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ABSTRACT

This paper presents a tool we’re developing at the
University of Brest. This tool is devoted to the per-
formance analysis of AADL specifications. AADL
(Architecture Analysis and Design Language) is the
AS-5566 standard published by SAE (Society of Au-
tomotive Engineers). AADL is a language which
makes possible the description of both the hardware
and the software parts of an embedded system. From
this kind of description, one can generate the soft-
ware part of the system, but can also perform dif-
ferent kinds of analysis. The work presented in this
paper describes how a performance analyzer, called
Cheddar, is able to perform such analysis on AADL
specifications.

Key words: Performance analysis, AADL, Rate
monotonic, Queueing systems.

1. INTRODUCTION

The Architecture Analysis Design Language (AADL)
is a textual and graphical language support for
model-based engineering of embedded real-time sys-
tems that has been approved and published as SAE
Standard AS-5506 by the Society of Automotive En-
gineers (SAE) in 2004 [11]. The AADL Standard
has been developed by a broad-based international
group, including Airbus, the US Army, major avion-
ics companies such as Honeywell, Rockwell Collins,
and Smiths Aerospace, internationally recognized ex-
perts in UML and Ada, major academic organi-
zations such as the Software Engineering Institute
(SEI) and the University of Southern California, and
tool suppliers such as Ellidiss Technologies, Artisan
Software, High Integrity Solutions and Axlog.

AADL is used to design and analyze the software and
hardware architecture of embedded real-time sys-
tems and properties that are critical to the operation
of such a system such as timing, throughput, and
reliability. AADL is applicable to any performance-
critical embedded real-time system in domains such

as avionics, aerospace, automotive, and autonomous
systems.

The main advantages of using AADL are the follow-
ing:

e It makes it possible to apply system engineering
approach to software intensive systems.

e The resulting architecture is analyzable and this
decreases rework which upgrade costs as well as
program risk and complexity.

e It enables rapid system evolution for complex,
real time, safety critical systems with pre-
dictable change to both hardware and software.

e It is a standard and is mature (more than 12
years of DARPA investment and additional ex-
periments) in comparison to other ADL.

e It is extendable: it offers a good foundation for
additional capabilities in analysis, automated
system integration, systems of systems, distri-
bution, and dynamics.

AADL has been used in important software tools and
its use is planned in several projects. As example,
we can mention OSATE (www.aadl.info), an open
source AADL tool environment developed on top of
the open source Eclipse platform (www.eclipse.org)
by the SEI ; STOOD (http://www.ellidiss.com), a
platform developed by Ellidiss Technologies which
supplies an integrated support of HOOD, UML 2.0
and AADL with code and documentation genera-
tors for the development of mission critical soft-
ware ; ADeS (http://www.axlog.fr) (Architecture
Description Simulation), a software tool developed
by Axlog to simulate the behavior of an architec-
ture described with AADL ; TOPCASED (Toolkit in
OPen source for Critical Applications and SystEms
Development) a project initiated in October 2004 by
the CNRT (French National Center of Technological
Research) Aeronautic and Space partners and aim-
ing at developing an open source CASE environment
(http://www.topcased.org) in order to facilitate the
cooperation of tools dedicated to embedded critical



systems and finally, the ASSERT European project
which aims at defining and implementing an inno-
vative methodology for the production of embedded
real time systems in the aerospace and aeronautics
domains for the years 2020. These tools provide fea-
tures for specification of applications with AADL.
Some of them also provide analysis tools but few of
them focus on performance analysis.

This paper presents Cheddar, a tool which provides
services to do performance analysis. This AADL
analyzer is based on Ocarina, an AADL Ada95
parser distributed by the French National School of
Telecommunications (ENST Paris). This paper is or-
ganized as follows. The usual performance analysis
methods implemented in our AADL analyzer are de-
scribed in section 2. In section 3, examples of AADL
analysis with Cheddar are shown. Section 4 is dedi-
cated to conclusions and future works.

2. USUAL PERFORMANCE ANALYSIS
METHODS OF EMBEDDED REAL
TIME APPLICATIONS

Since 1980, to analyze performance of an applica-
tion made of concurrent tasks, many models, meth-
ods and tools were proposed (eg. Petri Net [9], Syn-
chronous languages [17], ...). In this section we will
consider in particular two performance analysis ap-
proaches: an approach based on the scheduling the-
ory and an approach based on queueing systems anal-
ysis.

2.1. Rate Monotonic Analysis (RMA)

RMA is part of a larger set of quantitative methods:
the real time scheduling theory. This theory helps
the system designer to predict the timing behavior
of a set of real time tasks with scheduling simulation
and feasibility tests. Scheduling simulation requires,
first to compute a scheduling on a given time inter-
val and second, to look for timing properties in this
computed scheduling. On the contrary, feasibility
tests allow the designer to study a set of real time
tasks without computing scheduling. The first real
time scheduling theory contributions were proposed
30 years ago [7]. The theory was strongly extended
to cope with many application requirements and was
successfully used in many projects [6].

