
HAL Id: hal-00496857
https://hal.univ-brest.fr/hal-00496857v1

Submitted on 2 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Driven Approach for Building Ubiquitous
Applications

Philippe Le Parc, Amara Touil, Jean Vareille

To cite this version:
Philippe Le Parc, Amara Touil, Jean Vareille. A Model-Driven Approach for Building Ubiquitous
Applications. The Third International Conference on Mobile Ubiquitous Computing, Systems, Ser-
vices and Technologies - UBICOMM 2009, Oct 2009, Sliema, Malta. pp.324-328, �10.1109/UBI-
COMM.2009.11�. �hal-00496857�

https://hal.univ-brest.fr/hal-00496857v1
https://hal.archives-ouvertes.fr


A Model-driven Approach for Building Ubiquitous
Applications

Philippe Le Parc, Amara Touil, Jean Vareille
Université Européenne de Bretagne, France

Université de Brest
EA3883 LISyC - Laboratoire d’Informatique des Systèmes Complexes

20 av. Victor Le Gorgeu, BP 809
29285 Brest Cedex - France

{philippe.le-parc, amara.touil, jean.vareille}@univ-brest.fr

Abstract—This paper presents an on-going work, which aims
to build a generic framework for the conception and the de-
velopment of ubiquitous applications. This work is based on
a Model Driven Engineering approach and pays attention to
possible failures and to the use of Virtual Reality to improve the
Quality of the Experience for the user.

Keywords : Model Driven Engineering; Remote Robotics; Home
Automation Systems, Industrial Web.

I. INTRODUCTION

Ubiquity is often defined as the ability to be in several places
at the same time. In the field of Information Technologies, this
definition can be refined in, at least, two ways that may look
opposites. The first approach is to consider as in [1] that users
are surrounded with ”intelligent” systems, that may deliver
them the needed information: in this case, computing facilities
are used to locate users, to understand their environment, to
anticipate their needs and to make it possible for the necessary
information to be available anywhere at anytime. The second
approach, is to offer people to be able to get information from
a system located somewhere and to be able to act safely on it:
in this case computing facilities are used to make it possible
to be ”virtually” present in several places at the same time
(e.g. active telepresence).

Both approaches are relying on networks, that nowadays,
tend to become transparent to users. They both require
communicating devices/objects and distributed software and
intelligence. They are both requested.

We definitely place our work in the second approach.

Ubiquitous computing has to face several challenges.
Among all of them, and according to us, the following ones
seem to be essential:

• Being able to communicate in order to achieve reacha-
bility under any circumstances.

• Insuring safety in case of failure of one of the system
components.

• Being able to provide the right information at the right
moment in an understandable and easy manner.

• Developing tools, such as frameworks, that may help
designers to create new applications.

In this paper, we will first describe the three types of systems
we are studying, and we will then define the topics we will
focus on. We will then describe the top down approach, based
on Model Driven Engineering, that we would like to use and
will provide you with some results, before concluding.

II. UBIQUITOUS SYSTEMS

The term ”ubiquitous systems” is used in literature to
describe different classes of systems. The systems we are
studying will be described and the objective of our work will
be presented.

A. STUDIED SYSTEMS

Basically a ubiquitous system may be seen as a user
getting information and sending commands to a distant system,
through a communication network. This view covers several
realities, and each element (i.e. user, network, controlled
devices), may vary from one application to another one. For
example, the ”user” parameter may take several values accord-
ing to: interface type used (stand-alone/web), users’ context
(stationary or mobile), users’ skills (regular/experts), users’
device (mobile terminal/PC workstation), number of users
served (single/multiple). This is also valid for the other two
parameters: network and controlled device(s). For example, the
network can be wireline/wireless/mixed, small/large, heteroge-
nous (PAN1, LAN2, WAN3) with multiple protocols (WiFi4,
WiMax5, TCP/IP6, HTTP7, WAP8, GPRS9), etc. Controlled
device(s) can be: receiving input (from sensors), giving an
output (to actuators), have computing capabilities (provide ser-
vices), managing others, complicated systems (robotic arms).

