship to production, students naturallysed the
reflective practices employed in the first iteratiand a kind
of learning organization (probably a hybrid of Mbtiend

II) spontaneously occurred.

Regarding Argyris and Schon theories, our second Halloran [19] investigates the relationship betwesn

concern is about the structure of a Very Small Epmise
(VSE, up to 15-25 employees), the different roldsit®

software process assessment and improvement madel a
organizational learning. The case study observes th

employees and the VSE behavior as an organizationéitroduction of SPICE [20] (ISO/IEC 15504) as a t@eire

learning system. Authors both worked as project agars
for nearly ten years in a small department of awsok
services company. The organization was typical &feay
Small Enterprise: one manager acting as a projectager,
three other software project managers (typicatyfr2 to 4),
between 8 and 12 software developers. The onlgreifice
with a VSE was the existence of a corporate baselitut
far unknown of most department employees. As pdiotg
in the introduction, the environment of our appieet either
plunged in their virtual practicum at the univeyst in their
work situation during the work placement period,viery
similar to a VSE or a small software departmentpligal to
a small structure acting as a learning organizagomodel
of its theory-in-use can be built from the elemerssented
at the beginning of this section.

Our hypothesis is that the whole team acts asraitep
organization with a theory-in-use mastered by Mddw I1.

Process Assessment and Improvement program in an
Australian multimedia company of approx. 70 emp&se
The paper points out the difference between “ergiae
espoused theory” and his/her “theory in use” butoés not
develop this matter and rather focuses on the use o
organizational learning to promote a proactive apph
culturally to continuous improvement and learning
procedures. In the case study, Halloran attribthiedimited
success of the SPA & SPI program to the fact thagtrof
the “learning” associated with this program wagkgrioop
learning [1] and recommended to change this model.
3) Process assessment

Regarding the understanding of software procedsas t
students are building, we were faced to a crus&alé. In the
previous system (without work placement), studésdsned
software processes by doing during the first itenatand
reproduced these processes during the second dnes, T

The governing variablesare those of Model | or IlI; project links were easy to establish and a practical uhaieding of
managers (and any employee with useful knowledgk ansoftware processes occurs. Now, first iteratiorcyged on

skills) design and implemeistction strategiesEveryone in

the VSE experimentsonsequencesntended or unintended,

productive or counterproductive. According to
hypothesis, when a VSE uses Model | as a mastgramo
of its theory-in-use; double-loop learning is irited, error

escalates and effectiveness in problem solving and
execution of actions tends to decrease [17]. Buterw
individuals move toward a Model Il program, the \gho
organization will operate as an Organizational darhing

system — a rare phenomenon [17].

constructive activities) and second iteration (ke on
productive activities) are performed on differembjpcts.

thisThe former is an apprenticeship project driven e t

university and the latter is an industrial projddten by the
companies with whom students are placed. We need an
assessment framework common to both projects tlatsa
apprentices to relate and cumulate experiences.

The two authors have defined in [21] that most
productive activities have a constructive part thathuman
subject performs in order to build and develop cetepcies.

In the new work placement system, the problem ef th We are using assessments fully integrated withifineycle,

learning organization is pregnant for several reaséirst,
the discontinuity of university periods (9 periaf2 weeks)

constituted by the reader/author feedback cyclegness
meeting and peer reviews. We call it regulatioresssents

referring to De Ketele “[...] an open process whoserity
function is to improve the working order [...] of anpor of
the whole system” [22].

Although we think that process assessment as define

ISO/IEC 15504 [13] or CMMI is out of reach of young

a sandwich report, is assigned to two studentsdbase
individual report provided by each apprentice. hdew to
prepare these meetings, apprentices generally framk the
industrial recording mentioned above.

During academic periods without industrial repagtin

engineers and VSEs, we believe that a personaleBsoc apprentices have to perform a first-level processysis on
Assessment Model and a simplified Process Referendbe state of software processes of their academueg.

