
HAL Id: hal-00504347
https://hal.univ-brest.fr/hal-00504347v1

Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Scheduling and its use with Ada
Frank Singhoff

To cite this version:
Frank Singhoff. Real Time Scheduling and its use with Ada. Tutorial presented to the annual inter-
national conference of the ACM SIGAda, Nov 2007, United States. pp.x-y. �hal-00504347�

https://hal.univ-brest.fr/hal-00504347v1
https://hal.archives-ouvertes.fr


Real time scheduling theory and its
use with Ada

Frank Singhoff

University of Brest, France

LISYC/EA 3883

singhoff@univ-brest.fr

ACM SIGAda’07 tutorial, Washington DC – Page 1/78



Talk overview
1. Introduction

Real time systems.

What is real time scheduling.

What we aim to do in this tutorial ?

2. Real time scheduling theory

Introducing real time scheduling theory.

Usual real time schedulers.

Few words about shared resources.

Modeling and analysis tools.

3. Ada standards and real time scheduling

Real time scheduling with Ada 1995/2005, Ravenscar.

POSIX 1003 and its Ada binding.

4. Summary and further readings

ACM SIGAda’07 tutorial, Washington DC – Page 2/78



Real time systems

• "Real time systems are defined as those systems in
which the correctness of the system depends not only on
the logical result of computation, but also on the time at
which the results are produced" [STA 88].

• Properties we look for :

Functions must be predictable : the same data input
will produce the same data output.

Timing behavior must be predictable : must meet
temporal constaints (eg. deadline, response time).

Reliability : the system must meet availability
constraints.

=⇒Predictable means ... we can compute the system
behavior before execution time.

ACM SIGAda’07 tutorial, Washington DC – Page 3/78



What is real time scheduling (1)

• Many real time systems are built with operating
systems providing multitasking facilities, in order to:

Ease the design of complex systems (one function =
one task).

Increase efficiency (I/O operations, multi-processor
architecture).

... but the use of task scheduling implies that task
schedulers must:

Stay predictable.

Take urgency/criticality task contraints into account.

ACM SIGAda’07 tutorial, Washington DC – Page 4/78



What is real time scheduling (1)

• Many real time systems are built with operating
systems providing multitasking facilities, in order to:

Ease the design of complex systems (one function =
one task).

Increase efficiency (I/O operations, multi-processor
architecture).

... but the use of task scheduling implies that task
schedulers must:

Stay predictable.

Take urgency/criticality task contraints into account.

Multitasking makes the predictability analysis difficult to do.

ACM SIGAda’07 tutorial, Washington DC – Page 4/78



What is real time scheduling (2)

• Example of a processor embedded into a car, which
is composed of the following tasks:

1. A task displays every 100 milliseconds the current speed of the car.

2. A task reads a speed sensor every 250 milliseconds.

3. A task runs an engine monitoring program every 500 milliseconds.

=⇒ How can we check that every tasks will meet their timing
requirements ?

=⇒ If the system is complex (eg. large number of tasks), the designer
must be helped to perform such an analysis.

ACM SIGAda’07 tutorial, Washington DC – Page 5/78



What is real time scheduling (3)

• The real time scheduling theory is a framework which
provides :

1. Algorithms to share a processor (or any resource) by
a set of tasks (or any resource users) according to
some timing requirements =⇒ take urgency/criticality of
the tasks into account.

2. Analytical methods, called feasibility tests or
schedulability tests , which allow a system designer to
analyze/"compute" the system behavior before
execution time.

ACM SIGAda’07 tutorial, Washington DC – Page 6/78



What we aim to do in this tutorial

• Real time scheduling theory is born 30 years ago, but
few people use this framework:

1. This theory is sometimes difficult to be applied
(sometimes unsuitable).

2. Few analysis tools exist ...

3. Few software designers know such a theory.

This tutorial presents you:

1. The foundation of the real time scheduling theory.

2. How it can help you to model and to analyze a real time
system (examples of modeling/analysis tools).

3. Ada real time scheduling facilities, if you plan to use real
time scheduling theory.

ACM SIGAda’07 tutorial, Washington DC – Page 7/78



Talk overview
1. Introduction

Real time systems.

What is real time scheduling.

What we aim to do in this tutorial ?

2. Real time scheduling theory

Introducing real time scheduling theory.

Usual real time schedulers.

Few words about shared resources.

Modeling and analysis tools.

3. Ada standards and real time scheduling

Real time scheduling with Ada 1995/2005, Ravenscar.

POSIX 1003 and its Ada binding.

4. Summary and further readings

ACM SIGAda’07 tutorial, Washington DC – Page 8/78



Real time scheduling theory (1)

• Task : sequence of statements + data + execution
context (processor and MMU). Usual states of a task.

• Usual task types :

Repetitive tasks (periodic, sporadic). Non repetitive task
(aperiodic task).

Urgent or/and critical task.

Independent task or dependent task.
ACM SIGAda’07 tutorial, Washington DC – Page 9/78



Real time scheduling theory (2)

• Usual parameters of a periodic task i :

First task release time : Si.

Worst case execution time : Ci (or capacity).

Period : Pi (duration between two periodic release times).

Static deadline to meet : Di, timing constraint relative to the period.

Priority : allows the scheduler to choose the task to run.

ACM SIGAda’07 tutorial, Washington DC – Page 10/78



Real time scheduling theory (3)

• Assumptions for this tutorial (Lui and Layland task
model) [LIU 73]:

1. All tasks are periodic.

2. All tasks are independent.

3. ∀i : Pi = Di : a task must end its current job before its next release
time.

4. ∀i : Si = 0 =⇒ called critical instant (worst case on processor
demand).

