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A procedure for determining two parameters to be used in Kautz approximation is presented. It is based on minimisation of an upper bound of the error energy.

Introduction:

Poorly damped systems are difficult to approximate with a reasonable number of Laguerre functions, so the socalled two-parameter Kautz functions which can approximate more efficiently signals with strong oscillatory behavior, have received much attention in the recent mathematical modelling and identification literature (see, e.g., [ [START_REF] Wahlberg | On approximation of stable linear dynamical systems using Laguerre and Kautz functions[END_REF]] and the references therein). These functions can be defined by their Laplace transforms

ϕ 2k (s) = √ 2bc s 2 + bs + c s 2 -bs + c s 2 + bs + c k ϕ 2k+1 (s) = s √ 2b s 2 + bs + c s 2 -bs + c s 2 + bs + c k b > 0, c > 0, k = 0, 1, 2, ...
where the numbering of the functions as defined in [ [START_REF] Wahlberg | On approximation of stable linear dynamical systems using Laguerre and Kautz functions[END_REF]] has been slightly modified for suitability. The time functions are written ϕ n (t) or as ϕ n (t, b, c) whenever it is desirable to exhibit the parameters. The orthonormal set {ϕ n } is complete in L 2 [0, ∞[, thus any finite energy real causal signal f (t) can be approximated within any prescribed accuracy by truncating its infinite expansion

f (t) = ∞ n=0 a n ϕ n (t) where a n = f, ϕ n is the n + 1 th Fourier coefficient. The N -term truncated expansion yields the best approximation to f (t) of the form f (t) = N -1 n=0 a n ϕ n (t) in the sense of minimising the integrated squared error (ISE) Q = ∞ 0 f (t) -f (t) 2 dt = f 2 - N -1 n=0 a 2 n = ∞ n=N a 2 n . (1) 
Usually, since the a n depend on b and c, Q can be reduced further by a proper choice of these parameters. Nice optimality conditions for Kautz approximation, generalizing that of the Laguerre case [ [START_REF] Clowes | Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions[END_REF], [START_REF] Wang | Optimal choice of time-scaling factor for linear system approximations using Laguerre models[END_REF]], have been derived by Oliveira e Silva [ [START_REF] Oliveira E Silva | Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles[END_REF]] and den Brinker [ [START_REF] Den Brinker | Optimality conditions for a specific class of truncated Kautz series[END_REF]]. However, these conditions of great theoretical interest can result in complicated computations in practical cases. For Laguerre functions [ [START_REF] Parks | Choice of time scale in Laguerre approximations using signal measurements[END_REF], [START_REF] Fu | An optimum time scale for discrete Laguerre network[END_REF]] and other classical functions [ [START_REF] Tanguy | Optimum choice of free parameter in orthonormal approximations[END_REF], [START_REF] Den Brinker | Optimal free parameters in orthonormal approximations[END_REF]] an alternative easy-to-use and efficient approach, based on minimisation of an upper bound of the error energy, has been proposed. It is the purpose of this Letter to derive a somewhat similar procedure for the specific set of non-classical two-parameter Kautz functions.

F 1 (s) = s 2 f (s) -c f (c /s ) s 2 -c (2) 
F 2 (s) = f (c /s ) -f (s) s √ c s 2 -c . (3) 
Since F i (c /s ) = F i (s), both these functions are symmetric functions of c /s and s and so they can be represented as functions of (c /s ) + s and (c /s ) s = c, whence

F i (s) = f i (s + c /s , c) , i = 1, 2 . (4) 
Notice that the transformation s → s + c /s is familiar in filter design where it is used to design a band-pass filter from a low-pass filter. The trick to relate Kautz coefficients and power series is to observe the remarkable relationship

f i (s, c) = ∞ n=0 a 2n+2-i l n (s, b) , i = 1, 2 (5) 
where

l n (s, b) = √ 2b (s -b) n (s + b)
n+1 denotes the Laplace transform of the normalised Laguerre function l n (bt).

Thus, the Fourier coefficients associated with the expansion of f (t) with respect to the orthonormal set {ϕ n } can be obtained via Laguerre expansions.

Proposed procedure for pertinent parameters:

Denoting by f i (t, c) the inverse Laplace transform of f i (s, c), let us define moments M j by

M 0 = ∞ 0 (f 1 ) 2 + (f 2 ) 2 dt (6) M 1 (c) = ∞ 0 t (f 1 ) 2 + (f 2 ) 2 dt (7) M 2 (c) = ∞ 0 t df 1 dt 2 + df 2 dt 2 dt (8) 
where we have used f i as shorthand for f i (t, c). Since the Laguerre functions are orthonormal and the Kautz functions are orthonormal also, both M 0 and f 2 are equal to ∞ n=0 a 2 n , hence M 0 = f 2 is a constant. On the other hand, M 1 and M 2 depend on c but do not depend on b.

