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Abstract

A procedure for determining two parameters to be used in Kautz approximation is presented. It is based on minimisation of an upper
bound of the error energy.

Index terms: Orthonormal approximation, Signal representation, Modelling, Mathematical techniques.

Introduction:

Poorly damped systems are difficult to approximate with a reasonable number of Laguerre functions, so the so-
called two-parameter Kautz functions which can approximate more efficiently signals with strong oscillatory behavior,
have received much attention in the recent mathematical modelling and identification literature (see, e.g., [[1]] and the
references therein). These functions can be defined by their Laplace transforms
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b > 0,c>0,k=0,1,2,...

where the numbering of the functions as defined in [[1]] has been slightly modified for suitability. The time functions
are written ¢, (t) or as ¢, (t,b,¢) whenever it is desirable to exhibit the parameters. The orthonormal set {p,} is
complete in L? [0, o[, thus any finite energy real causal signal f (t) can be approximated within any prescribed accuracy
by truncating its infinite expansion f (t) = >~ antn (t) where a, = (f,¢,) is the n + 1 th Fourier coefficient. The
N-term truncated expansion yields the best approximation to f (t) of the form f (t) = 271:7:—01 an@n (t) in the sense of
minimising the integrated squared error (ISE)
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Usually, since the a,, depend on b and ¢, @ can be reduced further by a proper choice of these parameters. Nice optimality
conditions for Kautz approximation, generalizing that of the Laguerre case [[2], [3]], have been derived by Oliveira e Silva
[[4]] and den Brinker [[5]]. However, these conditions of great theoretical interest can result in complicated computations
in practical cases. For Laguerre functions [[6], [7]] and other classical functions [[8], [9]] an alternative easy-to-use and
efficient approach, based on minimisation of an upper bound of the error energy, has been proposed. It is the purpose of
this Letter to derive a somewhat similar procedure for the specific set of non-classical two-parameter Kautz functions.

Key relationship:
Recently [[1]], it has been shown that the coefficients a,, can be found from power series calculations in the following

manner. Denoting by f (s) the Laplace transform of f(t), assumed to be analytic outside an appropriate region in the
s-plane, let F;, i = 1,2, be defined by

Fy (s) = [s*F (s) = ef (¢ /)] /(s* = <) &)
Fy(s) = [T (e/s) = F(s)] sve /(s> =) . 3)

Since F; (¢/s) = F; (s), both these functions are symmetric functions of ¢ /s and s and so they can be represented as
functions of (¢/s) + s and (¢/s) s = ¢, whence

Fi(s)=fi(s+c/s,c) , i=12. (4)
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Notice that the transformation s — s+ ¢ /s is familiar in filter design where it is used to design a band-pass filter from
a low-pass filter. The trick to relate Kautz coefficients and power series is to observe the remarkable relationship

fils.0) =" aznpoiln (s,b) , i=12 (5)
n=0

where 1,, (5,0) = V2b(s —b)" /(s +b)"™ denotes the Laplace transform of the normalised Laguerre function I, (bt).

Thus, the Fourier coefficients associated with the expansion of f(¢) with respect to the orthonormal set {¢,} can be
obtained via Laguerre expansions.

Proposed procedure for pertinent parameters:
Denoting by f; (¢, c) the inverse Laplace transform of f; (s,c), let us define moments M; by

Mo= [ [ + (77] (©

Mo = [ e[t ] ar @

(A (d
M. = t|| — —_— dt 8
2(¢) /0 [(dt) T\ (8)
where we have used f; as shorthand for f; (¢,¢). Since the Laguerre functions are orthonormal and the Kautz functions
are orthonormal also, both My and || f||* are equal to o2 o a?, hence My = | £l is a constant. On the other hand, M;
and M, depend on ¢ but do not depend on b.
Theorem 1:

Let ¢ = Q/||f||27 m; (¢) = M; (c) /||f||2, ¢ = 1,2. Then, the normalised ISE associated with a 2K-term Kautz

approximation is bounded by
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This bound attains its minimum when b = /ms (¢) /my (¢). The minimum itself is By, = (2 my (¢) msg (c) — 1) /(2K).