ACM SIGAda’07 tutorial, Washington DC – Page 11/78



Real time scheduling theory (4)

• Different kinds of real time schedulers:

On-line/off-line scheduler : the scheduling is
computed before or at execution time ?

Static/dynamic priority scheduler : priorities change
at execution time ?

Preemptive or non preemptive scheduler : can we
stop a task during its execution ?
1. Preemptive schedulers are more efficient than non

preemptive schedulers (eg. missed deadlines).
2. Non preemptive schedulers ease the sharing of

resources.
3. Overhead due to context switches.

ACM SIGAda’07 tutorial, Washington DC – Page 12/78



Real time scheduling theory (5)

• What we look for when we choose a scheduler :

1. Feasibility tests (algebraic tools also called
schedulability tests): can we prove that tasks will
meet deadlines before execution time? =⇒ task
response times.

2. Complexity: can we apply feasibility tests on large
systems (eg. large number of tasks) ?

3. Optimality: an optimal scheduler is a scheduler which
is always able to compute a scheduling if one exists.

4. Suitability: can we implement the chosen scheduler in
a real time operating system ?

ACM SIGAda’07 tutorial, Washington DC – Page 13/78



Usual real time schedulers

1. Fixed priority scheduler : Rate Monotonic priority
assignment (sometimes called Rate Monotonic
Scheduling or Rate Monotonic Analysis, RM, RMS,
RMA).

2. Dynamic priority scheduler : Earliest Deadline First
(or EDF).

ACM SIGAda’07 tutorial, Washington DC – Page 14/78



Rate Monotonic (1)

• Assumptions and properties :

Scheduling based on fixed priority =⇒ static and critical
applications.

Priorities are assigned at design time (off-line).

Periodic tasks only (Lui and Layland periodic tasks).

Efficient and simple feasibility tests.

Scheduler easy to implement into real time operating
systems.

Optimal scheduler in the case of fixed priority
schedulers.

ACM SIGAda’07 tutorial, Washington DC – Page 15/78



Rate Monotonic (2)

• How does it work :

1. "Rate monotonic" task priority assignment : the
small the period is, the high the priority has to be.
Priorities are computed off-line (eg. at design time,
before execution).

2. Fixed priority scheduling : at any time, run the ready
task which has the highest priority level.

ACM SIGAda’07 tutorial, Washington DC – Page 16/78



Rate Monotonic (3)

• Preemptive case :

Assuming VxWorks priority levels (high=0 ; low=255)

T1 (blue) : C1=6, P1=10, Prio1=0

T2 (yellow) : C2=9, P2=30, Prio2=1

ACM SIGAda’07 tutorial, Washington DC – Page 17/78



Rate Monotonic (4)

• Non preemptive case :

Assuming VxWorks priority levels (high=0 ; low=255)

T1 (blue) : C1=6, P1=10, Prio1=0

T2 (yellow) : C2=9, P2=30, Prio2=1

ACM SIGAda’07 tutorial, Washington DC – Page 18/78



Rate Monotonic (5)

• Feasibility/Schedulability tests :

1. Run simulations on scheduling period = [0, LCM(Pi)]. Sufficient
and necessary (exact result).

2. Processor utilization factor test (preemptive case) :

U =
n

∑

i=1

Ci

Pi

≤ n(2
1

n − 1)

Sufficient but not necessary. Difficult to use in real life applications.
Does not compute an exact result.

3. Task worst case response time, noted ri =⇒ delay between task
release time and task end time. Can compute an exact result.

ACM SIGAda’07 tutorial, Washington DC – Page 19/78



Rate Monotonic (6)

• Compute ri, the task worst case response time :

Assumptions : preemptive scheduler, Lui and Layland tasks.

task i response time = task i capacity + delay the task i has to wait
due to higher priority task j. Or :

ri = Ci +
∑

j∈hp(i)

WaitingT imej

or:

ri = Ci +
∑

j∈hp(i)

⌈

ri

Pj

⌉

Cj

hp(i) is the set of tasks which have a higher priority than task i. ⌈x⌉
returns the smallest integer not smaller than x.

ACM SIGAda’07 tutorial, Washington DC – Page 20/78



Rate Monotonic (7)

• To compute task response time : compute wk
i with:

wn+1
i = Ci +

∑

j∈hp(i)

⌈

wn
i

Pj

⌉

Cj

• Start with w0
i = Ci.

• Compute w1
i , w2

i , w3
i , ... wk

i upto:

If wk
i > Pi. No task response time can be computed for

task i. Deadlines will be missed !

If wk
i = wk−1

i . wk
i is the task i response time. Deadlines

will be met.

ACM SIGAda’07 tutorial, Washington DC – Page 21/78



Rate Monotonic (8)

• Example: T1 (P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

w0
1 = C1 = 3 =⇒ r1 = 3

w0
2 = C2 = 2

w1
2 = C2 +

⌈

w0

2

P1

⌉

C1 = 2 +
⌈

2
7

⌉

3 = 5

w2
2 = C2 +

⌈

w1

2

P1

⌉

C1 = 2 +
⌈

5
7

⌉

3 = 5 =⇒ r2 = 5

w0
3 = C3 = 5

w1
3 = C3 +

⌈

w0

2

P1

⌉

C1 +
⌈

w0

2

P2

⌉

C2 = 5 +
⌈

5
7

⌉

3 +
⌈

5
12

⌉

2 = 10

w2
3 = 5 +

⌈

10
7

⌉

3 +
⌈

10
12

⌉

2 = 13

w3
3 = 5 +

⌈

13
7

⌉

3 +
⌈

13
12

⌉

2 = 15

w4
3 = 5 +

⌈

15
7

⌉

3 +
⌈

15
12

⌉

2 = 18

w5
3 = 5 +

⌈

18
7

⌉

3 +
⌈

18
12

⌉

2 = 18 =⇒ r3 = 18

ACM SIGAda’07 tutorial, Washington DC – Page 22/78



Rate Monotonic (9)