Model are necessary to provide a knowledge basislete
for the practice of software engineering. Furtheemove
think that these models may provide a model of thrao

use, providing students with a link between apjceship
and work experiences.

Related work. Von Konsky and Ivins [23] propose an
approach for assessing the capability and matuoity
undergraduate software engineering projects. Thpeoaph
is based on an adaptation of the Capability Matuvibdel
Integration and a hybrid version of the Team Sofewa

Each apprentice has to work on two or three prese§s3
used at all) and to build an intermediary procdssnent
called Step-of-action based on historical Coursaetion
Units related to a given process (cf. 8Il.LA and.EigThis
analysis is intended to produce a re-compositionthef
global dynamic in terms of smaller units and relasi of
sequencing and embedding between these units.

B. Regulation assessment
1) Apprentice — coach dialogue

Process. The approach was shown to focus student attention Each scene gives rise to one or several delivesable

on process improvement and on the attainment dfstiea
and measurable project management gb§28]. Our goal
differs because we focus on making explicit thaaryse.

I1l. SEAMING THE PROJECT WITHREFLECTIVE PRACTICES

A. Academic assessment

When the product is delivered, the coach carefedigmines

it and writes an assessment card including a gknera
assessment together with all the points to impavi® start
over. When apprentices enquire into assessmens,ciust
reactions are generally defensive. Worried abouidav
failure, and embarrassing or threatening feelings,
apprentices’ action strategy tend to protect thémseand to

Assessment of student learning has to be based @ontrol work to be redo unilaterally, applying stiy each of

making clear distinctions among types of learnintcomes.
Classical types include individual knowledge, psxcskills,

the coach remark and perceiving coach’s feedbackdess.
When the apprentices get used with discomfort aadil of

and products. In our system, individual knowledge i being vulnerable, and when s/he understands tlahsiee

assessed essentially through individual reports waivd

voice examination. Products (and indirectly proesss
involved) are assessed with assessment
mimicking industrial usages; these assessmentsistoofs
evaluations based on the review of apprenticeghgpes and
on the qualification of software products.
apprentices’ understanding of processes shouldthekirm
of a reflective written essay intended to explaid anprove
upon their software processes, along with teamwanil

routines are limiting her/his ability to understaadd to
develop oneself, it becomes possible to make ateteards

procedurbtodel 1. The feedback is given in front of the laoits, it

allows authors to deepen, to discuss, eventuallgotatest
remarks made by the coaches. Following this bigefin

Ideally, students have to update or start again their ptoduttich

will be assessed again.
2) Peer review
Within industry, the objectives of a peer revieve &o

communication used to support their performance indetect and to eliminate, early and efficiently, thefects of

performing the processes.

Final reports with in-class presentation may beluse
reflective practices but as they are assessed avithark,
reports are biased with the students’ assessnrategy. We
found more useful to provoke intermediary reporttheut
any assessment. Of course, students will reuseysisal
writings and oral presentation in their final regsoand for

required self-assessments (it may be a supplenyentainformation,

motivation to perform sound intermediary reports)t ve
minimize assessment biasing.

During the industrial periods, apprentices haveetord
events of interest in an individual journal asstexawith
significant artifacts they may have used or produc&ach
two months (corresponding to two industry periods20
weeks each), the academic period begins with adagif
where each apprentice (12 at all) presents annieigiary
report of his/her activities at work. S/he has meinutes to
make an oral presentation in front of other appcest

products under development. Each undetected deteitg
a phase will induce its propagation in the lateagg@s and
will require ulterior supplementary work.

In our system, we adapted and extended the indlstri
peer review in order to provide a support for skiansfer
between apprentices of the same team. This kingeef
review privileges the collecting of questioning,déidnal
improvement proposals rather than
collecting of potential defects even if that imfilichappens.
This data collecting encourages exchanges betwadargs,
helps to take some improvement proposals into axtcarnd
aids to correct major defects in the resulting potsl of an
apprenticeship stage. When the underlying goveraaiges
of this cooperative work are those of Model Il (sal
information, free and informed choice, and internal
commitment, cf. Fig. 2), apprentices’ action stg&e
combine advocacy and inquiry. Attributions and esatibns
are illustrated with relatively directly observaldata, and

the

followed by 10 minutes of question from coaches andhe surfacing of conflicting views is encouragedider to

eventually other apprentices. Writing a meetingrgpalled

facilitate public testing of them. Hence, learnisgnhanced.