For this on-going work we have identified three major
classes :

1Personnal Area Network [2]
2Local Area Network [3]
3Wide Area Network [4]
4Wireless Fidelity [5]
5Worldwide Interoperability for Microwave Access [6]
6Transport Control Protocol/Internet Protocol [7]
7HyperText Transfer Protocol [8]
8Wireless Application Protocol [9]
9General Packet Radio Service [10]



• Remote Robotics: this first class may be seen as the his-
torical one, with several projects [11] such as PumaPaint
[12], KheponTheWeb [13], or the Autralian Telerobots
[14]. Some just intended to prove that remote control over
Internet was feasible, others are still in-use and included
in course of studies like the Autralian Telerobots [15].
Other experiments can also be found in the field of space
[16], or medecine [17].
All these projects, even if they may be seen as really dif-
ferent in their objectives, costs and technological choices
rely on a simple scheme: a user + a network + a machine
to control inside a specific environment. It can also be
noted that in these cases, the machine under control has
some computing facilities (or the server close to it), which
makes it a high level of control on its behavior possible.

• Home Automation Systems (HAS, also known as domotic
systems): this class of systems will evolve very rapidly in
the next mfew onths, in order to offer end-users a way to
get and send information to their homes remotely [18].
Such systems are based on a set of simple devices
(smoke, temperature, presence... sensors) that will be
interconnected using specific protocols to the family’s
”Home Internet Box (HIB)”, that also provides phone
calls, television and web access. Users will interact
through classical web browsers on PCs or phones. In this
case, devices embed few processing capabilities, network
connections rely on an external provider and users are not
experts. Nevertheless, the control of one single element
in one room may have potentially unexpected effects on
the whole house and even the neighborhood. .

• Industrial Web: that is to say plants equipped with a large
variety of sensors and actuators interconnected using
wired and wireless technologies, in order to improve
the production. Compared to HAS, these systems will
be controlled by trained employees and devices will
embed or not computing facilities. The network will be
composed of hundreds of nodes and its reliability will be
one of the major concerns for the engineers in charge of
such systems.

These three cases show the potential complexity of the
deployment of ubiquitous systems due to their variety. The
next section will insist on the difficulties we would like to
tackle.

B. WORKING DIRECTIONS

As stated in the introduction, several challenges have to be
faced in order to build ubiquitous applications.

a) NETWORK: In our work, the network will be con-
sidered as a black box. Indeed, for example in HAS, a
user will use his phone connected via GSM to his network
operator that will provide him an access to the WAN of his
Internet Service Provider (ISP). The latter will establish the
connection to the HIB that could be connected via WIFI or
UPnP or any other protocols to the different home devices,
that may have establish an ad hoc network between them.

One can see the complexity of the communication, the number
of different actors involves, the possible risks of failures
(hardware problems, software bugs, power cut, user mistakes
etc.) and also, the fact that a large amount of the involved
components are not accessible.

We then consider that it is difficult even impossible to be
able to manage and to insure the quality of the connection,
from the user to the controlled system with the actual tech-
nology, and that we have to find other solutions in order to
face this problem.

Our approach [19] is to have a permanent idea of the quality
of the network, using a network sensor based on a simple
Ping/Pong mechanism : one side of the system (either the
user or the devices or both) will emit a request to the other
side that will send back an answer. Measuring the delay to
get the answer will give the emitter an idea of the quality of
the connection. Of course, this value provides an information
from the past, but, it has been shown that knowing the past
is helpful to predict the future, knowing that the Round Time
Trip (RTT) is rather constant between two locations10.

This information has to be delivered to the user and also to
the controlled system, and both of them have to adapt their
behaviors if necessary. A method based on working modes
depending on the estimated quality of the network, GEMMA-
Q, has been proposed in previous work [20].

b) HUMAN MACHINE INTERFACE: Remotely control-
ling a system requires information from the controlled system.
Besides, having a mental model of the system and of its
environment ito make the right decision and send the right
commands is also needed. Depending on the complexity of
the controlled system, users will have to be trained and have
to get easily understandable information.

Basic interfaces, using sliders, gauges, buttons, etc. are
according to us not sufficient in the case of complex envi-
ronments, like for industrial web or remote robotics and even
HAS. High level human machine interfaces based on virtual
reality may be used to face this problem while immersing the
user in a virtual environment as close as possible to the real
environment. It is easier to see an action running than to look
at a yellow diode on a dashboard.

Virtual Reality (VR) may also be used to train users and
to simulate actions and reactions in a specific situation with a
predefined scenario. It can also be used to plan missions.

