Pertinent parameters for Kautz approximation

R. Morvan, N. Tanguy, P.Vilbé, and L.C. Calvez.¹

Abstract

A procedure for determining two parameters to be used in Kautz approximation is presented. It is based on minimisation of an upper bound of the error energy.

Index terms: Orthonormal approximation, Signal representation, Modelling, Mathematical techniques.

Introduction:

Poorly damped systems are difficult to approximate with a reasonable number of Laguerre functions, so the socalled two-parameter Kautz functions which can approximate more efficiently signals with strong oscillatory behavior, have received much attention in the recent mathematical modelling and identification literature (see, e.g., [[1]] and the references therein). These functions can be defined by their Laplace transforms

$$\widehat{\varphi}_{2k}(s) = \frac{\sqrt{2bc}}{s^2 + bs + c} \left(\frac{s^2 - bs + c}{s^2 + bs + c}\right)^k$$

$$\widehat{\varphi}_{2k+1}(s) = \frac{s\sqrt{2b}}{s^2 + bs + c} \left(\frac{s^2 - bs + c}{s^2 + bs + c}\right)^k$$

$$b > 0, c > 0, k = 0, 1, 2, \dots$$

where the numbering of the functions as defined in [[1]] has been slightly modified for suitability. The time functions are written $\varphi_n(t)$ or as $\varphi_n(t,b,c)$ whenever it is desirable to exhibit the parameters. The orthonormal set $\{\varphi_n\}$ is complete in $L^2[0,\infty[$, thus any finite energy real causal signal f(t) can be approximated within any prescribed accuracy by truncating its infinite expansion $f(t) = \sum_{n=0}^{\infty} a_n \varphi_n(t)$ where $a_n = \langle f, \varphi_n \rangle$ is the n+1 th Fourier coefficient. The N-term truncated expansion yields the best approximation to f(t) of the form $\tilde{f}(t) = \sum_{n=0}^{N-1} a_n \varphi_n(t)$ in the sense of minimising the integrated squared error (ISE)

$$Q = \int_0^\infty \left[f(t) - \widetilde{f}(t) \right]^2 dt = \|f\|^2 - \sum_{n=0}^{N-1} a_n^2 = \sum_{n=N}^\infty a_n^2.$$
 (1)

Usually, since the a_n depend on b and c, Q can be reduced further by a proper choice of these parameters. Nice optimality conditions for Kautz approximation, generalizing that of the Laguerre case [[2], [3]], have been derived by Oliveira e Silva [[4]] and den Brinker [[5]]. However, these conditions of great theoretical interest can result in complicated computations in practical cases. For Laguerre functions [[6], [7]] and other classical functions [[8], [9]] an alternative easy-to-use and efficient approach, based on minimisation of an upper bound of the error energy, has been proposed. It is the purpose of this Letter to derive a somewhat similar procedure for the specific set of non-classical two-parameter Kautz functions.

Key relationship:

Recently [[1]], it has been shown that the coefficients a_n can be found from power series calculations in the following manner. Denoting by $\hat{f}(s)$ the Laplace transform of f(t), assumed to be analytic outside an appropriate region in the s-plane, let F_i , i = 1, 2, be defined by

$$F_1(s) = \left[s^2 \widehat{f}(s) - c \widehat{f}(c/s) \right] / (s^2 - c)$$
(2)

$$F_2(s) = \left[\hat{f}(c/s) - \hat{f}(s) \right] s\sqrt{c} / (s^2 - c) . \tag{3}$$

Since $F_i(c/s) = F_i(s)$, both these functions are symmetric functions of c/s and s and so they can be represented as functions of (c/s) + s and (c/s) s = c, whence

$$F_i(s) = \hat{f}_i(s + c/s, c)$$
 , $i = 1, 2$. (4)

¹Laboratoire d'Electronique et Systèmes de Télécommunications (LEST), UMR CNRS n° 6616, Université de Bretagne Occidentale (UBO), 29285 BREST cedex, FRANCE {Riwal.Morvan, Noel.Tanguy, Pierre.Vilbe, Leon-Claude.Calvez }@univ-brest.fr Notice that the transformation $s \to s + c/s$ is familiar in filter design where it is used to design a band-pass filter from a low-pass filter. The trick to relate Kautz coefficients and power series is to observe the remarkable relationship

$$\hat{f}_i(s,c) = \sum_{n=0}^{\infty} a_{2n+2-i} \hat{l}_n(s,b) \quad , \quad i = 1,2$$
 (5)

where $\hat{l}_n(s,b) = \sqrt{2b} (s-b)^n / (s+b)^{n+1}$ denotes the Laplace transform of the normalised Laguerre function $l_n(bt)$. Thus, the Fourier coefficients associated with the expansion of f(t) with respect to the orthonormal set $\{\varphi_n\}$ can be obtained via Laguerre expansions.