• Analysis of the car embedded software example:

1. Tdisplay : task which displays speed. P=100, C=20.

2. Tspeed : task which reads speed sensor. P=250, C=50.

3. Tengine : task which runs an engine monitoring
program. P=500, C=150.

• Processor utilization test:
U =

∑n
i=1

Ci

Pi

= 20/100 + 150/500 + 50/250 = 0.7

Bound = n(2
1

n − 1) = 3(2
1

3 − 1) = 0.779
U ≤ Bound =⇒deadlines will be met.

• Task response time: rTengine = 330, rTdisplay = 20,

rTspeed = 70.
ACM SIGAda’07 tutorial, Washington DC – Page 23/78



Rate Monotonic (10)

• ... and check on the computed scheduling

• Run simulations on scheduling period = [0, LCM(Pi)] =
[0, 500].

ACM SIGAda’07 tutorial, Washington DC – Page 24/78



Modeling and analysis tools (1)

• Scheduling analysis tools must provide:

A way to model the system to be analyzed.

Analysis tools based on:

1. Algebraic tools: run feasibility tests.
2. Model-checking: compute all reachable states of

the system and analyze this set of states.
3. Scheduling simulations: compute scheduling

time-lines and analyze them (partial checking).

ACM SIGAda’07 tutorial, Washington DC – Page 25/78



Modeling and analysis tools (2)

Algebraic Model Simulation

checking

Provide proofs yes yes no

Suitable for large system yes no medium

Suitable for specific no yes yes

scheduler/task model

Easy to use yes no medium

• What kind of tool should we use ? Simulation

tools vs algebraic tools vs model-checking tools ?

All of them ... they are complementary.

ACM SIGAda’07 tutorial, Washington DC – Page 26/78



Modeling and analysis tools (3)

• Examples of both commercial and open-source
tools :

MAST (University of Cantabria, http://mast.unican.es/).

Rapid-RMA (Tri-Pacific Software Inc, http://www.tripac.com/).

Times (University of Uppsala, http://www.timestool.com/)

Cheddar (University of Brest,
http://beru.univ-brest.fr/~singhoff/cheddar/).

...

ACM SIGAda’07 tutorial, Washington DC – Page 27/78



Modeling and analysis tools (4)

Cheddar = AADL model editor (GtkAda) + Ada analysis framework.

Modeling tool : a system is a set of tasks, processors, address
spaces ... Schedulers can be expressed with a domain specific
language (based on timed automata).

Analysis with feasibility tests (algebraic tools) and simu lation
tools.

Example of computed criterion:
Processors/tasks : worst/best/average response time, number of context
switches/preemptions, missed deadlines, ...

Shared resources : worst/best/average shared resource blocking time, priority
inversion, deadlock ...

Buffers : maximum/average message waiting time, maximum/average number of

messages ...

ACM SIGAda’07 tutorial, Washington DC – Page 28/78



Modeling and analysis tools (5)

Let run a demo now .... with our "car embedded
software" example:

1. Experimenting feasibility test analysis and scheduling
simulation analysis with a Rate Monotonic scheduler on
the Tdisplay, Tspeed and Tengine tasks.

2. Experimenting scheduling simulation analysis with a
user-defined scheduler.

ACM SIGAda’07 tutorial, Washington DC – Page 29/78



Earliest Deadline First (1)

• Assumptions and properties:

Dynamic priority scheduler =⇒ suitable for dynamic real
time systems.

Is able to schedule both aperiodic and periodic tasks.

Optimal scheduler : can reach 100 % of the cpu usage.

But difficult to implement into a real time operating
system.

Becomes unpredictable if the processor is over-loaded
=⇒not suitable for hard-critical real time systems.

ACM SIGAda’07 tutorial, Washington DC – Page 30/78



Earliest Deadline First (2)

• How does it work :

1. Compute task priorities (called "dynamic
deadlines") =⇒Di(t) is the priority/dynamic deadline
of task i at time t:

Aperiodic task : Di(t) = Di + Si.
Periodic task : Di(t) = k + Di, where k is the task
release time just before t.

2. Select the task : at any time, run the ready task which
has the shortest dynamic deadline.

ACM SIGAda’07 tutorial, Washington DC – Page 31/78



Earliest Deadline First (3)

• Preemptive case: (T1/blue, T2/yellow, C1=6; P1=10;
C2=9; P2=30)

t D1(t) D2(t)

0..9 k + D1 = 0 + 10 = 10 k + D2 = 0 + 30 = 30

10..19 k + D1 = 10 + 10 = 20 30

20..29 k + D1 = 20 + 10 = 30 30

ACM SIGAda’07 tutorial, Washington DC – Page 32/78



Earliest Deadline First (4)

• Non preemptive case:

ACM SIGAda’07 tutorial, Washington DC – Page 33/78



Earliest Deadline First (5)

• Feasibility tests/schedulability tests :

1. Run simulations on scheduling period = [0, LCM(Pi)].
Sufficient and necessary (exact result).

2. Processor utilization factor test (eg. preemptive
case) :

U =
n

∑

i=1

Ci

Pi
≤ 1

Sufficient and necessary. Difficult to use in real life
applications. Compute an exact result.