But, the main interest of VR is to use it in parallel with
real time control, which leads to have several views of the
same world in terms of position and time. For instance, if you
are controlling a robot, you generally get a real-time video to
monitor the system, but the camera is in a predefined position.
Thanks to VR, you can use a virtual camera to have another
view to look at hidden parts. You can also ”play” with the
time, as you can display the current image of the real robot
and also an image of the future, considering that a virtual robot
can execute a command immediately whereas the real robot

10If the average RTT is x, then the probability that its next value is below
two time x is very high.



needs to wait for the transfer on the network to start executing
the command: the virtual robot is ahead comparing to the real
one and operators may anticipate unexpected behaviors and
risks. You could also play your commands virtually before
sending them to the real system.

VR is also interesting for Industrial Web and Home Au-
tomation Systems, as you can give a more comprehensive view
of the system they want to access and control. It can also be
used to simulate the results of your actions to verify that what
you have planned is correct (lights will be switched off during
the day, for example).

c) DEVELOPMENT FRAMEWORK: Developing ubiqui-
tous systems is quite a hard task if you want to insure relia-
bility. It needs to incorporate various technologies, to manage
uncertainty and to provide a good Quality of Experience (QoE)
to users. Developers will need environments to be able to take
all these constraints into account and we propose using a top
down approach based on Model Driven Engineering to face
this problem. Another approach based on Agents may be found
in [21].

III. MODEL DRIVEN ENGINEERING

In this section, we will first describe the approach we choose
to follow and then some of the first results we have obtained.

A. GLOBAL APPROACH

The Model Driven Engineering (MDE) approach [22] is
based on model transformations. Ideally, starting from a high
level description (abstract model) automatic generation tools
are able to produce various types of low level models (code)
for verification, testing, simulation or execution.

The MDE approach makes models productive more than
contemplative, so they can be manipulated during the devel-
opment process. This facility lets us design a framework that
allows the passage from independent platform meta-models
(PIM : Platform Independent Model), to instantiate Platform
Specific Models (PSM) of ubiquitous systems, as proposed by
OMG in the Model Driven Architecture initiative.

UML profiles such as SysML (Systems Modeling Language
[23]), MARTE (Analysis of Real-Time and Embedded systems
[24]) or TURTLE (Timed UML and RT-LOTOS Environment
[25]) are working in this way and may be used for the speci-
fication of ubiquitous systems. AADL (Architecture Analysis
and Design Language [26]) is also an interesting specification
language, while being able to describe software and hardware
aspects, devices, buses and also including modes specification.

These different approaches, through their meta-models, give
guidelines for the correct development of applications in
their respective domains. Engineers will create instances that
respect predefined patterns or scenari. Associated frameworks
will be able to transform models in various sorts of codes.
Our aim is to define such kinds of meta-models, that let the
user specify all the needed concepts and build an associated
development environment, specifically for ubiquitous systems.
Starting from a well-known environment and customizing it
for our purposes could be a promising way.

B. FIRST PROPOSAL AND RESULTS

The prototype scheme of our framework is composed of 5
main components: Device, Medium, User, Administrator, and
Safety, Security and Data Management (SSDM).

• Device package: it will contain device properties, behav-
ioral schemes and constraints. This information should be
obtained as much as possible from constructors.

• Medium package: to let ubiquitous systems work on
general and heterogeneous networks, we have to specify
the required features for the medium. This package will
include the necessary specification for Internet LAN and
WAN networks, bluetooth connection, WIFI, Zigbee...,
but also a way to specify unknown networks (e.g. black
box).

• User package: this package will give all users commands
and control for devices. It will also let us specify all the
needed procedures to communicate and exchange data.

• Administrator package: each device and users’ profile
will be specified separately. The Administrator package
will include the ubiquitous system configurations, man-
aging exchange data between all actors.

• SSDM package: it will include all strategies and scenari
that guarantee reliability and maintainability between all
ubiquitous system actors. Also, SSDM will include data
management profiles that control, protect, deliver and
enhance the value of data and information assets.

package UbiSysPackages

Device

Administrator

UserSSDM

Medium

<<import>>

<<import>>

<<import>>

<<import>>
<<import>>

<<import>>

<<import>>

<<import>>

Fig. 1. Package interconnections

The scheme (Figure 1) presents a high level view, and each
package has to be refined, like the Device one (Figure 2).
Following this proposed model, a device will be represented
by several characteristics: a Type, a Context, a Behavior, a
UserInterface and a DCManager (Device Connection Man-
ager). It is important to note that the Behavior inherited from
BehaviorMode, to take working modes into account and is
connected to the Environment. It is also noticeable, that the
UserInterface inherited from VirtualRealityInterface is itself
connected to MechanicalPropery.