Theorem 1:

Let q = Q f 2 , m i (c) = M i (c) f 2 , i = 1, 2.
Then, the normalised ISE associated with a 2K-term Kautz approximation is bounded by

q ≤ B = 1 2K m 2 (c) b + bm 1 (c) -1 . (9) 
This bound attains its minimum when b = m 2 (c) /m 1 (c) . The minimum itself is

B min = 2 m 1 (c) m 2 (c) -1 /(2K) . Proof: Let M j = M j1 + M j2 where M ji denotes the contribution of f i (M 01 = ∞ 0 (f 1 )
2 dt, ...). Then, the ISE Q i = ∞ n=K a 2 2n+2-i associated with the K-term Laguerre approximation of f i (t, c) (see eqn. 5) is known [ [START_REF] Parks | Choice of time scale in Laguerre approximations using signal measurements[END_REF]] to be bounded by (M 2i /b + M 1i b -M 0i ) /(2K) , provided that (2K + 1) ≥ (M 2i /b + M 1i b) /M 0i , i = 1, 2, a condition which is assumed to hold in the following (K is sufficiently large). In view of eqn. 1 the ISE associated with the (N = 2K)-term Kautz approximation of f (t) is Q = Q 1 + Q 2 and can then be bounded as Q ≤ (M 2 /b + M 1 b -M 0 ) /(2K) . Dividing throughout by f 2 = M 0 achieves the proof of eqn. 9. Writing ∂B /∂b = 0, the last part of the theorem follows readily. For a fixed c > 0, let

C = C (c; m 1 , m 2 ) denote the class of signals f ∈ L 2 [0, ∞[ with given m 1 (c) = m 1 and m 2 (c) = m 2 .
There exist signals f ∈ C that achieve the bound in eqn. 9; as a simple example, consider C (5; 0.4, 1.6): it is a standard exercise to show that f (t) = 3ϕ 0 (t, 2, 5) + ϕ 6 (t, 2, 5) is in this class. Clearly, the 6-term Kautz approximation using ϕ n (t, 2, 5) is f (t) = 3ϕ 0 (t, 2, 5) with q = 0.1 and B = (1.6 /2 + 2 × 0.4 -1) /6 = 0.1, whence q = B. Therefore, the bound in eqn. 9 is actually the maximum ISE for signals in C and theorem 1 gives the best b, in the sense of minimising the maximum integrated squared error, that can be obtained with the knowledge of the signal limited to m 1 (c) and m 2 (c). Now, suppose that m 1 (c) and m 2 (c) are known for more than one value of c, say for c ∈ C where C represents a discrete or continuous set of positive numbers. Since the lowest m 1 (c) m 2 (c) will result in the lowest B min , we have the following theorem. 

Remark:

Notice that b 0 and c 0 do not depend on the number N = 2K of functions to be used. Thus b 0 and c 0 can be computed in a first time and N can be chosen afterwards: for instance, one can choose N such that the upper bound (B min ) 0 is small enough or such that the exact q = 1-

N -1 n=0 a 2 n f
2 is small enough.

Illustrative example:

Consider the Laplace transform f (s) = s 3 + 4s 2 + 8s + 1 s 4 + 5s 3 + 13s 2 + 19s + 18 with a view to deriving a second-order approximation (N = 2 Kautz functions). Letting for example c = 4, eqns. 2-4 yield f 1 (s, 4) = 9s 3 + 72s 2 + 182s + 127 9s 4 + 83s 3 + 267s 2 + 349s + 164 The normalised moments computed by repeating the procedure for c = 2 and c = 3 are shown in Table 1. For c ∈ {2, 3, 4}, the product m 1 (c) m 2 (c) is minimum if c = 3; therefore, in agreement with theorem 2, we select b o = 0.4980 /0.5138 = 0.9846 and c o = 3, improving the normalised ISE which becomes q = q o = 2.505 × 10 -3 . It is worth noting that q o obtained using limited knowledge of the signal (Table 1) is, for this example, very close to the best possible value q opt = 2.486 × 10 -3 that can be achieved with complete knowledge of the signal. 

Conclusion:

A procedure for improving a Kautz approximation, in the case of a limited number of expansion terms, by a proper choice of a pair of free parameters, has been presented. It possesses desirable features and can be readily adapted to the discrete time case. This work is underway.

Theorem 2 :

 2 Let c 0 denote that value of c ∈ C at which the product m 1 (c) m 2 (c) is minimum and let b 0 = m 2 (c 0 ) /m 1 (c 0 ) . Then, a pertinent choice for the pair of Kautz parameters is (b 0 , c 0 ), which yields (B min ) 0 = 2 m 1 (c 0 ) m 2 (c 0 ) -1 /(2K) .

f 2

 2 (s, 4) = s 3 + 19s 2 + 81s + 87 9s 4 + 83s 3 + 267s 2 + 349s + 164 Using one of the available techniques (e.g. [[10]]), the required moments are computed as M 0 = f 2 = 0.5183, M 1 (4) = 0.2531, M 2 (4) = 0.3278 and the error bound is minimised when b = m 2 (4) /m 1 (4) = M 2 (4) /M 1 (4) = 1.138. With b = 1.138 and c = 4, the first and second coefficients of the Kautz expansion are a 0 = 0.2965 and a 1 = 0.6365 from which the exact normalised ISE is obtained as q = 4.878 × 10 -2 .

  0.5138 0.4883 m 2 (c) 0.6747 0.4980 0.6325 m 1 (c) m 2 (c) 0.3596 0.2559 0.3088 Table 1: Normalised moments for c = 2, 3, 4