3. Task response time : a bit complex to compute
(dynamic scheduler) !

ACM SIGAda’07 tutorial, Washington DC – Page 34/78



EDF vs RM : summary[BUT 03]

• Aperiodic task = non critical task.
• Periodic task = critical task.

RM EDF

Applications critical, static dynamic, less critical
RTOS easy more difficult
implementation
Tasks Periodic only Aperiodic and periodic
Efficiency upto 69 % upto 100 %

Predictability high less than RM if U > 1

ACM SIGAda’07 tutorial, Washington DC – Page 35/78



Feasibility tests/scheduler suitability

• To be applied, algebraic tools and scheduling
algorithms that we have presented must be improved
to take into account :

The operating system overheads (eg. task context
switches).

Tasks that are not independent :
1. Tasks may have precedency contraints (eg. tasks

can exchange messages).
2. Tasks may share resources (eg. shared memories).

...

ACM SIGAda’07 tutorial, Washington DC – Page 36/78



Shared resource support (1)

• In real time scheduling theory, a shared resource is
modeled by a semaphore:

               task_is_released();

access_shared_resource(k)

P(sem)

V(sem)

Task j

access_shared_resource(k)

P(sem)

V(sem)

Task i

        {

               }                
         }

V(s)

        s.cpt=s.cpt+1;

               {
        if (s.cpt<=0)

        s.cpt=s.cpt−1;
        if (s.cpt<0)

               }                

P(s)
        {

         }

               {

               task_is_blocked();
               remove_task_from_the_queue(s.file);               add_task_to_the_queue(s.file);

Semaphore = counter + a FIFO queue.

A semaphore can model a critical section.

ACM SIGAda’07 tutorial, Washington DC – Page 37/78



Shared resource support (2)

P(mutex)

P(mutex)

V(mutex)

Task release time

Task is blocked

Task is preempted

T1 (low)

T3 (high)

T2 (medium)

• What is Priority inversion: a low priority task blocks a high priority
task ... allowing a medium priority task to held the processor =⇒ a non
critical task runs before a critical task !

• Bi = bound on the shared resource waiting time.

ACM SIGAda’07 tutorial, Washington DC – Page 38/78



Shared resource support (3)

How to reduce priority inversion ?

How long a task must wait for the access to a shared
resource ? How to compute Bi ?

=⇒To avoid priority inversion, we use priority
inheritance.

• Priority inheritance protocol provides a specific
implementation of P () and V ().

ACM SIGAda’07 tutorial, Washington DC – Page 39/78



Shared resource support (4)

T2 (medium)

P(mutex) V(mutex)

V(mutex)P(mutex)

Task release time Task is blocked

priority of T1 = priority of T3

priority of T1 = initial value       

T1 (low)

T3 (high)

• Priority Inheritance Protocol or PIP:

A task which blocks a high priority task due to a critical section, sees
its priority to be increased to the priority level of the blocked task ...

Bi = sum of the critical sections of the tasks which have a priority
smaller than i.

ACM SIGAda’07 tutorial, Washington DC – Page 40/78



Shared resource support (5)

PIP can not be used with more than one shared
resource due to deadlock =⇒PCP (Priority Ceiling
Protocol) [SHA 90] is implemented in most of real time
operating systems (eg. VxWorks).

Ada 2005 standard implements a kind of PCP
called ICPP (Immediate Ceiling Priority Protocol):

Priority ceiling of a resource = maximum static
priority of the tasks which use it.
Dynamic task priority = maximum of its own static
priority and the priority ceilings of any resources it
has locked.

ACM SIGAda’07 tutorial, Washington DC – Page 41/78



Shared resource support (6)

• How to take into account the blocking time Bi with
the processor factor feasibility test[KLE 94]:

Preemptive RM feasibility test :

∀ i, 1 ≤ i ≤ n :
i−1
∑

k=1

Ck

Pk

+
Ci + Bi

Pi
≤ i(2

1

i − 1)

Preemptive EDF feasibility test :

∀ i, 1 ≤ i ≤ n :

i−1
∑

k=1

Ck

Pk

+
Ci + Bi

Pi
≤ 1

ACM SIGAda’07 tutorial, Washington DC – Page 42/78



Shared resource support (7)

• How to take into account the blocking time Bi with
the response time ri of the task i (example of a
preemptive RM scheduler)[KLE 94]:

ri = Ci + Bi +
∑

j∈hp(i)

⌈

ri

Pj

⌉

Cj

with hp(i) the set of task which have a lowest priority than
task i.

• Which can be computed by:

wn+1
i = Ci + Bi +

∑

j∈hp(i)

⌈

wn
i

Pj

⌉

Cj

ACM SIGAda’07 tutorial, Washington DC – Page 43/78



Talk overview
1. Introduction

Real time systems.

What is real time scheduling.

What we aim to do in this tutorial ?

2. Real time scheduling theory

Introducing real time scheduling theory.

Usual real time schedulers.

Few words about shared resources.

Modeling and analysis tools.

3. Ada standards and real time scheduling

Real time scheduling with Ada 1995/2005, Ravenscar.

POSIX 1003 and its Ada binding.

4. Summary and further readings

ACM SIGAda’07 tutorial, Washington DC – Page 44/78



Real time scheduling and Ada

• Real time scheduling facilities available for Ada
practitioners:

ISO/IEC Ada 1995 and 2005 : the Systems
Programming Annex C and the Real-Time Annex D
[TAF 06].

Ada POSIX 1003 Binding [BUR 07, GAL 95].

ARINC 653 [ARI 97].

...

ACM SIGAda’07 tutorial, Washington DC – Page 45/78



Ada 95/2005: task, time, priorities (1)

• With Ada 1995/2005, real time scheduling features
are provided by pragmas and specific packages:

How to select a scheduler (RM, EDF, ...).