Compared to other modeling approaches and ontology def-
initions of the ”Device” concept [27][28][29][30], we can say
that our model introduces the mechanical structure definition
of the device and its interaction with the environment. In



addition, we introduce the fall-back scenari and the main links
between behavior, environment, context and the mechanical
structure of the device. Indeed in [27], hardware and software
are specified without mentioning the concept of geometric or
mechanical structure. In [28]and [29], the knowledge manage-
ment and the data management aspects are clearly described
but they do not take into account the prevention of fall-back
scenarios. In [30], a complete description that includes all
devices aspects, particularly the device and its environment,
is shown, but no presentation of mechanics or geometry,
although the space and the physical property of environment
are described. Our modeling approach is based on some parts
of mentioned works by adding the needed concepts.

This model of a device will be the refined and detailed to
take into account all the needed information. A similar work
will be done for the other packages.

IV. CONCLUSION AND FUTURE WORK

Our objective is to create a framework to be able to
develop safe ubiquitous applications for Remote Robotics,
Home Automation Systems and Industrial Web. We use a top-
down approach, while choosing to follow the Model Driven
Engineering concepts. We want to focus on working modes,
to manage as much as possible uncertainty, and to add virtual
reality to give a better feedback to the user thus making it
possible to play with point of view and time delay.

Right now, we are not ready to propose real tools and
solutions, but a first model has been built, the Gemma-Q
methodology is already in use for remote robotics experiments
and a virtual model of a real robot has been developed
for test purposes. We are now considering the best working
environment, probably SysML with some AADL flavours, to
be able to propose automatic transformation from model to
code.

ACKNOWLEDGMENT

This work is supported by the city of Brest, ”Brest
Métropole Océane”, and performed in partnership with Terra-
Nova Energy. We thank them for their help.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American
Special Issue on Communications, Computers, and Networks, 1991.

[2] Wikipedia, the free encyclopedia, “Personal
area network,” Jun. 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Personal area network/

[3] ——, “Local area network,” Jun. 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Local area network

[4] ——, “Wide area network,” Jun. 2009. [Online]. Available:
http://en.wikipedia.org/wiki/Wide Area Network

[5] IEEE 802.11 working group, “Ieee 802.11 wireless local area networks,”
Jun. 2009. [Online]. Available: http://www.ieee802.org/11/

[6] IEEE 802.16 working group, “Ieee 802.16 working group on broadband
wireless local aces standards,” Jun. 2009. [Online]. Available:
http://grouper.ieee.org/groups/802/16/

[7] D. Comer, Iternetworking With TCP/IP Volume 1: Principles Protocols,
and Architecture, 5th edition. Prentice Hall, 2006.

[8] T. Berners-Lee, R. Fielding, and H. Frystyk, “RFC 1945: Hypertext
Transfer Protocol — HTTP/1.0,” May 1996, status: INFOR-
MATIONAL. [Online]. Available: ftp://ftp.internic.net/rfc/rfc1945.txt,
ftp://ftp.math.utah.edu/pub/rfc/rfc1945.txt

[9] Open Mobile Allicance, “Material from affiliates - wire-
less application protocol,” Jun. 2009. [Online]. Available:
http://www.openmobilealliance.org/Technical/wapindex.aspx

[10] Wikipedia, the free encyclopedia, “General packet
radio service,” Jun. 2009. [Online]. Available:
http://en.wikipedia.org/wiki/General Packet Radio Service

[11] K. Goldberg and R. Siegwart, Beyond Webcams : an introduction to
online robots. The MIT Press, 2001.

[12] M. Stein, “Painting on the world wide web : the pumapaint project.” in
In Proceeding of the IEEE IROS’98 Workshop on Robots on the Web,
Oct. 1998, pp. Victoria, Canada.

[13] P. Saucy and F. Mondada, “Khepontheweb: One year of access to a
mobile robot on the internet.” In IEEE International Conference On
Intelligent Robots and Systems (IROS): Workshop on Web Robots, 1998.

