
HAL Id: hal-00504345
https://hal.univ-brest.fr/hal-00504345

Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning by doing software engineering
Philippe Saliou, Vincent Ribaud

To cite this version:
Philippe Saliou, Vincent Ribaud. Learning by doing software engineering. Informatics Education
Europe, Nov 2006, Suisse. pp.23-24. �hal-00504345�

https://hal.univ-brest.fr/hal-00504345
https://hal.archives-ouvertes.fr

LEARNING BY DOING SOFTWARE ENGINEERING

Philippe Saliou
Département informatique, U.B.O.

C.S. 93837
29238 Brest Cedex 3

 Philippe.Saliou@univ-brest.fr

Vincent Ribaud
Département informatique, U.B.O.

C.S. 93837
29238 Brest Cedex 3

 Vincent.Ribaud@univ-brest.fr

ABSTRACT
Learning software engineering is often performed
‘by doing’. Shifting to the constructivism paradigm as
far as possible, we have designed an education
system called «Software engineering apprenticeship
by immersion» entirely based on a 7-months project,
performed by a 6-students team within a virtual
company and tutored by an experimented software
engineer. The immersion system is skill-oriented and
it may be difficult to classify system’s units in a
topical-oriented book of knowledge. Some individual
and organizational consequences are drafted.

Keywords
Software engineering, learning by doing, immersion.

1. INTRODUCTION
Most software engineering (SE) professionals will
say that they learned the profession “by doing”.
Hence, the main paradigm used is teaching software
engineering by doing. Most academic curricula
address this issue through projects [1]. Since
September 2002, the second year of Brest University
Master in software engineering is entirely based on a
7-months project, performed by 6-students team
within a virtual company and tutored by an
experimented software engineer. This paper briefly
presents this education system and states the gap
between knowledge-oriented and skill-oriented
education systems. The need for an individual and
an organizational shift is drafted.

2. SOFTWARE DEVELOPMENT
Software engineering can be minimally defined as the
set of activities involved in developing, operating and
maintaining software. Software development is
organized around a project which involves people
guided by a software development process. The
process organizes the set of activities allowing to

transform users’ requirements into software products.
Products are artifacts (or deliverables) that are
created during the life of the project, such as
specifications, architectural design, source code and
documentation.

3. SOFTWARE ENGINEERING BY
IMMERSION
Industry complains that graduates take at least one
year to become productive once hired. So, the main
idea of the system is to let professional realities into
our university walls. Students work in teams to
analyse, design, implement, test and document a
software project relying on strong software
engineering principles. The pedagogical system
imitates as closely as possible real-world
phenomena: a professional working environment, the
client-supplier relationship, the application of a
development baseline, the use of methods and
associated tools, the cooperation within the team.
We call this education system «Software engineering
apprenticeship by immersion» [2].

The year is divided into three periods: a 5-month
tutored apprenticeship period, a 2-month
accompanied application period and a training period
of 4-6 months in a firm. Except for English and
communication courses, no lectures are given.
During the first period, students are swapped around
the different tasks needed by engineering activities
and strongly guided by the tutor. During the second
period, roles are fixed within each team and teams
are relatively autonomous when completing the
project, the tutor performing mainly a supervising and
rescuing activity. The assessment process is
essentially formative, due to the permanent feedback
of tutoring.

4. KNOWLEDGE AND SKILLS
A recognized profession must have an established
body of knowledge and skills that its practitioners
understand and use consistently. Building curricula
and body of knowledge are typical activities
supported by professional societies such as the
Association for Computing Machinery (ACM) and the
IEEE Computer Society and results are available to
the public. On the other hand, typical software
engineering usages and skills are gathered in
corporate baseline which defines good practices and

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

© 2006 Informatics Education Europe Conference, Montpellier.

capitalizes the company’s know-how but diffusion
and use are restricted to the company.