How to activate priority inheritance with shared
resources (protected objects/types).

How to implement a periodic task:
1. Representing time (Ada.Real_T ime package).
2. Implementing periodic release time (delay

statement).
3. Assigning priorities (pragma).

...

ACM SIGAda’07 tutorial, Washington DC – Page 46/78



Ada 95/2005: task, time, priorities (2)
package Ada.Real_Time is

type Time is private;

Time_Unit : constant := implementation-defined;

type Time_Span is private;

...

function Clock return Time;

...

function Nanoseconds (NS : Integer) return Time_Span;

function Microseconds (US : Integer) return Time_Span;

function Milliseconds (MS : Integer) return Time_Span;

function Seconds (S : Integer) return Time_Span;

function Minutes (M : Integer) return Time_Span;

...

• Ada.Real_T ime provides a new monotonic , high-resolution and doc-

umented "Calendar" package.

ACM SIGAda’07 tutorial, Washington DC – Page 47/78



Ada 95/2005: task, time, priorities (3)

T ime implements an absolute time. The range of this
type shall be sufficient to represent real ranges up to 50
years later.

T ime_Span represents the length of real time duration.

T ime_Unit is the smallest amount of real time
representable by the T ime type. It is implementation
defined. Shall be less than or equal to 20
microseconds.

Clock returns the amount of time since epoch.

Some sub-programs which convert input parameters to
T ime_Span values (eg. Nanoseconds, Microseconds, ...).

ACM SIGAda’07 tutorial, Washington DC – Page 48/78



Ada 95/2005: task, time, priorities (4)

• The delay statement:

1. delay expr : blocks a task during at least expr amount of
time.

2. delay until expr : blocks a task until at least the
particular point in time expressed by expr is reached.

• A task can not be released before the amount of time
specified with the delay statement.

• But tasks can be released after the amount of time
specified with the delay statement (no upper bound on the
release time lateness for a delay statement ; but upper
bound lateness shall be documented by the
implementation).

ACM SIGAda’07 tutorial, Washington DC – Page 49/78



Ada 95/2005: task, time, priorities (5)

• Example of a periodic task (our car system example):
with Ada.Real_Time; use Ada.Real_Time;

...

task Tspeed is

end Tspeed;

task body Tspeed is

Next_Time : Ada.Real_Time.Time := Clock;

Period : constant Time_Span := Milliseconds (250);

begin

loop

-- Read the car speed sensor

...

Next_Time := Next_Time + Period;

delay until Next_Time;

end loop;

end Tspeed;

• Use delay until instead of delay (accurancy).

ACM SIGAda’07 tutorial, Washington DC – Page 50/78



Ada 95/2005: task, time, priorities (6)

• What is a fixed priority in Ada 1995/2005 ?
package System is

...

-- Priority-related Declarations (RM D.1)

Max_Priority : constant Positive := 30;

Max_Interrupt_Priority : constant Positive := 31;

subtype Any_Priority is Integer range 0 .. 31;

subtype Priority is Any_Priority range 0 .. 30;

subtype Interrupt_Priority is Any_Priority range 31 .. 31;

Default_Priority : constant Priority := 15;

...

• Base priority versus active priority.
• System.Priority must provide at least 30 priority levels (but having
more levels is better for real time scheduling analysis).

ACM SIGAda’07 tutorial, Washington DC – Page 51/78



Ada 95/2005: task, time, priorities (7)

• Task priority assignment rules with Ada 1995/2005:

Any task has a default priority value (see the System package).

Priority pragma can be used in task specifications.

Priority pragma can be assigned to a main procedure.

Any task that fails to the pragma has a priority equal to the task that
created it.

task Tspeed is

pragma Priority (10);

end Tspeed;

task Tspeed (My_Priority : System.Priority) is

entry Service( ...

pragma Priority (My_Priority);

end Tspeed;

ACM SIGAda’07 tutorial, Washington DC – Page 52/78



Ada 95/2005: task, time, priorities (8)

• Ada 2005 supports several priority inheritance protocols :
ICPP (Immediate Ceiling Priority Protocol) and PLCP
(Preemption Level Control Protocol).

• Assignment of an ICPP priority ceiling to a protected
object/type:
protected A_Mutex is
pragma Priority(15);
entry E ...
procedure P...

end A_Mutex;

• How to activate priority inheritance with ICPP:
pragma Locking_Policy(Ceiling_Locking);

ACM SIGAda’07 tutorial, Washington DC – Page 53/78



Ada 95/2005 scheduling framework (1)

• Ada 2005 real time scheduling model:

A queue for each priority level. All ready tasks which have the same
priority level are put in the same queue.

Each queue has a dispatching policy.

Two-levels of scheduling:

1. Choose the highest priority queue with at least one ready task.

2. Choose the task to run of the queue selected in (1), according to
the queue dispatching policy.

ACM SIGAda’07 tutorial, Washington DC – Page 54/78



Ada 95/2005 scheduling framework (2)

• Example of the preemptive FIFO_Within_Priorities dispatching
policy:

When a task becomes ready, it is inserted in the tail of its
corresponding priority queue.

The task at the head of the queue gets the processor when it
becomes the highest ready priority task/queue.

When a task becomes blocked or terminated, it leaves the queue and
the next task in the queue gets the processor.

=⇒ We can apply Rate Monotonic feasibility tests if all tasks ha ve
different priority levels.