C. Support practices

1) Activity tailoring

Any software development baseline needs to beréailo
to each project. This tailoring process definesattevities to
be performed and products to be developed andedetiv

In our learning process, we transform this tailgrin
concept in an “activity tailoring” intended to engcage
reflection on action. Tailoring an activity can assimilated
to a preliminary work of thought and suggestion lokv to
proceed in order to perform the concerned activitgr

example, using a new method or tool begins with a

exploration in order to tailor its usage to thecsfiaties of

the project. Indeed when a production task is hiard
understand such as design (that requires a reatierpe), it
may be preferable to think “upstream” and to penfdhe

design of a program, such a technical architegiuéotype,

subsequently to its realization issued in a previstage of
the learning process.

Each tailoring ends with the writing of an usagélgwr
implementation guide of the concerned activity.sTkind of
tailoring activity favors and encourages studemiatives
and creativity on technical, methodological aspestsany
activity of the software development process.

When the student’s repertoire is empty for a give
activity, any new task seems impossible. Activiyldring
provides a bootstrapping of activity. After tailog, faced
with the intended activity, even it is perceivedresw and
may be threatening, it minimizes defensive reagpnih
provides an higher freedom of choice.

2) Retro-engineering

In the pedagogical field, retro-engineering is raiuictive
approach. It is the reconstruction from back tonfrof a
process, starting from the result of an activitf...} the
retro-engineering approach or intuitive engineering]
means analyzing, breaking down an activity steystep in
order to ask how it is used in a given situatiomsTapproach
is applied each time we need to understand “hows it
working” or “how it is made™ [24, citing Pinker].

The idea is to confront students with an existipgtam
whose techniques or associated development envinoihm
they do not know. The aim is to acquire skills twét allow
the maintaining and the evolving of the system. Th
approach follows a standard framework: 1) Instalh and
study the system; 2) Install and configure the tpraent
environment that will be used to modify the systes;
Perform a prototype satisfying the same technioastraints
with the permanent obligation for students to obser
themselves at work; 4) Write a document for teantesgao
that they can understand and continue the prototype

The retro-engineering of an activity adds iterataved
incremental experiences. When this activity is @enied in a
small group, behavioral strategies should shar¢raowith
those who have competence.

D. Discussion

This section has presented some points of the isiarer
system intended to contribute to the software piacer
education. These practices are available for ttezttand

n

may be incorporated into or linked with an appieeghip
situation. Students do not perceive these reflectictivities
as software engineering activities but they do pmriceive
them as a constraining pedagogical tool whoseitynabuld
be to be reflective “at any cost”. They take them a
comforting steps which allow them to take a propew and
stabilize their knowledge. They rapidly use thentause
they see their immediate interest in order to datbnally
with the problem they have. They do notice thats¢he
activities contribute improving their own appressbip

rfrocess, the production process, also indirectig fnally

he quality of the expected system.

IV. A JOURNAL OF THE COURSE OF APROJECT

A. An empirical case study

This case study is based on the activity of a tearé
young software engineering apprentices with the dwitors
acting as observers, .This case study observewkizde
course of the project. As pointed out by Singer ®itson
[41], apprentices’ consent is required and appreatagreed
to participate.