[14] K. Taylor and J. Trevelyan, “A telerobot on the world wide web.” 1995
National Conference of the Australian Robot Association, Jul. 1995.

[15] J. Trevelyan, J. Stewart, and N. Scott, “The telelabs project,” Apr.
2009. [Online]. Available: http://telerobot. mech.uwa.edu.au/

[16] P. G. Backes, K. S. Tso, and K. Tharp, “Mars pathfinder mission
internet-based operations using wits,” in Proceedings of the 1998 IEEE
International Conference on robotics and Automation, Leuven, Belgium,
May 1998.

[17] WebSurg, “Operation lindbergh : first transatlantic robot-
assisted operation,” Sep. 2001. [Online]. Available:
http://www.websurg.com/lindbergh/index.cfm

[18] Nokia, “Smart home solution,” Apr. 2009. [Online]. Available:
http://smarthomepartnering.com/cms/

[19] J. Vareille, P. Le Parc, and L. Marcé, ”Web remote control of mechanical
systems: delay problems and experimental measurements of Round Trip
Time. John Chiasson and Jean Jacques Loiseau Eds, Mar. 2007, chapter
of ”Applications of time delay systems”, LNCIS 352.

[20] P. Le Parc, J. Vareille, and L. Marcé, “Long distance remote control
over internet: a reliability challenge,” Intelligent Machines and Factories.
Journal of Machine and Engineering ISSN 1642-6568, Mar. 2005.

[21] M. Wang, J. Cao, S. J.I., V. Raychoudhury, and J. Li, “Ubiquitous
intelligent object: Modelling and applications,” in Third International
Conference on Semantics, Knowledge and Grid, 2007, pp. 236 – 241.

[22] D. C. Schmidt, “Model-driven engineering,” IEEE Computer Society,
pp. 25 – 31, february 2006.

[23] SysML Partners, “Sysml - open source specification project,” Apr.
2009. [Online]. Available: http://www.sysml.org

[24] M. Faugere, T. Bourbeau, D. Simone, and R. Gerard, “Marte: Also an
uml profile for modeling aadl applications,” 12th IEEE International
Conference on Engineering Complex Computer Systems, pp. 359 – 364,
July 2007.

[25] P. Apvrille, L. Courtiat, J. Lohr, and C. de Saqui Sannes, “Turtle : a
real-time uml profile supported by a formal validation toolkit,” IEEE
Transactions on Software Engineering, vol. 30, no. 7, pp. 473 – 487,
July 2004.

[26] SAE : Society of Automotive Engineers, “Aadl predictable model-based
engineering,” Apr. 2009. [Online]. Available: http://aadl.info/

[27] P. Kostelnik, M. Sarnovsky, J. Hreno, M. Ahlsen, P. Rosengren, P. Kool,
and M. Axling, “Semantic devices for ambien environment middleware,”
EURO TrustAMI, Internet of Things and Services Workshop, 2008.

[28] R. Muhammad, L. Youg Koo, and L. Sungyoung, “Knowledge manage-
ment framework for ubiquitous systems,” IEEE International Conference
on Management of Innovation and Technology, vol. 1, pp. 412 – 416,
June 2006.

[29] S. Khungar and J. Riekki, “A context based data management system
for pervasive computing collaborative applications,” in ACM Conference
on Computer Supported Cooperative Work, Chikago, IL, 2004.

[30] Amigo working group, “Amigo middleware core: Prototype imple-
mentation & documentation,” INRIA, FT, ICCS-NTUA, IKER, IMS,
Microsoft, TELIN, TID, VTT, Tech. Rep. D3.2, 2OO6.



Device
name : EString
Id : EInt

DCManager

Behavior

Connection

ProvidedService

Type

Context
(from Data)

UserInterface MediumConnection
(from Medium)

Mode
kind : BehanioralMode

<<enumeration>>
BehanioralMode

Normal
Recovery

VirtualRealityInterfaceMecanicalProperty

Environment
itsBehaviour1..1

itsServer
1..1

itsType
1..1

itsCon0..*

itsContext
0..1

itsProSer

1..*

itsInterface0..1 medConnection1..1

itsMecProperty

0..*

itsMecDevPr0..*

asocietedTo
0..*

itsEnvironment

0..1

itsEnv
0..*

itsMecPart

0..*

itsVirtBehav

0..*

Fig. 2. Device Model