ACM SIGAda’07 tutorial, Washington DC – Page 55/78



Ada 95/2005 scheduling framework (3)

• The FIFO_Within_Priorities dispatching policy is activated by:

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);

• ... But Ada 2005 also provides other dispatching policies:

Non preemptive fixed priority dispatching:

pragma Task_Dispatching_Policy(

Non_Preemptive_FIFO_Within_Priorities);

Earliest deadline first dispatching:

pragma Task_Dispatching_Policy(

EDF_Across_Priorities);

Round robin dispatching:

pragma Task_Dispatching_Policy(

Round_Robin_Within_Priorities);

ACM SIGAda’07 tutorial, Washington DC – Page 56/78



Ada 95/2005 scheduling framework (4)

• Ada 2005 allows a program to use different dispatching polic ies.
Each priority level may have its own dispatching protocol:

pragma Priority_Specific_Dispatching(

FIFO_Within_Priorities, 3, 31);

pragma Priority_Specific_Dispatching(

EDF_Across_Priorities, 2, 2);

pragma Priority_Specific_Dispatching(

Round_Robin_Within_Priorities, 0, 1);

ACM SIGAda’07 tutorial, Washington DC – Page 57/78



Ada 95/2005 scheduling framework (5)

• Example of our "car embedded system":

package Ada_Tasks is

task Tdisplay is

-- Period=100; Capacity=20

pragma Priority(12);

end Tdisplay;

task Tspeed is

-- Period=250; Capacity=50

pragma Priority(11);

end Tspeed;

task Tengine is

-- Period=500; Capacity=150

pragma Priority(10);

end Tengine;

...
ACM SIGAda’07 tutorial, Washington DC – Page 58/78



Ada 95/2005 scheduling framework (6)
package body Ada_Tasks is

task body Tspeed is

Next_Time : Ada.Real_Time.Time := Clock;

Period : constant Time_Span := Milliseconds (250);

begin

loop

-- Do the job

Next_Time := Next_Time + Period;

delay until Next_Time;

end loop;

end Tspeed;

task body Tengine is ...

task body Tdisplay is ...

end Ada_Tasks;

-- Content of gnat.adc (if compiled with GNAT)

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);

pragma Locking_Policy(Ceiling_Locking);

ACM SIGAda’07 tutorial, Washington DC – Page 59/78



Ada 2005 Ravenscar profile (1)

• How to be sure that your applications can be
actually analyzed with Rate Monotonic feasibility tests
=⇒use Ravenscar.

Ravenscar is a profile which is part of the Ada 2005
standard.

A profile is a set of restrictions a program must meet.

A restriction is expressed with pragmas. It is checked at
compile-time to enforce the restrictions before
execution.

ACM SIGAda’07 tutorial, Washington DC – Page 60/78



Ada 2005 Ravenscar profile (2)

• The Ravenscar profile is activated by:
pragma profile(Ravenscar);

• Examples of the restrictions enforced by Ravenscar:
-- Use preemptive fixed priority scheduling

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);

-- Use ICPP

pragma Locking_Policy(Ceiling_Locking);

pragma Restrictions(

No_Task_Allocators, -- No task dynamic allocation

-- ASSUMPTION RELATED TO THE FIRST TASK

-- RELEASE TIME

-- WHICH MUST BE EQUAL TO ZERO

No_Dependence => Ada.Calendar, -- Use Real time calendar only

No_Relative_Delay, -- Disallow time drifting due to

-- the use of the delay statement

...

);
ACM SIGAda’07 tutorial, Washington DC – Page 61/78



Real time scheduling and Ada

• Real time scheduling facilities available for Ada
practitioners:

ISO/IEC Ada 1995 and 2005 : the Systems
Programming Annex C and the Real-Time Annex D
[TAF 06].

Ada POSIX 1003 Binding [BUR 07, GAL 95].

ARINC 653 [ARI 97].

...

ACM SIGAda’07 tutorial, Washington DC – Page 62/78



POSIX 1003 standard (1)

• Define a standardized interface of an operating system simitar to
UNIX[VAH 96].

• Published by ISO and IEEE. Organized in chapters:

Chapters Meaning

POSIX 1003.1 System Application Program Interface

(eg. fork, exec)

POSIX 1003.2 Shell and utilities (eg. sh)

POSIX 1003.1b [GAL 95] Real time extensions.

POSIX 1003.1c [GAL 95] Threads

POSIX 1003.5 Ada POSIX binding

...

• Each chapter provides a set of services. A service can be mandatory or
optionnal.

ACM SIGAda’07 tutorial, Washington DC – Page 63/78



POSIX 1003 standard (2)

Example of operating system providing 1003.1b : Lynx/OS, VxWorks,
Solaris, Linux, QNX, etc .. (actually, most of real time operating
systems).

POSIX 1003.1b services :

Name Meaning

_POSIX_PRIORITY_SCHEDULING fixed priority scheduling

_POSIX_REALTIME_SIGNALS real time signals

_POSIX_ASYNCHRONOUS_IO asynchronous I/O

_POSIX_TIMERS WatchDogs

_POSIX_SEMAPHORES Synchronization tools

...

ACM SIGAda’07 tutorial, Washington DC – Page 64/78



POSIX 1003 standard (3)

• POSIX real time scheduling model:

Preemptive fixed priority scheduling. At least 32 priority levels.

Two-levels scheduling :

1. Choose the queue which has the highest priority level with at
least one ready task.

2. Choose a task from the queue selected in (1) according to a
policy .

ACM SIGAda’07 tutorial, Washington DC – Page 65/78



POSIX 1003 standard (4)

• POSIX policies:

1. SCHED_FIFO : similar to the FIFO_Within_Priorities. Ready
tasks of a given priority level get the processor according to their
order in the queue.