The project is a semantic annotation tool. The ngaial
of the project is to provide a semantic annotatami able to
annotate (indexing through metadata) Web resousessch
(on metadata) in different modes, browse (hieraalyi or
with facets), manage RDF vocabularies (semantieraels),
and deal with the scope of annotations (public rivage).
The project uses Jena - http://jena.sourceforgeamebpen-
source Semantic Web programmers’ toolkit - as RIBF. A

B. Recording the project progress

As the project progress, events of interest arerded in
a journal associated with significant artifactsytimeay have
used or produced. As described in 111.B.2, eadividual
course-of-action is accounted, on a 2-3 days basign
instance of the smaller unit, that we called a dteréd
Activity. Apprentices create a wiki page for eaodividual
activity performed during the stage, fill this pagih a short
description of activities performed, link this pageth
related other pages (scene, person, artifact), widad
artifacts in the wiki. At the end of each stagedtweeks),

E'apprentices account individual and collective warkthe

finest grain of collective course-of-action, calladCourse-
of-action Unit, which organizes several individearformed
Activities. This accounting provide a first-levdl reflection-
in-action.

Each two months, apprentices have to perform & firs
level course-of-action analysis on the state oftwsnk
processes of their academic project. Each appeemtarks
on two or three processes and builds an intermegiaicess
element called Step-of-action based on historicalr€e-of-
action Units related to this process. This analisistented
to develop reflection-on-action.

All information is recorded in two semantic wikis:

* http://oysterz.univ-brest.fr/1220The 12207 wiki is a
hypertext reference of the ISO/IEC 12207:2008.

* http://oysterz.univ-brest.fr/companthe company wiki
contains Processes group / Processes / Exemplaviti&est

and Stages / Scenes decompositions but its mestriamt
part is the journal recording the project progréissstructure
is based on the model given in the lower-half of. Bi.

C. Accounting

This project has completed its 9 stages and qatingt
facts are given in table Il — that is the numbeinstances
(wiki pages) in each category. For each procesd)ave the
quantity of apprenticeship Scene (SCE), the quardit
Performed Activity (PAY: individual), the quantityf
Course-of-action Unit (CAU: collective), the quamntiof
Step-of-action (STE: higher-level construct). THecélumn
gives an indication of the quantity of Software Eegring
Activities that may be envisaged in the proce$gA¢t) and

8" (Tsk) report the 12207 decomposition of related

processes: number of activities (Act) in (the)
number of corresponding tasks (Tsk). Th

es) and
and last

scenes (e.g. Requirements), the reconstructionedfall
probably because apprentices are unable to percaive
abstract view of the process.

D. Discussion

Table | help to figure a quantitative view of thmujnal
writing activity. The amount of 12207 tasks (or @83Base
Practices as well) give an indication over the dgns the
process. The higher are these amounts, the highénei
complexity; this it should lead to a process retrgsion
involving a higher amount of Step-of-action related a
roughly amount of Software Engineering Activitidsmajor
difference between col ™YSTE) and col. 8 (SE Act.) may
indicate that the reconstruction failed.

On the other hand, amounts of Performed Activit&YP
and Course-of-action Unit (CAU) are closely depagdon
the pedagogical objectives and on the organizatiah the

column gives the number of Base Practice (BP) i@ thcoach put on the process. A high amount of Scene /

corresponding process of the 15504 standard.

TABLE I. QUANTITATIVE FACTS
Process SCE | PAY | CAU | STE Asg Act |Tsk BP
Project d
management 13 22 13 3 5 7 14 15
_Quality 2 | 2| 1] 1| 2| a| 16 8
insurance
Configuration 2 2 2 2 3 6 6 10
management
Requirements
capture 10 18 10 0 5 5 12| 6
Software |, |, | 5 | 2| 2 1| 3| s
analysis
Technical | 2 | 49 | 5 | 3| 4| 2| 2
architecture
Software | o | g | 5 | 4| 4| 2| 15 12
design
Software | g | 45 | 4| 3| 5| 1| 5| 4
construction
Integration —
validation 8 12 5 5 5 6 20| 20
Technical 8 16 5 5 2 3 4 6
support
Methods and 3 3 3 5 5)) 6
tools support
Documen- | 5 | 4 | 2 | 1| 2| 4| 7| 8
tation
Installation - |1 | \A | pa [NA | 2 | 2] 5] 6
deployment

As noted in 8llI.B.1, students reports their atyi\at the
end of each stages (2 weeks). When an activity adeafp
crosses over stages (e.g. technical support ornghdi
students adopted a simple strategy: they createdsingle
mid-level structure (Course-of-action Unit) andkkad to
individual low-level units (Performed Activity) bahging to
different stages.