In the classic Liu and Layland real time tasks model
[7], each task periodically performs a treatment.
This periodic task ¢ is defined by three parameters:
its deadline (D3), its period (Pi) and its capacity
(C1). Pi is a fixed delay between two wake up times
of the task 7. Each time the task i is woken up, it
has to do a job whose execution time is bounded by
(i units of time. This job has to be ended before D1
units of time after the task wake up time.

From a set of tasks, two kinds of analysis can be per-
formed: scheduling simulation and feasibility tests.
Scheduling simulation consists in predicting for each
unit of time, the task to which the processor should
be allocated. Checking if tasks meet their deadline
can be done by analyzing the computed scheduling.
Different kinds of feasibility tests exist: tests based
on processor utilization factor [7] and tests based on
task response time which are designed to check task
deadlines [2,3,8] ; tests based on buffer utilization
factor which are designed to check buffer overflow
[5,10].

An example of feasibility test consists in comparing
the worst case response time of each task with its
deadline. In [3,8], Joseph, Pandia, Audsley et al.
have proposed a solution for the computation of the
worst case response time. Tindell et al. have shown
in [18] how that solution can be extended to com-
pute worst case response times of task running on
distributed systems. Finally, Legrand, Singhoff, et
al. have proposed solutions which allow to check
buffer overflow for applications made of tasks shar-
ing buffers [5,10]. These solutions also make use of
the worst case response time.

2.2. Queueing systems approach

The queueing system theory allows to study perfor-
mance of a system composed of servers, customers
and storage places [12]: people waiting in a room for
a doctor, network switch routing data, ...

If customers arrive in the system when a server is
busy, their requests are stored in a queue. By defin-
ing the average rate of customers request arrivals and
the average rate of requests that the server can han-
dle, a queueing system model allows to predict, the
average system occupation factor L, the average cus-
tomer waiting time W, and the probability Pn of
having n customers in the queue.

Several works on queueing systems have been done in
the real time community. In priority queueing [13],
a priority can be given to customers. The most com-
mon priority queue is the HOL where priorities are
fixed. The real time queueing theory (RTQT [14])
aims at using priority queueing in order to check
temporal constraints of tasks randomly activated un-
der heavy traffic (a queueing system with a high uti-
lization factor). A lot of queue service disciplines
have been studied in the network field [15]. These
services generally aim at providing bandwidth, end-
to-end delay determinist or statistic guarantee. Un-
fortunately, they are based on software or hardware
mechanisms which are specific to network switch and
consequently difficult to reuse for other application
domains.



thread implementation t1
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time => 1 ms .. 2 ms;
Deadline => 10 ms;
Period => 10 ms;
end t1;
thread implementation fifol
properties
Dispatch_Protocol => Background;
Compute_Execution_Time => 1 ms .. 3 ms;
Cheddar_Properties::POSIX _Scheduling_Policy
=> SCHED_FIFO;
Cheddar_Properties::Fixed Priority => 5;
Cheddar_Properties::Dispatch_Absolute_Time
=> 4 ms;
Deadline => 100 ms;
end fifol;

process implementation proc(
subcomponents
t1 : thread t1;

processor implementation rma_cpu
properties
Scheduling-Protocol
=> Rate_Monotonic_Protocol;
Cheddar_Properties::Preemptive_Scheduler
=> true;
Cheddar_Properties::Scheduler_Quantum
=> 0 ms;
end rma_cpu;
processor implementation posix_cpu
properties
Scheduling_Protocol
=> POSIX_1003_HPF _Protocol;
Cheddar_Properties::Preemptive_Scheduler
=> true;
Cheddar_Properties::Scheduler_Quantum
=> 2 ms;
end posix_cpu;

Figure 1. AADL thread scheduling analysis

data implementation shaded.i
properties
Cheddar_Properties::Data_Concurrency _State
=>1;
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end shaded.i;

data implementation black.i
properties
Cheddar_Properties::Data_Concurrency _State
=>1;
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end black.i;
thread J1

features
shaded fea : requires data access shaded.i;

end J1;
thread J2

features
black fea : requires data access black.i;

end J2;
thread J4

features
shaded_fea : requires data access shaded.i;

black fea : requires data access black.i;
end J4;
thread J5

features
black_fea : requires data access black.i;

end J5;

process implementation proc0.i
subcomponents

J1 : thread J1.i;

J2 : thread J2.i;

J3 : thread J3.i;

J4 : thread J4.i;