2. SCHED_RR : SCHED_FIFO with a time quantum. A time
quantum is a maximum duration that a task can run on the processor
before beeing preempted by an other task of the same queue. When
the quantum is exhausted, the preempted task is moved to the tail of
the queue.

3. SCHED_OTHER : implementation defined (usually implements a
time sharing scheduler).

ACM SIGAda’07 tutorial, Washington DC – Page 66/78



POSIX 1003 standard (5)

• How the Ada programmer can run POSIX 1003.1b
applications ? POSIX 1003.5 Ada binding (eg. Florist).

• This Ada binding provides access to POSIX 1003.1b
priority, policy and services:

package POSIX.Process_Scheduling is

subtype Scheduling_Priority is Integer;

type Scheduling_Policy is new Integer;

Sched_FIFO : constant Scheduling_Policy := ...

Sched_RR : constant Scheduling_Policy := ...

Sched_Other : constant Scheduling_Policy := ...

type Scheduling_Parameters is private;

ACM SIGAda’07 tutorial, Washington DC – Page 67/78



POSIX 1003 standard (6)

• Sub-programs which allow the application to adapt itself to the
underlying real time operating system.

package POSIX.Process_Scheduling is

...

function Get_Maximum_Priority (Policy:Scheduling_Policy)

return Scheduling_Priority;

function Get_Minimum_Priority (Policy:Scheduling_Policy)

return Scheduling_Priority;

function Get_Round_Robin_Interval

(Process : POSIX_Process_Identification.Process_ID)

return POSIX.Timespec;

...

ACM SIGAda’07 tutorial, Washington DC – Page 68/78



POSIX 1003 standard (7)

• Set or get policy/priority of a process:

package POSIX.Process_Scheduling is

procedure Set_Priority

(Parameters : in out Scheduling_Parameters;

Priority : Scheduling_Priority);

procedure Set_Scheduling_Policy

(Process : POSIX_Process_Identification.Process_ID;

New_Policy : Scheduling_Policy;

Parameters : Scheduling_Parameters);

procedure Set_Scheduling_Parameters

(Process : POSIX_Process_Identification.Process_ID;

Parameters : Scheduling_Parameters);

function Get_Scheduling_Policy ...

function Get_Priority ...

function Get_Scheduling_Parameters ...

ACM SIGAda’07 tutorial, Washington DC – Page 69/78



POSIX 1003 standard (8)

• Example of our "car embedded system":

with POSIX.Process_Identification; use POSIX.Process_Identification;

with POSIX.Process_Scheduling; use POSIX.Process_Scheduling;

Pid1 : Process_ID;

Sched1 : Scheduling_Parameters;

begin

Pid1:=Get_Process_Id;

Sched1:=Get_Scheduling_Parameters(Pid1);

Put_Line("Current priority/policy = "

& Integer’Image(Get_Priority(Sched1))

& Integer’Image(Get_Scheduling_Policy(Pid1)));

Set_Priority(Sched1, 10);

Set_Scheduling_Policy(Pid1, SCHED_FIFO, Sched1);

Set_Scheduling_Parameters(Pid1, Sched1);

ACM SIGAda’07 tutorial, Washington DC – Page 70/78



POSIX 1003 standard (9)

• Does Ada programmer should use POSIX Ada binding ?

• Nice sides of POSIX:

POSIX is supported by a large number of RTOS.

Rate Monotonic analysis (eg. feasibility tests) can be applied with the
POSIX scheduling framework (but more complex than analysis with
Ravenscar).

• But POSIX also has some drawbacks:

What is a POSIX process ?

Does POSIX really portable ?

ACM SIGAda’07 tutorial, Washington DC – Page 71/78



Real time scheduling and Ada

• Some Ada projects/tools providing Ada 2005 scheduling faci lities
and/or POSIX Ada binding: :

The Open-Ravenscar project, ORK operating system with Ada 2005
scheduling and POSIX binding. (Universidad Politécnica de Madrid,
http://polaris.dit.upm.es/~ork/).

GNAT GPL 2007, Ada 2005 scheduling and POSIX binding (Florist).
(AdaCore, http://www.adacore.com/).

Marte operating system, implemented with AdaCore GNAT compiler.
(Universidad de Cantabria, http://marte.unican.es/)

• Other projects providing Ada real time scheduling features which
are not compliant to Ada 2005 and POSIX (eg. RTEMS operating
system, OAR Corporation, http://www.rtems.com/).

ACM SIGAda’07 tutorial, Washington DC – Page 72/78



Talk overview
1. Introduction

Real time systems.

What is real time scheduling.

What we aim to do in this tutorial ?

2. Real time scheduling theory

Introducing real time scheduling theory.

Usual real time schedulers.

Few words about shared resources.

Modeling and analysis tools.

3. Ada standards and real time scheduling

Real time scheduling with Ada 1995/2005, Ravenscar.

POSIX 1003 and its Ada binding.

4. Summary and further readings

ACM SIGAda’07 tutorial, Washington DC – Page 73/78



Summary and further readings (1)

Real time scheduling theory is a framework to model and analyze
critical and non critical real time multi-tasked systems:

1. Provides algebraic tools to check schedulability (feasibi lity
tests). Some modeling/analysis tools implement them.

2. Fixed priority scheduling is supported by most of real time
operating systems.

3. Two standards are available for Ada practitioners : ISO/IEC
Ada 2005 (Ravenscar profile) and the POSIX 1003 Ada
binding.

Feasibility tests presented in this tutorial are (sometimes) extended to
be suitable for more generic task models =⇒ see further readings.

ACM SIGAda’07 tutorial, Washington DC – Page 74/78



Summary and further readings (2)

About real time scheduling theory:

F. Cottet and J. Delacroix and C. Kaiser and Z. Mammeri.
Scheduling in Real Time Systems, 2002, John Wiley and Sons
Ltd editors.

