
HAL Id: hal-00504339
https://hal.univ-brest.fr/hal-00504339v1

Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bootstrapping an empty repertoire of experience: the
design case

Philippe Saliou, Vincent Ribaud

To cite this version:
Philippe Saliou, Vincent Ribaud. Bootstrapping an empty repertoire of experience: the design case.
HAOSE 2009 - OOPSLA 2009, Oct 2009, United States. pp.x-y. �hal-00504339�

https://hal.univ-brest.fr/hal-00504339v1
https://hal.archives-ouvertes.fr

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Bootstrapping an empty repertoire of experience: the design case

Philippe Saliou

Complex System Laboratory, LISyC
University of Brest, C.S. 93837
29238 Brest Cedex 3, France
Philippe.Saliou@univ-brest.fr

Vincent Ribaud

Complex System Laboratory, LISyC
University of Brest, C.S. 93837
29238 Brest Cedex 3, France
Vincent.Ribaud@univ-brest.fr

Abstract
Performing good design is a difficult task. To take up this chal-
lenge, practitioners rely on their repertoire of experience. Stu-
dents, however, do not have any such repertoire. We propose an
approach aimed at bootstrapping the repertoire. The approach is
generally accomplished in two steps: tailoring the activity – ac-
quiring a minimal structure through a deductive approach, then
initializing the repertoire through an inductive approach; and
performing the activity - to begin filling the repertoire whilst
drawing up the design of a real-scale project.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques – Modules and interfaces.

General Terms Design.

Keywords software engineering, reflective practitioner, design

1. Introduction
A core body of knowledge is generally seen as pivotal to the de-
velopment and accreditation of university curricula and the licens-
ing and certification of professionals. Both the Software
Engineering Body of Knowledge (SWEBOK, [1]) and the Soft-
ware Engineering Education Knowledge (SEEK, [2]) use a two-
or three-level hierarchical organization: knowledge area, topics
(SWEBOK) / units (SEEK), sub-topics (SWEBOK) / topics
(SEEK).

Donald Schön [3] pointed out several problems with this sci-
ence-based model of professional preparation. “The situations of
practice are not problems to be solved but problematic situations
characterized by uncertainty, disorder, and indeterminacy” (pp.
15-16); “situations of practice are characterized by unique
events” (p. 16). Hence, to take up the challenges of their practice,
practitioners rely on their repertoire of experience, together with a
certain ingeniousness gained during their practice, rather than on
knowledge-oriented curricula or formulae learned during their
basic education. D. Schön defines the repertoire as: “The practi-
tioner has built up a repertoire of ideas, examples, situations and
actions. […] A practitioner’s repertoire includes the whole of his
experience insofar as it is accessible to him [her] for understand-
ing and action” [3, p. 138]. A problem to be solved can be ana-
lyzed from different points of view: expected knowledge and

skills; stakeholders’ roles; input and output deliverables; required
tools and resources. At work, what makes sense for these multiple
points of view is their articulation within the activity situation (the
cohesion of the work situation). We think that the structure of a
practitioner’s repertoire is activity-oriented rather than knowl-
edge-oriented. Practitioners generally use a hierarchical model of
professional activities. In the SE field, we assume that a Process
Reference Model (such as the ISO/IEC 12207 proc-
ess/activity/tasks model) may be used as the reference framework
of a software engineer’s repertoire.

Students, however, do not have any such repertoire. The diffi-
culties of an initial education in software engineering lie in estab-
lishing the balance between knowledge and skills, and in
providing an initial structure to an experience repertoire. Hence
one paradigm in use is the teaching of software engineering ‘by
doing’. Most academic curricula address this issue through pro-
jects, but in themselves, academic projects are not enough to
achieve the goal and as Hazzan pointed out in [4], except in the
studio method of teaching, there are very few interactions between
students and teachers when students develop software systems. In
order to bootstrap the repertoire for a given activity in SE (e.g.
requirements analysis or design), we developed an approach based
on the tailoring of activity before performing the activity itself.
This approach will be presented through the specific case of the
design in the rest of this paper.

2. Bootstrapping the repertoire
Let us illustrate the problem of gaining experience on the design
process. “The purpose of the Develop software design process is
to establish a software design that effectively accommodates the
software requirements; at the top-level this identifies the major
software components and refines these into lower level software
units which can be coded, compiled, and tested [[5], part 2]”. A
baseline such as the ISO/IEC 15504-5 [6] (or ISO/IEC 12207 [7])
offers a set of outcomes of the process together with a set of base
practices (or tasks) intended to accomplish outcomes.

For the Design Process, 12207 and 15504 outcomes are
roughly the same:

1. a software architectural design is developed and baselined
that describes the software elements that will implement the

software requirements;

2. internal and external interfaces of each software elements

are defined;

3. a detailed design is developed that describes software units
that can be built and tested;

4. consistency and traceability are established between software
requirements and software design.