45 Steps-of-action are envisaged. Simple proceases
Design are correctly reconstructed. There are oexnpl
processes that may be oversimplified in the pragti¢e.g.
Configuration Management or V&V) and the recondiarc
is correct regarding the simplified process buisitpartly
inaccurate. For some complex processes involvinglyma

Performed Activity / Course-of-action Unit may repent
the complexity of the process but may also indithéd the
process is a supporting process whose activities ar
performed all the life cycle along.

V.

Argyris and Schon developed a model of the prosesse
involved in theories-in-use based on three elements
governing variables, action strategies, and coresegs [2].
Then, in [26] they explored the nature of organdirl
learning and defined two kind of learning: simpbep
learning and double-loop learning. Then they settwp
models (Model | and Model Il) that describe feasuief
theories-in-use that either inhibit or enhance ¢eldop
learning.

Model | theory-in-use requires defensive reasoning.
Unlike the defensive reasoning, the logic used odM Il is
not self-referential. As a consequence, defensiugines
that are counterproductive to learning are minimhjzend
genuine learning is facilitated. Thus, an ultimgtal of our
education system is to promote Model Il as a théowyse.

Two hypotheses are discussed (1) that theorieséncan
be made explicit by reflecting on action; (2) tiia¢ whole
team acts as a learning organization with a theonse
mastered by Model | or Il. As a case study, thesiag of a
team of 6 young software engineers accompanied twith
participants-to-observe is shown.

The current state of this work let suggest that 1)
personal Process Assessment Model and a simpiffiecess
Reference Model may form an initial structure af theory-
in-use and support reflective thought (2) when etedm
member is going from a “pre-reflective consciousties
towards a reflective attitude, the whole team melyas a
learning organization.

CONCLUSION AND PERSPECTIVES

ACKNOWLEDGMENT

The authors wish to thanks Frangois-Xavier Bru, [Baé
Frappin, Ludovic Legrand, Estéban Merrer, Sylvaitedl,
and Guillaume Salou for their participation to thisrk.

REFERENCES

(1]
(2]

(3]

(4]

(5]
(6]

(71
(8]
[9]

(10]

[11]

(12]
[13]

[14]

[15]

[16]

C. Argyris, and D. Schon, “Theory in practice: leasing
professional effectiveness”, San Fransisco: JoBseg,; 1974.

M. Finger, and S.B. Brand, “The concept of the figag
organization applied to the transformation of theliz sector” in: M.
Esaterby-Smith, L. Araujo and J. Burgoyne (eds.pabizational
Learning and the Learning Organization, London:54§99.

J. E. Tomayko, “Carnegie Mellon's software develeptstudio: a
five year retrospective” in Proceedings of the @bnference on
Software Engineering Education, New York: IEEE Caorep Society
Press, pp. 119-129, 1996.

ISO/IEC 12207:2008, “Information technology -- Swadire life cycle
processes”. Geneva: International Organization Standardization
(1SO), 2008.

D. Schon, “The Reflective Practitioner”, New YorBasic Books,
1983.

D. Schon, D., “Educating the Reflective PractioriBoward a New
Design for Teaching and Learning In the Professid®an Fransisco:
Jossey-Bass, 1987.

S. Kuhn, “The software design studio: an explorgtiolEEE
Software, Volume 15 (2), March-April 1998, pp. 85-

P. A. Laplante, “An Agile, Graduate, Software Stu@iourse”, IEEE
Transactions on Education, Vol. 49 (4), Nov. 2088,417-419.

ISO/IEC 12207:1995, AMD 1:2002, AMD 2:2004, “Infoation
technology -- Software life cycle processes”, Gendnternational
Organization for Standardization (ISO), 1995, 2@04.

