N

N

Bootstrapping an empty repertoire of experience: the
design case
Philippe Saliou, Vincent Ribaud

» To cite this version:

Philippe Saliou, Vincent Ribaud. Bootstrapping an empty repertoire of experience: the design case.
HAOSE 2009 - OOPSLA 2009, Oct 2009, United States. pp.x-y. hal-00504339

HAL Id: hal-00504339
https://hal.univ-brest.fr /hal-00504339
Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-brest.fr/hal-00504339
https://hal.archives-ouvertes.fr

Bootstrapping an empty repertoir e of experience: the design case

Philippe Saliou

Complex System Laboratory, LISyC
University of Brest, C.S. 93837
29238 Brest Cedex 3, France

Philippe.Saliou@univ-brest.fr

Abstract

Performing good design is a difficult task. To take this chal-
lenge, practitioners rely on their repertoire opesience. Stu-
dents, however, do not have any such repertoirepipose an
approach aimed at bootstrapping the repertoire. agpgoach is
generally accomplished in two steps: tailoring #uotivity — ac-
quiring a minimal structure through a deductive rapph, then
initializing the repertoire through an inductive papach; and
performing the activity - to begin filling the repeire whilst
drawing up the design of a real-scale project.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques — Modules and iates.

General Terms Design.

Keywords software engineering, reflective practitionersida

1. Introduction

A core body of knowledge is generally seen as piviat the de-
velopment and accreditation of university curricatel the licens-
ing and certification of professionals. Both the ft&are
Engineering Body of Knowledge (SWEBOK, [1]) and t8eft-
ware Engineering Education Knowledge (SEEK, [2]¢ astwo-
or three-level hierarchical organization: knowledaea, topics
(SWEBOK) / units (SEEK), sub-topics (SWEBOK) / topi
(SEEK).

Donald Schon [3] pointed out several problems wiliils sci-
ence-based model of professional preparatidhe“situations of
practice are not problems to be solved but problgersituations
characterized by uncertainty, disorder, and indeteracy (pp.

15-16); ‘situations of practice are characterized by unique

event$ (p. 16). Hence, to take up the challenges ofrtheactice,
practitioners rely on their repertoire of experienmgether with a
certain ingeniousness gained during their practiatier than on
knowledge-oriented curricula or formulae learnedirdy their
basic education. D. Schon defines the repertoiré Tdse practi-
tioner has built up a repertoire of ideas, exampkiations and
actions. [...] A practitioner’s repertoire includebd whole of his
experience insofar as it is accessible to him [HerJunderstand-

ing and actiofi [3, p. 138]. A problem to be solved can be ana-

lyzed from different points of view: expected knedfjle and

Permission to make digital or hard copies of alpart of this work for personal
classroom use is granted without fee provided tbates are not made or distribu
for profit or commercial advantage and that copiear this notice and the full citat
on the first page. To copy otherwise, or republishpost on servers or to rettibute
to lists, requires prior specific permission andidee.

SIGPLAN'05 June 12-15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X...$5.00.

Vincent Ribaud

Complex System Laboratory, LISyC
University of Brest, C.S. 93837
29238 Brest Cedex 3, France

Vincent.Ribaud@univ-brest.fr

skills; stakeholders’ roles; input and output detables; required
tools and resources. At work, what makes sensthése multiple

points of view is their articulation within the agty situation (the

cohesion of the work situation). We think that gteucture of a
practitioner’'s repertoire is activity-oriented raththan knowl-

edge-oriented. Practitioners generally use a rdbieal model of

professional activities. In the SE field, we assutr# a Process
Reference Model (such as the
ess/activity/tasks model) may be used as the referéamework
of a software engineer’s repertoire.