Proof:

Let M; = Mj1 + Mj, where M;; denotes the contribution of f; (Mg = fooo (f1)2 dt, ...). Then, the ISE Q; =
Yoo i @340 associated with the K-term Laguerre approximation of f; (¢, ¢) (see eqn. 5) is known [[6]] to be bounded by
(My; /b + My;b — My,;) /(2K), provided that (2K + 1) > (Ma; /b + My;b) /Mo;, i = 1,2, a condition which is assumed
to hold in the following (K is sufficiently large). In view of eqn. 1 the ISE associated with the (N = 2K)-term
Kautz approximation of f(t) is @ = Q1 + Q2 and can then be bounded as Q < (Ms /b + M1b — My) /(2K). Dividing
throughout by || f H2 = M achieves the proof of eqn. 9. Writing 0B /0b = 0, the last part of the theorem follows readily.

For a fixed ¢ > 0, let C = C(c;m1,mz) denote the class of signals f € L?[0,00] with given m; (¢) = m; and
ma (¢) = mo. There exist signals f € C that achieve the bound in eqn. 9; as a simple example, consider C (5;0.4, 1.6):
it is a standard exercise to show that f(¢) = 3¢o (1,2,5) + @6 (t,2,5) is in this class. Clearly, the 6-term Kautz
approximation using ¢, (t,2,5) is f(t) = 3¢ (,2,5) with ¢ = 0.1 and B = (1.6 /2 +2 x 0.4 — 1) /6 = 0.1, whence
q = B. Therefore, the bound in eqn. 9 is actually the maximum ISE for signals in C and theorem 1 gives the best b, in
the sense of minimising the maximum integrated squared error, that can be obtained with the knowledge of the signal
limited to m; (¢) and ms (¢).

Now, suppose that my (¢) and mg (¢) are known for more than one value of ¢, say for ¢ € C where C represents a
discrete or continuous set of positive numbers. Since the lowest m; (¢) ms (¢) will result in the lowest Bypin, we have the
following theorem.

Theorem 2:

Let ¢y denote that value of ¢ € C' at which the product m; (¢) ma (¢) is minimum and let by = \/ma (co) /m1 (¢o). Then,

a pertinent choice for the pair of Kautz parameters is (bo, co), which yields (Bpin), = (2 my (co) ma (co) — 1) /(2K).

Remark:
Notice that by and ¢g do not depend on the number N = 2K of functions to be used. Thus by and ¢y can be computed
in a first time and N can be chosen afterwards: for instance, one can choose N such that the upper bound (B ), is

small enough or such that the exact ¢ = 1— ZnNz_Ol a? / |£]I* is small enough.



Illustrative example:
Consider the Laplace transform
f() s34+ 452 +8s+1
S) =
s* + 553 + 1352 +19s + 18
with a view to deriving a second-order approximation (N = 2 Kautz functions). Letting for example ¢ = 4, eqns. 2-4
yield

Filsd) = 9s% 4 7257 + 1825 + 127
AP 950 1833 1 26752 + 3495 + 164

-~ s34+ 1952 + 81s + 87

f2 (87 4)

T 05t + 8355 + 26752 + 3495 + 164

Using one of the available techniques (e.g. [[10]]), the required moments are computed as My = || f||* = 0.5183, M (4) =
0.2531, M (4) = 0.3278 and the error bound is minimised when b = \/ma (4) /mq (4) = /M3 (4) /M; (4) = 1.138.
With b = 1.138 and ¢ = 4, the first and second coefficients of the Kautz expansion are ag = 0.2965 and a; = 0.6365
from which the exact normalised ISE is obtained as ¢ = 4.878 x 1072,

The normalised moments computed by repeating the procedure for ¢ = 2 and ¢ = 3 are shown in Table 1. For
¢ € {2,3,4}, the product m; (¢) mz (¢) is minimum if ¢ = 3; therefore, in agreement with theorem 2, we select b, =
\/0.4980 /0.5138 = 0.9846 and ¢, = 3, improving the normalised ISE which becomes ¢ = ¢, = 2.505 x 1073, It is
worth noting that g, obtained using limited knowledge of the signal (Table 1) is, for this example, very close to the best
possible value gop; = 2.486 x 1073 that can be achieved with complete knowledge of the signal.

c 2 3 4
mq (c) 0.5329 | 0.5138 | 0.4883
ma (c) 0.6747 | 0.4980 | 0.6325
m1 (¢)ma (c) | 0.3596 | 0.2559 | 0.3088
Table 1: Normalised moments for ¢ = 2, 3,4

Conclusion:

A procedure for improving a Kautz approximation, in the case of a limited number of expansion terms, by a proper
choice of a pair of free parameters, has been presented. It possesses desirable features and can be readily adapted to the
discrete time case. This work is underway.
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