R. Samurgay, and P. Rabardel, “Work competenc@segeflections
for a constructivist theoretical framework” in Beedings 2nd Work
Process Knowledge Meeting: Theoretical approachesmpetences
at work, Courcelle sur Yvette, 1995.

ISO/IEC FCD 24765, “Systems and software enginegerin
Vocabulary”. Geneva: International Organization 8tandardization
(1SO), 2009.

P. Roques, and F. Vallée, “UML en action”, Parigrdiles, 2002.

ISO/IEC 15504:2004, ‘“Information technology -- Pess
assessment’. Geneva: International OrganizatiorSfandardization
(1ISO), 2004.

D. Boud, “Using Journal Writing to Enhance RefleetiPractice”,
New Directions for Adult and Continuing EducatioNol. 90,
Summer 2001, pp. 9-17.

C. Argyris, “Organizational learning and managemaribrmation
systems”, ACM SIGMIS Database, Vol. 13 (2-3), WirBpring
1982, pp. 3-11, ISSN:0095-0033

0. Hazzan, and J.E. Tomayko, “Reflection processelse teaching
and learning of human aspects of software engingériin
Proceedings of 17th Conference on Software Engimgé&tducation
and Training, New York: IEEE Press, pp. 32- 38, 200
doi:10.1109/CSEE.2004.1276507

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

C. Argyris, and D. Schon, “Organizational learning\ theory of
action perspective”, Reading: Addison Wesley, 1978

V. Ribaud, and P. Saliou, “Software Engineering égppiceship by
Immersion”, in Proceedings of International Workstom Patterns in
Teaching Software Development, ECOOP’03, Darms2a03.

P. Halloran, “Organisational Learning from the Pecdive of a
Software Process Assessment & Improvement Progriam’32nd
Hawaii International Conference on System Sciend&=w York:
IEEE Press, 1999.

Software Process Improvement and Capability dEteatian
(SPICE), Software Process Assessment - Version ,1.00
http://www.sqi.gu.edu.au/spice/docs/baseline, 1995

P. Saliou, and V. Ribaud, “Former un praticienex¥ifide I'ingénierie
du logiciel (The training of a reflective practitier in software
engineering)” in Colloque Les pédagogies activegnjeux et
conditions, pp. 535-545, Louvain: University of hain , 2007.

J.M. De Ketele, and X. Roegiers, “Méthodologie decueil
d’informations”, Bruxelles: De Boeck, 1993.

B. R. von Konsky, and J. lvins, “Assessing the @dfig and
Maturity of Capstone Software Engineering ProjecR&search and
Practice in Information Technology, Vol. 78. S. akid Hamilton
(eds.), 2008.

P. Dessus, “La planification des séquences d'apipeawge, objet de
description ou prescription ? ”, Revue Francaisd?ddagogie, Vol.
133, pp. 101-116, 2000.

D. Schon, “Educating the Reflective Practitionar’Meeting of the
American Educational Research Association, 1987.

O. Hazzan, “The reflective practitioner perspective software
engineering education”, Journal of Systems andwsoé, Vol. 63
(3), September 2002, pp. 161 — 171, ISSN:01642121

J. Leplat, “Regards sur l'activité en situationtiderail - Contribution
a la psychologie ergonomique”, Paris: Presses dysitaires de
France, 1997.

F. Morandi, “Pratiques et logiques en pédagogiedris® Nathan,
2002.

M. Huo ,H. Zhang, and R. Jeffery, “An exploratotydy of process
enactment as input to software process improvenarftoceedings
of the 2006 international workshop on Software iyakable of
contents, pp. 39 - 44, New York: ACM, 2006, ISBN4593-399-9

J. Singer, and N. G. Vinson, “Ethical issues in eival studies of
software engineering”, IEEE Transactions on Sofesmangineering,
Vol. 28 (12), Dec 2002, pp. 1171- 1180,
doi:10.1109/TSE.2002.1158289

J. Topping, Sandwich courses, Phys. Educ. Vol. 4], 1975, pp.
141-143, doi:http://iopscience.iop.org/0031-912¢31@03