J5 : thread J5.i;

shaded : data shaded.i;
black : data black.i;

connections
data access shaded — > J1.shaded fea;

data access black — > J2.black fea;
data access shaded — > J4.shaded fea;
data access black — > J4.black_fea;
data access black — > J5.black fea;

properties
Cheddar _Properties:: Critical_Section => (

”shaded”,
” J]-” ” 2” ” 27’

) 7 )
?shaded”,
” J477 ” 2” ” 573

) b )
?black”,
” J2’7 7” 2” 7” 2” ,
”black”,
” J4” ” 4” ” 5”

) 7 )
”black”,
” J5’7 7” 2” 7” 5” );

end proc0.i;

Figure 2. AADL threads sharing data ; analysis of
shared data usage and thread waiting time




thread Producer
features
Data_Source : out event data port;

end Producer;
thread Consumer

features
Data_Sink : in event data port;

end Consumer;

thread implementation Producer.i ...
thread implementation Consumer.i ...

process implementation p0.i
subcomponents
Producerl : thread Producer.i;
Producer2 : thread Producer.i;
Consumerl : thread Consumer.i;

connections
event data port Producerl.Data_Source =>

Consumerl.Data_Sink;
event data port Producer2.Data_Source =>
Consumerl.Data_Sink;
end p0.i;

Figure 3. Fvents exchange with AADL event data
ports ; analysis of the buffer requirements

3. EXAMPLES OF AADL ANALYSIS

Cheddar implements both Rate Monotonic Analy-
sis and Queueing Systems Analysis. With a model
transformation, AADL specifications are trans-
formed into a set of tasks, processors, temporal con-
straints, customers, servers and queues. Then, Rate
Monotonic and Queueing Systems Analysis can be
conducted.

An AADL specification may be composed of compo-
nents such as threads, data, processes or processors.
A thread is a flow of control that executes a program.
This kind of component may be implemented by a
POSIX thread or by an Ada task. An AADL data
models any data structure in a program. Such com-
ponent may be seen as an UML class. A process can
be used by the designer to model an address space
protection unit. Finally, the processor components
model the execution environment of the programs
of an AADL model. An AADL specification may
also contain component connections and component
properties. Component connections model compo-
nent relationships. Component properties provide
information related to the way components will be
implemented, related to their resource requirements,
related to their behaviour or anything else which is
required in order to build and analyze the modeled
system.

Let see some AADL examples in order to show what
kind of performance analysis Cheddar can perform.

3.1. AADL thread scheduling analysis

The specification of Fig. 1 declares 2 threads: t1
and fifol. The first thread is a periodic thread.
This periodic thread is defined with the standard
AADL properties: the Dispatch_Protocol property
means that the thread is a periodic one ; the
Deadline, Period and Compute_Ezecution_Time
properties respectively define the deadline, the pe-
riod and the capacity of the thread (see section 2.1).
The second thread is an aperiodic POSIX 1003.1b
thread and shows some examples of new AADL
properties we defined in order to model and ana-
lyze such kind of threads. These new properties
are Preemptive_Scheduler, Scheduler_Quantum,
Fized_Priority, POSIX_Scheduling_Policy and
Dispatch_Absolute Time. They make possible to
model and analyze a system built with a POSIX
1003.1b scheduler [16].

An example of analysis result is shown in Fig. 4.
In the top part of the window, one can see a set
of time lines displaying the scheduling computed by
the AADL analyzer. From this set of time lines, the
analyzer computes worst/best/average task response
times, the number of context switches, the number
of preemption and can check if some deadlines are
missed. Some other results are displayed in the bot-
tom part of the window: these results are produced
with feasibility tests (worst case response time test,
processor utilization factor test, ....) and can be con-
sidered as a kind of proof. Feasibility tests do not
require to compute the simulation and then, can be
applied when computing simulation becomes a too
much long work to do.

3.2. AADL data analysis

Fig. 2 shows a second AADL specification example.
This one is composed of a set of threads sharing data
components. This new AADL specification declares
two data components: shaded.i and black.i. They
are accessed by a set of threads (J1, J2, J3, J4 and
J5). One more time, new AADL properties were de-
fined in order to make it possible to use the perfor-
mance analysis tools of Cheddar. These properties
are:

e Data_Concurrency_State: this property gives
the initial state of the data. In Cheddar, a data
is seen as a Dijkstra semaphore. As for an ini-
tial semaphore value, this property indicates the
number of non blocking data access the set of
thread can do before being blocked.

e (C'ritical _Section: this property stores the set of
critical sections of the thread/data components
of a given process. A critical section is a piece of
thread capacity in which the thread will access



a given data. The Critical_Section is a list of 4-
uplets (a, b, ¢,d). Each 4-uplet (a, b, ¢, d) models
a critical section where a is the accessed data, b
the considered thread, ¢ and d respectively the
start time and the end time of the critical sec-
tion (relatively to the thread capacity). In the
example of 2, five critical sections were modeled
for the process proc0.i.