These outcomes and base practices are described at an abstract
level identifying “what” should be done without specifying
“how”. The main difficulty for a project is to be provided with a
response to “how ?” that is suited to the project specificities:
technical, methodological, etc.

Although the repertoire structure can be drawn from the refer-
ence framework, when the activity is unknown, this structure does
not take root and there is no chance that experiences (past or to
come) could take place within the structure. The studio is the
central training method in architecture schools and this analogy
was used to provide a suitable educational environment for soft-
ware design and development [8], [9]. Students work in teams on
a large-scale project, supervised by faculty members, and gener-
ally for an external client. Behind software studios lies Donald
Schön’s idea of the reflective practitioner perspective [5], [10].
His proposition to educate the reflective practitioner is that stu-
dents perform projects with a strong guidance of coaches. “The
experience of the students in the architectural studio, […] and, I
believe, the experience of the students in any reflective practicum
is that they must plunge into the doing, and try to educate them-
selves before they know what it is they’re trying to learn. The
teachers cannot tell them. The teachers can say things to them but
they cannot understand what’s meant at that point. The way at
which they come to be able to understand what’s meant is by
plunging into the doing […] so as to have the kinds of experience
from which they may then be able to make some sense of what it is
that’s being said.” This education can be facilitated with our pro-
posed approach intended to bootstrap the repertoire. The approach
is generally accomplished in two steps: tailoring the activity - to
acquire a minimal structure through a deductive approach (by
writing a guide, for instance) then to initialize the repertoire
through an inductive approach, for instance with the use of retro-
engineering; and performing the activity - to begin to fill the rep-
ertoire whilst establishing the design of a real-scale project.

2.1 Tailoring the design process

However pertinent the reference framework may be, it must al-
ways be tailored to a project baseline. The methods and docu-
ments provided have a broad range. Tailoring aims to adapt the
activities to be performed and products to be developed and de-
livered to the project’s domain/size/methods/tools/etc.

When development environments are stable and mature, the
way to use it can be found “off-the-shelf” or at least progressively
built from successive projects, and capitalized in the corporate
baseline. When methods and technologies are continuously evolv-
ing, the “software component” definition differs according to
frameworks, models and tools. It is then necessary to constantly
adapt the “how to design” issue to innovations and changes. This
is precisely what the tailoring activities should provide answers
to.

Tailoring is accomplished in two steps: study of the field (in
order to establish the structure of the repertoire) then performance
of a pseudo-design activity (in order to initialize the repertoire).

2.1.1 Establishing the structure of the repertoire: exploration
of the design activity

The study of an activity can be accomplished through a prelimi-
nary work of thought and suggestion as to how to proceed in or-
der to perform the concerned activity. For example, using a new
method or tool begins with an exploration aimed at tailoring its
usage to the specificities of the project. Each exploration ends
with the writing of a usage guide or implementation guide for the
activity in question. This kind of exploration activity favors and
encourages student initiative and creativity on technical, methodo-

logical aspects or any activity of the software development proc-
ess.

For example, exploring the design is aimed at understanding,
preparing and defining the design model that should be used dur-
ing the design phase. Thus, the instructions given in the “Design
exploration” activity are intended to answer the following ques-
tions:

• what role does design play in our software process ?

• which determining elements and relevant models are useful

in elaborating the design models ? why are they used ? how

are they elaborated ?

• how do project design constraints (modelling language e.g.

UML, process e.g. Unified Process, technical framework e.g.

J2EE, ...) correlate to corporate baseline requirements ?

Once the design exploration has been performed, students
asked themselves essential questions. Even though these answers
may be wrong or unknown, this gave meaning to the structure of
the reference framework. The framework can then be used as the
first shape of the repertoire for this activity. For example, the
ISO/IEC 12207 recommends the following tasks in order to per-
form the software architectural design:

1. transformation of the requirements for the software item

into an architecture that describes its top-level structure

and identifies the software components.

2. development and documentation of a top-level design for

the interfaces external to the software item and between

the software components of the software item.

3. development and documentation of a top-level design for

the database.

4. development and documentation of preliminary versions of

user documentation.

5. definition and documentation of preliminary test require-

ments and the schedule for Software Integration.

It is only at the point of performing design exploration that this
tasks list makes sense to the student and can be used as a prelimi-
nary structure for his/her repertoire.

2.1.2 Initializing the repertoire: coding first then (retro-)
design

Even once the “Design exploration” activity has been performed,
design remains a difficult task. Plenty of books with case studies
describe the design activity but leave the reader without a clear
path to follow. Hence, our approach is to do NO design in the first
instance - directly developing a prototype from requirements - ,
and to perform a retro-design of this prototype in later on. In the
educational field, retro-engineering is an inductive approach. It is
the reconstruction from back to front of a process, with the result
of an activity as its starting point.

The “Retro-Design” activity thus helps answer the following
questions:

• which model of our prototype can be helpful in understand-

ing the code ?

• what elements can be established at the design phase ? how

are they useful in implementing the design ?