Proposed procedure for pertinent parameters:

Denoting by $f_i(t,c)$ the inverse Laplace transform of $\hat{f}_i(s,c)$, let us define moments M_i by

$$M_0 = \int_0^\infty \left[(f_1)^2 + (f_2)^2 \right] dt \tag{6}$$

$$M_1(c) = \int_0^\infty t \left[(f_1)^2 + (f_2)^2 \right] dt \tag{7}$$

$$M_2(c) = \int_0^\infty t \left[\left(\frac{df_1}{dt} \right)^2 + \left(\frac{df_2}{dt} \right)^2 \right] dt \tag{8}$$

where we have used f_i as shorthand for $f_i(t,c)$. Since the Laguerre functions are orthonormal and the Kautz functions are orthonormal also, both M_0 and $||f||^2$ are equal to $\sum_{n=0}^{\infty} a_n^2$, hence $M_0 = ||f||^2$ is a constant. On the other hand, M_1 and M_2 depend on c but do not depend on b.

Theorem 1:

Let $q = Q / ||f||^2$, $m_i(c) = M_i(c) / ||f||^2$, i = 1, 2. Then, the normalised ISE associated with a 2K-term Kautz approximation is bounded by

$$q \le B = \frac{1}{2K} \left[\frac{m_2(c)}{b} + bm_1(c) - 1 \right]. \tag{9}$$

This bound attains its minimum when $b = \sqrt{m_2\left(c\right)/m_1\left(c\right)}$. The minimum itself is $B_{min} = \left(2\sqrt{m_1\left(c\right)m_2\left(c\right)}-1\right)/(2K)$.

Proof

Let $M_j = M_{j1} + M_{j2}$ where M_{ji} denotes the contribution of f_i $(M_{01} = \int_0^\infty (f_1)^2 dt, \ldots)$. Then, the ISE $Q_i = \sum_{n=K}^\infty a_{2n+2-i}^2$ associated with the K-term Laguerre approximation of f_i (t,c) (see eqn. 5) is known [[6]] to be bounded by $(M_{2i}/b + M_{1i}b - M_{0i})/(2K)$, provided that $(2K+1) \ge (M_{2i}/b + M_{1i}b)/M_{0i}$, i=1,2, a condition which is assumed to hold in the following (K) is sufficiently large). In view of eqn. 1 the ISE associated with the (N=2K)-term Kautz approximation of f(t) is $Q = Q_1 + Q_2$ and can then be bounded as $Q \le (M_2/b + M_1b - M_0)/(2K)$. Dividing throughout by $||f||^2 = M_0$ achieves the proof of eqn. 9. Writing $\partial B/\partial b = 0$, the last part of the theorem follows readily. For a fixed c > 0, let $\mathbf{C} = \mathbf{C}(c; m_1, m_2)$ denote the class of signals $f \in L^2[0, \infty[$ with given $m_1(c) = m_1$ and $m_2(c) = m_2$. There exist signals $f \in \mathbf{C}$ that achieve the bound in eqn. 9; as a simple example, consider $\mathbf{C}(5; 0.4, 1.6)$: it is a standard exercise to show that $f(t) = 3\varphi_0(t, 2, 5) + \varphi_6(t, 2, 5)$ is in this class. Clearly, the 6-term Kautz approximation using $\varphi_n(t, 2, 5)$ is $\tilde{f}(t) = 3\varphi_0(t, 2, 5)$ with q = 0.1 and $B = (1.6/2 + 2 \times 0.4 - 1)/6 = 0.1$, whence q = B. Therefore, the bound in eqn. 9 is actually the maximum ISE for signals in \mathbf{C} and theorem 1 gives the best b, in the sense of minimising the maximum integrated squared error, that can be obtained with the knowledge of the signal limited to $m_1(c)$ and $m_2(c)$.

Now, suppose that $m_1(c)$ and $m_2(c)$ are known for more than one value of c, say for $c \in C$ where C represents a discrete or continuous set of positive numbers. Since the lowest $m_1(c) m_2(c)$ will result in the lowest B_{min} , we have the following theorem.

Theorem 2:

Let c_0 denote that value of $c \in C$ at which the product $m_1(c) m_2(c)$ is minimum and let $b_0 = \sqrt{m_2(c_0)/m_1(c_0)}$. Then, a pertinent choice for the pair of Kautz parameters is (b_0, c_0) , which yields $(B_{min})_0 = \left(2\sqrt{m_1(c_0)m_2(c_0)} - 1\right)/(2K)$.