Students, however, do not have any such reperfbire.diffi-
culties of an initial education in software engirieg lie in estab-
lishing the balance between knowledge and skillsd an
providing an initial structure to an experienceeamtpire. Hence
one paradigm in use is the teaching of softwareneeging ‘by
doing’. Most academic curricula address this issueugh pro-
jects, but in themselves, academic projects areemough to
achieve the goal and as Hazzan pointed out ineidjept in the
studio method of teaching, there are very few attons between
students and teachers when students develop sefsyatems. In
order to bootstrap the repertoire for a given >iin SE (e.g.
requirements analysis or design), we developegproach based
on the tailoring of activity before performing tlaetivity itself.
This approach will be presented through the spec#ise of the
design in the rest of this paper.

2. Bootstrapping the repertoire

Let us illustrate the problem of gaining experiencethe design
process. The purpose of the Develop software design proicess
to establish a software design that effectivelyoaommodates the
software requirements; at the top-level this idiéegi the major
software components and refines these into lowel Isoftware
units which can be coded, compiled, and te§fgH part 2]". A
baseline such as the ISO/IEC 15504-5 [6] (or ISO/IR2207 [7])
offers a set of outcomes of the process togethir avset of base
practices (or tasks) intended to accomplish outsome

For the Design Process, 12207 and 15504 outcomes ar

roughly the same:

1. a software architectural design is developed and baselined
that describes the software elements that will implement the
software requirements;

2. internal and external interfaces of each software elements
are defined;

3. a detailed design is developed that describes software units
that can be built and tested;

4. consistency and traceability are established between software
requirements and software design.

ISO/IEC 12207 proc-

These outcomes and base practices are descriladaaistract
level identifying “what” should be done without sjfging
“how”. The main difficulty for a project is to bergvided with a
response to “how ?” that is suited to the projgmtcticities:
technical, methodological, etc.

Although the repertoire structure can be drawn ftbenrefer-
ence framework, when the activity is unknown, 8tisicture does
not take root and there is no chance that expesgefgast or to
come) could take place within the structure. Thaedist is the
central training method in architecture schools #rd analogy
was used to provide a suitable educational enviemirfor soft-
ware design and development [8], [9]. Students viorieams on
a large-scale project, supervised by faculty memband gener-
ally for an external client. Behind software stuglites Donald
Schoén’s idea of the reflective practitioner perspec[5], [10].
His proposition to educate the reflective practiép is that stu-
dents perform projects with a strong guidance afcbes. The
experience of the students in the architecturadlistu[...] and, |
believe, the experience of the students in angaéfe practicum
is that they must plunge into the doing, and tredocate them-
selves before they know what it is they're tryingldarn. The
teachers cannot tell them. The teachers can sagsthio them but
they cannot understand what's meant at that poiihie way at
which they come to be able to understand what’sninéea by
plunging into the doing [...] so as to have the kinflexperience
from which they may then be able to make some séngeat it is
that's being said. This education can be facilitated with our pro-
posed approach intended to bootstrap the reperfitieapproach
is generally accomplished in two steps: tailorihg fctivity - to
acquire a minimal structure through a deductivereggh (by
writing a guide, for instance) then to initializbet repertoire
through an inductive approach, for instance with tise of retro-
engineering; and performing the activity - to betirfill the rep-
ertoire whilst establishing the design of a realsproject.

2.1 Tailoring the design process

However pertinent the reference framework may benust al-
ways be tailored to a project baseline. The methaus docu-
ments provided have a broad range. Tailoring aonadapt the
activities to be performed and products to be dped and de-
livered to the project’'s domain/size/methods/tazits/

When development environments are stable and mattuee
way to use it can be found “off-the-shelf’ or aadé progressively
built from successive projects, and capitalizedtha corporate
baseline. When methods and technologies are cantsiyievolv-
ing, the “software component” definition differs cacding to
frameworks, models and tools. It is then necesiamponstantly
adapt the “how to design” issue to innovations ehanges. This
is precisely what the tailoring activities shoultbyide answers
to.