M. H. Klein and T. Ralya and B. Pollak and R. Obenza and M. G.
Harbour. A Practitioner’s Handbook for Real Time Analysis, 1994,
Kluwer Academic Publishers.

Real time scheduling facilities with Ada or POSIX 1003:

A. Burns and A. Wellings. Concurrent and Real Time
programming in Ada. 2007. Cambridge University Press.

B. O. Gallmeister. POSIX 4 : Programming for the Real World .
O’Reilly and Associates, January 1995.

ACM SIGAda’07 tutorial, Washington DC – Page 75/78



Summary and further readings (3)

Any questions ?

To contact me:
singhoff@univ-brest.fr

ACM SIGAda’07 tutorial, Washington DC – Page 76/78



Bibliography (1)

[ARI 97] Arinc. Avionics Application Software Standard Interface. The Arinc Committee,
January 1997.

[BUR 07] A. Burns and A. Wellings. Concurrent and Real Time programming in Ada. 2007.
Cambridge University Press, 2007.

[BUT 03] G. Buttazzo. « Rate monotonic vs. EDF: Judgment day ». n Proc. 3rd ACM
International Conference on Embedded Software, Philadephia, USA, October 2003.

[GAL 95] B. O. Gallmeister. POSIX 4 : Programming for the Real World . O’Reilly and
Associates, January 1995.

[KLE 94] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A Practitioner’s
Handbook for Real Time Analysis. Kluwer Academic Publishers, 1994.

[LEH 90] J. P. Lehoczky. « Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines ». pages 201–209. in Proc. 11th IEEE Real Time Systems Symposium, Lake
Buena Vista, December 1990.

ACM SIGAda’07 tutorial, Washington DC – Page 77/78



Bibliography (2)

[LIU 73] C. L. Liu and J. W. Layland. « Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environnment ». Journal of the Association for Computing Machinery,
20(1):46–61, January 1973.

[SHA 90] L. Sha, R. Rajkumar, and J.P. Lehoczky. « Priority Inheritance Protocols : An
Approach to real-time Synchronization ». IEEE Transactions on computers,
39(9):1175–1185, 1990.

[STA 88] John Stankovic. « Misconceptions about real-time computing ». IEEE Computer,
October 1988.

[TAF 06] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder, and P. Leroy. Ada 2005
Reference Manual. Language and Standard Libraries. International Standard ISO/IEC
8652/1995(E) with Technical Corrigendum 1 and Amendment 1. LNCS Springer Verlag,
number XXII, volume 4348., 2006.

[VAH 96] U. Vahalia. UNIX Internals : the new frontiers. Prentice Hall, 1996.

ACM SIGAda’07 tutorial, Washington DC – Page 78/78


	Talk overview
	Real time systems
	What is real time scheduling (1)
	What is real time scheduling (2)
	What is real time scheduling (3)
	What we aim to do in this tutorial 
	Talk overview
	 Real time scheduling theory (1)
	 Real time scheduling theory (2)
	 Real time scheduling theory (3)
	 Real time scheduling theory (4)
	 Real time scheduling theory (5)
	Usual real time schedulers 
	 Rate Monotonic (1)
	 Rate Monotonic (2)
	 Rate Monotonic (3)
	 Rate Monotonic (4)
	 Rate Monotonic (5)
	 Rate Monotonic (6)
	Rate Monotonic (7)
	Rate Monotonic (8)
	Rate Monotonic (9)
	Rate Monotonic (10)
	Modeling and analysis tools (1)
	Modeling and analysis tools (2)
	Modeling and analysis tools (3)
	Modeling and analysis tools (4)
	Modeling and analysis tools (5)
	Earliest Deadline First (1)
	Earliest Deadline First (2)
	Earliest Deadline First (3)
	Earliest Deadline First (4)
	Earliest Deadline First (5)
	EDF vs RM : summarycite {buttazo04}
	Feasibility tests/scheduler suitability
	Shared resource support (1)
	Shared resource support (2)
	Shared resource support (3)
	Shared resource support (4)
	 Shared resource support (5)
	Shared resource support (6)
	Shared resource support (7)
	Talk overview
	Real time scheduling and Ada
	Ada 95/2005: task, time, priorities (1)
	Ada 95/2005: task, time, priorities (2)
	Ada 95/2005: task, time, priorities (3)
	Ada 95/2005: task, time, priorities (4)
	Ada 95/2005: task, time, priorities (5)
	Ada 95/2005: task, time, priorities (6)
	Ada 95/2005: task, time, priorities (7)
	Ada 95/2005: task, time, priorities (8)
	Ada 95/2005 scheduling framework (1)
	Ada 95/2005 scheduling framework (2)
	Ada 95/2005 scheduling framework (3)
	Ada 95/2005 scheduling framework (4)
	Ada 95/2005 scheduling framework (5)
	Ada 95/2005 scheduling framework (6)
	Ada 2005 Ravenscar profile (1)
	Ada 2005 Ravenscar profile (2)
	Real time scheduling and Ada
	POSIX 1003 standard (1)
	POSIX 1003 standard (2)
	POSIX 1003 standard (3)
	POSIX 1003 standard (4)
	POSIX 1003 standard (5)
	POSIX 1003 standard (6)
	POSIX 1003 standard (7)
	POSIX 1003 standard (8)
	POSIX 1003 standard (9)
	Real time scheduling and Ada
	Talk overview
	Summary and further readings (1)
	Summary and further readings (2)
	Summary and further readings (3)
	Bibliography (1)
	Bibliography (2)