4.1 A book of knowledge
Achieving consensus by the profession on a core
body of knowledge is an essential goal of the
Software Engineering Body of Knowledge (SWEBOK)
project. The product of the SWEBOK project will not
be the body of knowledge itself, but rather a guide to
it. This Guide will seek to identify and describe that
subset of the body of knowledge (BOK) that is
generally accepted [3]. The Guide organizes the
BOK into several Knowledge Areas (KA). Each KA is
decomposed into a set of topics.

4.2 A corporate baseline
The authors both worked several years at Thales
Services, a software services company. The authors
led projects and developed several management
information systems under the control of TEMPO,
Thales corporate baseline. « TEMPO is a set of
procedures, guides and instructions defining how the
company operates, and how it is organised, providing
a framework for project management, software
development and system integration activi-ties [4]».

4.3 An apprenticeship baseline
Thanks an agreement with Thales group, we use this
corporate baseline as a part of an apprenticeship
baseline. The decomposition into activities was used
as the structure of the curriculum. Each activity
includes several tasks. Each task is described with
work cards that define precisely the work to be done,
the resources needed and the results (deliverables).

4.4 Linking knowledge and skills
There is a strong relationship between Knowledge
Areas and topics of the SWEBOK and activities of a
corporate software engineering baseline. An
interesting issue arises when we worked to establish
the diploma supplement for our immersion
curriculum. For each unit of the curriculum, we were
required to establish two lists: one for the knowledge
covered in the unit and the other for the abilities
linked to the unit. We established easily the abilities
list from the description of activities and tasks found
in the corporate baseline and in the work cards of the
curriculum. It was more difficult by far to extract the
knowledge really covered by the unit, even with the
help of the SWEBOK. Let us present an example
with the “Quality Assurance (QA)” unit. During this
activity, students perform quality assurance control
established in the QA plan, mainly technical reviews
and product inspections. Such are the abilities of the
QA unit. Let us have a look on the SWEBOK guide
about the KA “Software quality”. This KA is divided in
11 subtopics, including the “Reviews and Audits”
subtopic. Practically, students learn this subtopic

and only this subtopic by doing, but through
performing this review activity there are linked to
several other subtopics of the KA.

5. SHIFTING THE IMMERSION PARADIGM
At the individual level, shifting to the immersion
paradigm means a new way of thinking for tutors and
students. The immersion system belongs to the
constructivism approach, which can be summed up
with two fundamental statements: learning is defined
as an active process for knowledge building rather
than a knowledge acquisition process; teaching is
essentially aimed at helping students in this process
rather than transmitting knowledge [5].

At the organizational level, the shift involves at least
two dimensions. First, lectures are replaced with
student learning. Secondly, the whole immersion
system should operate as a learning organization.

In the first dimension, “teachers” perfom three
different kinds of activities: - Organising - It is a
matter of scheduling and elaborating work cards that
define, week after week, the work to be done and
preparing pedagogical deliveries needed to carry out
the work; - Tutoring - For each work card, a tutor is
available to students who are thus provided with
continuous support and assistance; - Continuous
assessment - Each deliverable is carefully annotated
by tutors, together with improvements to bring about.
This assessment and feedback process is iterated at
least twice.

In the second dimension, our system re-unifies the
place, the time and the means of apprenticeships
thanks to the immersion in a realistic (but not real)
project. Learning is cooperative, collaborative and
supportive. Assessment emphasises on generating
questions and learning from errors.

The main goal of the system is to educate skilled but
also reflective practitioners (Donald Schön).

6. REFERENCES
[1] Bertrand Meyer, Software Engineering in the

Academy, IEEE Computer, May 2001.

[2] Vincent Ribaud, Philippe Saliou, Software
Engineering Apprenticeship by Immersion,
International Workshop on Patterns in Teaching
Software Development, ECOOP’03, 2003.

[3] Guide to the Software Engineering Body of
Knowledge http://www.swebok.org/overview/

[4] TEMPO, information systems development
under control, Thales Services, 2002

[5] T. M. Duffy, D. J. Cunningham, Constructivism :
Implications for the design and delivery of
instruction, In Handbook of Research for
Educational Communications and Technology,
MacMillan 1996