Tailoring is accomplished in two steps: study of ffeld (in
order to establish the structure of the repertdlreh performance
of a pseudo-design activity (in order to initialie repertoire).

2.1.1 Establishing the structure of therepertoire: exploration
of the design activity

The study of an activity can be accomplished thhoagprelimi-
nary work of thought and suggestion as to how tceed in or-
der to perform the concerned activity. For exampking a new
method or tool begins with an exploration aimedadibring its
usage to the specificities of the project. Eachlaagpion ends
with the writing of a usage guide or implementatgnde for the
activity in question. This kind of exploration adty favors and
encourages student initiative and creativity ommécal, methodo-

logical aspects or any activity of the software @lepment proc-
ess.

For example, exploring the design is aimed at wtdeding,
preparing and defining the design model that shbeldised dur-
ing the design phase. Thus, the instructions gikmethe “Design
exploration” activity are intended to answer théoleing ques-
tions:

. what role does design play in our software process ?

. which determining elements and relevant models are useful
in elaborating the design models ? why are they used ? how
are they elaborated ?

. how do project design constraints (modelling language e.g.
UML, process e.g. Unified Process, technical framework e.g.
J2EE, ...) correlate to corporate baseline requirements ?

Once the design exploration has been performediesta
asked themselves essential questions. Even thdwegle answers
may be wrong or unknown, this gave meaning to theture of
the reference framework. The framework can thewds as the
first shape of the repertoire for this activity. rFexample, the
ISO/IEC 12207 recommends the following tasks ineori per-
form the software architectural design:

1. transformation of the requirements for the software item
into an architecture that describes its top-level structure
and identifies the software components.

2. development and documentation of a top-level design for
the interfaces external to the software item and between
the software components of the software item.

3. development and documentation of a top-level design for
the database.

4. development and documentation of preliminary versions of
user documentation.

5. definition and documentation of preliminary test require-
ments and the schedule for Software Integration.

It is only at the point of performing design exlthon that this
tasks list makes sense to the student and caneldeassa prelimi-
nary structure for his/her repertoire.

2.1.2 Initializing therepertoire: coding first then (retro-)
design
Even once the “Design exploration” activity has hheerformed,
design remains a difficult task. Plenty of bookshwméase studies
describe the design activity but leave the readéront a clear
path to follow. Hence, our approach is to do NQgte# the first
instance - directly developing a prototype fromuiegments - ,
and to perform a retro-design of this prototypésaiter on. In the
educational field, retro-engineering is an induetapproach. It is
the reconstruction from back to front of a procesth the result
of an activity as its starting point.

The “Retro-Design” activity thus helps answer tlodoiving

questions:

. which model of our prototype can be helpful in understand-
ing the code ?

. what elements can be established at the design phase ? how
are they useful in implementing the design ?

o which tools can be helpful in expressing and managing the
design, and generating programming artefacts ?

It is usually in doing the retro-design that studesnderstand
that the prototype implementation is badly struetiirhard to
develop ... and it provides ideas for, and motivatiorcorrectly
re-design and re-implement the prototype. When shelent’s
repertoire for a given activity is empty, any neagk seems im-
possible. Retro-engineering provides a repertaitelization.

2.2 Performing the design process

221 Afirstfill

Finally, students are able to perform the desigrhefr project
(capstone or real-life). Faced anew with the in&shdctivity (the
design), even it is perceived as new and uniquestadent will
see that something is still present and familiahisther reper-
toire. “When a practitioner makes sense of a situation ére p
ceives to be unique, he sees it as something alreaesent in his
repertoire. To see this site as that one is natubsume the first
under a familiar category or rule. It is [...] to sélee unfamiliar,
unique situation as both similar to and differemnfi the familiar
one, without at first being able to say similar different with
respect to what. The familiar situation functiors a precedent,
or a metaphor, or ... an exemplar for the unfamibae’ ([3], p.
138).