Some standard AADL properties are also used in this
example. The most important one is Concurren-
cy-Control_Protocol which describes how the shared
data will be accessed [20].

Fig. 5 shows the simulation results a user can expect
from this AADL specification. From a simulation,
one can compute data blocking time per thread [20].
A thread blocking time is a delay a thread has to
wait before accessing a given data. These delays can
also be bounded according to the concurrency con-
trol protocol without running simulations: it’s a kind
of feasibility test. Fig. 5 shows such blocking time.
In the top part of the windows, one can see time
lines associated to data (black and shaded) which
display when the data components are acquired and
released. In the bottom part of the window, from the
simulation, the best/worst/average thread blocking
times are computed. For example, from this simula-
tion, we learn that the thread J2 has to wait 5 units
of time in order to access to the black data.

3.3. AADL event data port analysis

The last AADL specification in Fig. 3 shows a
system composed of threads which exchange mes-
sages thought event data port. Event data port
are communication channels. They can used for
asynchronous message transmission between threads.
These messages are called events. Events are queued
and usually served with a FIFO policy. Queueing
systems may be able to predict event data port mem-
ory requirement if queueing models take into account
AADL thread dispatching (eg. periodic) and AADL
thread scheduling (eg. Rate Monotonic) proper-
ties. Cheddar provides feasibility tests based on such
queueing systems. The AADL example of Fig. 3
contains a process, called p0.i, declaring 3 threads:
two producers (Producerl and Producer2) and one
consumer of events (Consumerl). Event data port
connections express event exchange relationships be-
tween the 3 threads. The first event data port con-
nection says that events sended by Producerl will
be read by Consumerl. In the same way, the second
event data port connection says that events sended
by Producer2 will be read by Consumerl.

As for the previous AADL specifications, Fig. 6
shows the simulation results which can be computed
by Cheddar from the AADL specification. The top
part of the window displays a new set of time lines

which shows when events are sended and received.
The bottom part of the window displays the results of
feasibility tests based on queueing systems: a worst
case number of events in the event data port buffer
is computed and displayed.

4. CONCLUSION AND FUTURE WORKS

This paper describes a tool which can be
used for performance analysis of systems de-
signed with AADL. The tool is freely available
and can be downloaded from http://beru.univ-
brest.fr/~singhoff/cheddar. It is based on two usual
performance analysis methods: Rate Monotonic
Analysis and Queueing Systems Analysis. From
these methods, an AADL designer can automatically
check if the tasks of his system will meet their tempo-
ral requirements and if the buffers of his application
are large enough.

This AADL analyzer can be run alone but it
can be also used with a CASE tool. For exam-
ple, Cheddar is known to work with STOOD, an
UML/HOOD/AADL design tool distributed by El-
lidiss Technologies [2].

To perform AADL analysis, Cheddar relies on Oca-
rina [1]. Ocarina is a lightweight Ada95 library de-
veloped at the National Telecommunications Engi-
neering School of Paris (ENST)!. It provides facili-
ties to parse and print AADL files; it also provides
an API to navigate through AADL models and in-
stantiate AADL descriptions. Ocarina was created
as a foundation library to perform code generation,
configuration and deployment for distributed appli-
cations described in AADL, in connection with the
ASSERT project.

In the next months, we plan to extend Cheddar to
allow designers to perform analysis of AADL sys-
tems composed of hierarchical schedulers [19]. Some
services related to task precedency relationships and
end to end task response time in distributed systems
will be also implemented.
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¥ Cheddar : a free real time scheduling simulator
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Scheduling feasibility. Processor rma_cpu
1) Feasibility test based on the processor utilization factor :
- The base period is 290 (see [1], page 6.
- 104 units of time are unused in the base pericd.
- Processar utilization factor with deadline is 0.64138 (see [1], page 6).
- Processor utilization factor with period is 0.64138 (see [1]. page 6).
- In the preemptive case, with RBM, the task set is schedulable because the processor
utilization factor 0.64138 is egual or less than 0.77976 (see [1], page 16, theorem §).
2) Feasibility test based on worst case task response time
- Bound on task response time @ (see [2], page 3, eguation 4).
proc0.tl => 14
proc0.t3 =» 3
proc0.t2 => 1
- All task deadlines will be met : the task set is schedulable.
Scheduling simulation., Processor posix_cpu
- Fumber of context switches : 9
- Number of preemptions : 5
- Task response time computed from simulation
procl.fifol =» 4-worst
meeed £io5 oy 37 /

Figure 4. AADL thread analysis
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Scheduling simulation., Processor cpu0

- Humber of preemptions : 7
- Humber of context switches : 11
- Task response time computed from simulation
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- No deadline missed in the computed scheduling : the task set seems
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- Blocking time from simulation (may include processor waiting time)
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Figure 5. AADL shared data analysis
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Figure 6. AADL event data port analysis