• which tools can be helpful in expressing and managing the

design, and generating programming artefacts ?

It is usually in doing the retro-design that students understand
that the prototype implementation is badly structured, hard to
develop … and it provides ideas for, and motivation to correctly
re-design and re-implement the prototype. When the student’s
repertoire for a given activity is empty, any new task seems im-
possible. Retro-engineering provides a repertoire initialization.

2.2 Performing the design process

2.2.1 A first fill

Finally, students are able to perform the design of their project
(capstone or real-life). Faced anew with the intended activity (the
design), even it is perceived as new and unique, the student will
see that something is still present and familiar in his/her reper-
toire. “When a practitioner makes sense of a situation he per-
ceives to be unique, he sees it as something already present in his
repertoire. To see this site as that one is not to subsume the first
under a familiar category or rule. It is […] to see the unfamiliar,
unique situation as both similar to and different from the familiar
one, without at first being able to say similar or different with
respect to what. The familiar situation functions as a precedent,
or a metaphor, or … an exemplar for the unfamiliar one” ([3], p.
138).

The design is often presented as a shaping activity in order to
give a form and architecture to the system that meet requirements.
The learning of design objectives aims to elaborate a satisfactory
design solution to a major problem whilst dealing with heteroge-
neous issues: technical, social, ergonomics … Learning by per-
forming the design in a reflective education system relies on
project-based work on complex and open-ended problems; in-
cludes frequent feedback and critique from tutors and peers; stu-
dents are meant to learn to work as efficient members of a team.
All these conditions are necessary in order to provide a real ex-
perience of design, which will take place in the repertoire previ-
ously set-up during the tailoring activity.

2.2.2 Life-long filling

“Continuous learning reflects the notion that the pace of change
in this modern age is such that an individual has to continually
learn new things to keep up with the times, with a profession, or
to be competent in any given job [12]”. Hence, the need to set up
and develop a model of reflective acting and thinking during our
initial education.

Reflection-on-action is an activity where we explore why we
acted as we did, what was happening and so on. The notion of
repertoire is very important in this approach. Practitioners build
up a collection of ideas, examples, situations and actions and D.
Schön saw this as central to reflective thought. There is a need for
explicit and systematic management of knowledge and skills - and
this has to be accomplished by professionals throughout their
working lives.

We believe that lifelong learning should be – (i) - initially es-
tablished through an appropriate education intended to develop a

reflective attitude and – (ii) - then continuously sustained by pe-
riodic reflection-on-action activities.

3. Conclusion
D. Schön brought reflection into the centre of an understanding of
what professionals do. Schön often associated the notion of reper-
toire with this theory. We stated in this paper that problem solving
relies on the availability of a repertoire, which means: firstly giv-
ing a structure to the repertoire and initializing it, secondly begin-
ning to fill it, and thirdly continuously sustaining the update of the
repertoire.

Acknowledgments
The authors wish to thanks all students that learned design with
this approach and whom feedback helped us to improve this learn-
ing path.

References
[1] Abran, A. and Moore, J. W. 2004. Guide to the Software Engineer-

ing Body of Knowledge, 2004 Version IEEE Computer Society
http://www2.computer.org/portal/web/swebok/htmlformat (last ac-
cessed September 4th, 2009).

[2] ACM and IEEE 2004. Software Engineering 2004
http://sites.computer.org/ccse/SE2004Volume.pdf (last accessed
September 4th, 2009).

[3] Schön, D. 1983. The Reflective Practitioner. Basic Books, New
York.

[4] Hazzan, O. 2002. The reflective practitioner in software engineering
education. The Journal of Systems and Software 63, 161-171.

[5] Software Process Improvement and Capability determination 1995.
Software Process Assessment - Version 1.00,
http://www.sqi.gu.edu.au/spice/docs/baseline (last accessed February
13th, 2008).

[6] ISO/IEC 15504:2004, Information technology -- Process assessment
International Organization for Standardization (ISO), Geneva.

[7] ISO/IEC 12207:2008, Information technology -- Software life cycle
processes International Organization for Standardization (ISO), Ge-
neva.

[8] Tomayko, J. E. 1996. Carnegie Mellon's software development
studio: a five year retrospective in Proceedings of the 9th Confer-
ence on Software Engineering Education, IEEE Computer Society
Press, 119-129.

[9] Kuhn S. 1998. The software design studio: an exploration IEEE
Software 15, 2 (March-April 1998), 65-71.

[10] Schön, D. 1987. Educating the Reflective Practioner: Toward a
New Design for Teaching and Learning In the Professions Jossey-
Bass, San Fransisco.

[11] D. Schön, “Educating the Reflective Practitioner” in Meeting of the
American Educational Research Association, 1987.

[12] Government of Canada 2009. Training Employees - Learning Con-
cepts,
http://www.hrmanagement.gc.ca/gol/hrmanagement/site.nsf/en/hr11
570.html (last accessed September 4th, 2009).