Remark:

Notice that b_0 and c_0 do not depend on the number N=2K of functions to be used. Thus b_0 and c_0 can be computed in a first time and N can be chosen afterwards: for instance, one can choose N such that the upper bound $(B_{min})_0$ is small enough or such that the exact $q=1-\sum_{n=0}^{N-1}a_n^2\left/\|f\|^2\right|$ is small enough.

$Illustrative\ example:$

Consider the Laplace transform

$$\widehat{f}(s) = \frac{s^3 + 4s^2 + 8s + 1}{s^4 + 5s^3 + 13s^2 + 19s + 18}$$

with a view to deriving a second-order approximation (N=2 Kautz functions). Letting for example c=4, eqns. 2-4 yield

$$\widehat{f}_{1}(s,4) = \frac{9s^{3} + 72s^{2} + 182s + 127}{9s^{4} + 83s^{3} + 267s^{2} + 349s + 164}$$

$$\widehat{f}_{2}(s,4) = \frac{s^{3} + 19s^{2} + 81s + 87}{9s^{4} + 83s^{3} + 267s^{2} + 349s + 164}$$

Using one of the available techniques (e.g. [[10]]), the required moments are computed as $M_0 = \|f\|^2 = 0.5183$, $M_1(4) = 0.2531$, $M_2(4) = 0.3278$ and the error bound is minimised when $b = \sqrt{m_2(4)/m_1(4)} = \sqrt{M_2(4)/M_1(4)} = 1.138$. With b = 1.138 and c = 4, the first and second coefficients of the Kautz expansion are $a_0 = 0.2965$ and $a_1 = 0.6365$ from which the exact normalised ISE is obtained as $q = 4.878 \times 10^{-2}$.

The normalised moments computed by repeating the procedure for c=2 and c=3 are shown in Table 1. For $c \in \{2,3,4\}$, the product $m_1(c) m_2(c)$ is minimum if c=3; therefore, in agreement with theorem 2, we select $b_0=$ $\sqrt{0.4980/0.5138} = 0.9846$ and $c_o = 3$, improving the normalised ISE which becomes $q = q_o = 2.505 \times 10^{-3}$. It is worth noting that q_o obtained using limited knowledge of the signal (Table 1) is, for this example, very close to the best possible value $q_{opt} = 2.486 \times 10^{-3}$ that can be achieved with complete knowledge of the signal.

c	2	3	4
$m_1(c)$	0.5329	0.5138	0.4883
$m_2(c)$	0.6747	0.4980	0.6325
$m_1(c) m_2(c)$	0.3596	0.2559	0.3088

Table 1: Normalised moments for c = 2, 3, 4

Conclusion:

A procedure for improving a Kautz approximation, in the case of a limited number of expansion terms, by a proper choice of a pair of free parameters, has been presented. It possesses desirable features and can be readily adapted to the discrete time case. This work is underway.

References

- WAHLBERG, B., and MÄKILÄ, P.M.: 'On approximation of stable linear dynamical systems using Laguerre and Kautz functions', [1] Automatica, 1996, **32**, (5), pp. 693-708
- CLOWES, G.J.: 'Choice of the time-scaling factor for linear system approximations using orthonormal Laguerre functions', IEEE Trans., 1965, AC-10, pp. 487-489
- WANG, L., and CLUETT, W.R.: 'Optimal choice of time-scaling factor for linear system approximations using Laguerre models', IEEE Trans., 1994, AC-39, (7), pp. 1463-1467 OLIVEIRA E SILVA, T.: 'Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles',
- IEEE Trans., 1995, AC-40, (2), pp. 342-346
- DEN BRINKER, A.C.: 'Optimality conditions for a specific class of truncated Kautz series', IEEE Trans., 1996, CASII-43, (8), pp. [5] 597-600
- PARKS, T.W.: 'Choice of time scale in Laguerre approximations using signal measurements', IEEE Trans., 1971, AC-16, pp. 511-513
- FU, Y., and DUMONT, G.A.: 'An optimum time scale for discrete Laguerre network', IEEE Trans., 1993, AC-38, (6), pp. 934-938
- TANGUY, N., VILBE, P., and CALVEZ, L.C.: 'Optimum choice of free parameter in orthonormal approximations', IEEE Trans., 1995, AC-40, (10), pp. 1811-1813
- DEN BRINKER, A.C., and BELT, H.J.W.: 'Optimal free parameters in orthonormal approximations', IEEE Trans., 1998, SP-46, (8), pp. 2081-2087
- CALVEZ, L.C., VILBE, P., and SEVELLEC, M.: 'Efficient evaluation of model-reduction related integrals via polynomial arithmetic', Electron. Lett., 1992, 28, (7), pp. 659-661