The design is often presented as a shaping activityder to
give a form and architecture to the system thatt mespiirements.
The learning of design objectives aims to elabosasatisfactory
design solution to a major problem whilst dealinghvheteroge-
neous issues: technical, social, ergonomics ... liegrhy per-
forming the design in a reflective education systesties on
project-based work on complex and open-ended pmahlen-
cludes frequent feedback and critique from tutors peers; stu-
dents are meant to learn to work as efficient membéa team.
All these conditions are necessary in order to igke@a real ex-
perience of design, which will take place in thpenoire previ-
ously set-up during the tailoring activity.

222 Lifelongfilling

“Continuous learning reflects the notion that theg@af change
in this modern age is such that an individual hasontinually
learn new things to keep up with the times, witr@fession, or
to be competent in any given jfit?]". Hence, the need to set up
and develop a model of reflective acting and thigkduring our
initial education.

Reflection-on-action is an activity where we explarhy we
acted as we did, what was happening and so on.ndtien of
repertoire is very important in this approach. Etaoers build
up a collection of ideas, examples, situations actibns and D.
Schon saw this as central to reflective thougher&hs a need for
explicit and systematic management of knowledgesilts - and
this has to be accomplished by professionals throug their
working lives.

We believe that lifelong learning should be — (ipitially es-
tablished through an appropriate education interidegevelop a

reflective attitude and — (ii) - then continuoudystained by pe-
riodic reflection-on-action activities.

3. Conclusion

D. Schon brought reflection into the centre of aderstanding of
what professionals do. Schén often associateddtiemof reper-

toire with this theory. We stated in this papett f@blem solving

relies on the availability of a repertoire, whicteans: firstly giv-

ing a structure to the repertoire and initializihgsecondly begin-
ning to fill it, and thirdly continuously sustairgrthe update of the
repertoire.

Acknowledgments

The authors wish to thanks all students that lehihesign with
this approach and whom feedback helped us to ineptttig learn-
ing path.

References

[1] Abran, A. and Moore, J. W. 200&uide to the Software Engineer-
ing Body of Knowledge, 2004 VersidBEE Computer Society
http://ww?2.computer.org/portal/web/swebok/htmlfaim (last ac-
cessed September 4th, 2009).

[2] ACM and |IEEE 2004. Software Engineering 2004
http://sites.computer.org/ccse/SE2004Volume.pdf st(laaccessed
September 4th, 2009).

[3] Schén, D. 1983The Reflective PractitionerBasic Books, New
York.

[4] Hazzan, O. 200ZThe reflective practitioner in software engineering
education The Journal of Systems and Software 63, 161-171.

[5] Software Process Improvement and Capabilityeisheination 1995.
Software Process Assessment - Version ,1.00
http://www.sqi.gu.edu.au/spice/docs/baseline @gasessed February
13th, 2008).

[6] ISO/IEC 15504:2004Information technology -- Process assessment
International Organization for Standardization (JSGeneva.

[7] 1SO/IEC 12207:2008Information technology -- Software life cycle
processesdnternational Organization for StandardizationQ)SGe-
neva.

[8] Tomayko, J. E. 1996Carnegie Mellon's software development
studio: a five year retrospectivie Proceedings of the 9th Confer-
ence on Software Engineering Education, IEEE Cosmp8bciety
Press, 119-129.

[91 Kuhn S. 1998.The software design studio: an exploratitftEE
Software 15, 2 (March-April 1998), 65-71.

[10] Schon, D. 1987Educating the Reflective Practioner: Toward a
New Design for Teaching and Learning In the PratessJossey-
Bass, San Fransisco.

[11] D. Schén, “Educating the Reflective Practigghin Meeting of the
American Educational Research Association, 1987.

[12] Government of Canada 2009. Training Employeeearning Con-
cepts,
http:/mww.hrmanagement.gc.ca/gol/hrmanagementhsiteen/hri1l
570.html (last accessed September 4th, 2009).

