An extension of the class of unitary time–warping projectors to discrete–time sequences

Abstract : This paper establishes a new coherent framework to extend the class of unitary warping operators [1] to the case of discrete–time sequences. Providing some a priori considerations on signals, we show that the class of discrete–time warping operators finds a natural description in linear shift–invariant spaces. On such spaces, any discrete–time warping operator can be seen as a non–uniform weighted resampling of the original signal. Then, gathering different results from the non–uniform sampling theory, we propose an efficient iterative algorithm to compute the inverse discrete–time warping operator and we give the conditions under which the warped sequence can be inverted. Numerical examples show that the inversion error is of the order of the numerical round–off limitations after few iterations.
Type de document :
Communication dans un congrès
ICASSP, May 2006, Toulouse, France. III, pp.412-415, 2006
Liste complète des métadonnées

http://hal.univ-brest.fr/hal-00488310
Contributeur : Stéphane Azou <>
Soumis le : mardi 1 juin 2010 - 16:55:20
Dernière modification le : jeudi 11 janvier 2018 - 06:16:32

Identifiants

  • HAL Id : hal-00488310, version 1

Citation

Arnaud Jarrot, Cornel Ioana, André Quinquis. An extension of the class of unitary time–warping projectors to discrete–time sequences. ICASSP, May 2006, Toulouse, France. III, pp.412-415, 2006. 〈hal-00488310〉

Partager

Métriques

Consultations de la notice

139