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ABSTRACT 

Turbo-codes are error-correcting codes used in power-

ful digital transmission systems to ensure a low binary 

error rate. This paper presents different approaches 

aimed at recovering a convolutional encoder in a non-

cooperative context; it also explains the residual inde-

termination due to “equivalent” coders. Moreover, it 

reports on a new approach developed to recover the 

interleaved version of the second encoder of a Turbo-

code when its systematic outputs are punctured. 

1. INTRODUCTION 
Error-correcting codes enhance the quality of 

communications by enabling the binary data stream to 

better withstand channel impairments such as noisy 

transmission channel, interference or channel fading. 

For this purpose, error-correcting codes introduce some 

redundancy in the informative binary data stream. 

Turbo-codes, first introduced in [2], belong to a family 

of error-correcting codes designed to reach the best 

correction capacity through an iterative decoding 

scheme. Figure 1 shows the generic form of a Turbo-

code consisting of a parallel concatenation of two 

convolutional encoders and one interleaver. In a coop-

erative context, every parameter of the two encoders 

and of the interleaver are all known; the signal ob-

tained on the receiver side can be demodulated and 

decoded to correct the errors due to the propagation 

channel and to the imperfections of digital transmis-

sion systems. In the case of military or spectrum sur-

veillance applications, the parameters of the encoders 

are unknown, and the received data are the only avail-

able information. Under such conditions, the encoder 

parameters have to be blindly estimated. 

 

This paper introduces a method dedicated to the blind 

recovery of the second convolutional encoder of a 

Turbo-code located after the interleaver in the case 

where its systematic parts are punctured. It explains 

why the previous methods developed in [1] and [4] are 

inefficient in this specific configuration used in the 

most recent digital communication systems. At first, 

section 2 gives the principle of convolutional codes 

and introduces the concept of equivalent code, which is 

essential for encoder recovery. Section 3 describes the 

approach we developed from the techniques proposed 

in [3] and [5] in order to blindly estimate the convolu-

tional encoder parameters in a well-conditioned case. 

Moreover, it also explains briefly how the generator 

matrix of a convolutional code can be recovered by 

application of the methods developed in [1] and [4]. 

Finally, Section 4 reports on the blind estimation of the 

second encoder in the case of a classical implementa-

tion of the Turbo-code. 

 

Figure 1: Turbo-code 

2. CONVOLUTIONAL ENCODER 

2.1 Principe and mathematical model 
 

A convolutional code is an error-correcting code de-

fined by three parameters (n,k,K), where n is the num-

ber of outputs, k is the number of inputs, and K is the 

constraint length of the code. Convolutional encoding 

can be modeled and implemented by shift-registers. 

Each block of n encoded bits at the output depends on 

K blocks of k information bits, which means that each 

of the n encoded bits at the output is a linear combina-

tion of the content of k×K shift-register cells. The en-

coder can be easily described by using its generator 

polynomial form given hereafter: 
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where the information data binary stream is 

represented by k binary sequences mi(x) (with               

i = 1,…,k). Moreover, the encoded binary data are 

represented by n sequences cj(x) (with j = 1,…,k), and 

gi,j(x), in the general case, stand for the generator 

polynomial rational fraction associated to the input and 

output, i and j, respectively.  

 

The generator polynomial rational fractions are all 

components of the code generator matrix, G(x), used to  
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rewrite equation (1) as follows: 

( ) ( ). ( )x x x=c m G  

where c(x) = (c1(x)…cn(x)), m(x) = (m1(x)…mk(x)) and 

G(x) given as follow: 
 

1,1 1, 1,

,1 , ,

( ) ( ) ( )

( )     (2)

( ) ( ) ( )

k n

k k k k n

g x g x g x

x

g x g x g x

=
 
 
 
 

G

⋯ ⋯

⋮ ⋱ ⋮ ⋮

⋯ ⋯

 

In the general case, gi,j(x) are polynomial rational frac-

tions. But, as found in the NRNSC (No Recursive and 

No Systematic Code) version of a convolutional code, 

they can be only simple polynomials with no denomi-

nator polynomial, which means that there is no feed-

back part in the encoder. The other well known convo-

lutional code configuration or convolutional code type 

is RSC (Recursive Systematic Code). The term 

“systematic” means that the k first output sequences 

(c1(x), … ,ck(x)) are exact replicas of the input informa-

tion sequences (m1(x), … ,mk(x)); on the other hand, 

the term, “recursive”, indicates that the output can be 

re-injected at the input side as the feedback part. It is 

worth noting that, according to only mathematical 

considerations, any convolutional code can be de-

scribed by either an NRNSC form or an RSC one. This 

point will be detailed hereafter. 

 

2.2 Equivalent encoder 
 

“Equivalent” encoder or “equivalent” code means that 

the codewords, or the encoded sequences, generated by 

two equivalent encoders belong to the same codeword 

set. Let C1 and C2 be equivalent encoders, then the 

sequences c1(x) and c2(x) generated by the two encod-

ers span the same subspace Θ, but usually they are 

different. In practice, the decoding of an encoded se-

quence, c(x) by two equivalent encoders, C1 and C2, in 

order to recover information data, usually leads to  two 

decoded sequences, m1(x) and m2(x), where          

m1(x) ≠ m2(x). The encoded data obtained by encoding 

a binary data stream with C1 will allows one to 

identify one version of possible encoders belonging to 

the same equivalence class as C1, but liable to be 

different from C1. Even more, it is impossible to 

recover the true informative data.  

 

This notion of equivalent encoder is of key-importance 

because it makes the problem of blind encoder identifi-

cation non-trivial. Even when an equivalent encoder is 

identified, the obtained informative data are not the 

true ones. In practice, an equivalence class of convolu-

tional encoders will always contain, at least, one 

NRNSC form and its equivalent encoder in RSC form.     

    
2.3 Generator matrix of NRNSC encoder 

to RSC equivalent encoder  
 

Given that each NRNSC encoder has its equivalent 

form RSC, and that it is essential to get the right en-

coder (used at the transmitter side), but not its equiva-

lent, the issue is to transform the generator matrix, in 

NRNSC form, of a convolutional encoder into its RSC 

equivalent form 
 

• NRNSC encoder of rate 1/n (i.e k  = 1): 

For such an NRNSC encoder, the RSC equivalent 

encoder generator matrix is easily obtained by dividing 

each generator polynomial of NRNSC encoder by the 

first one. Let us illustrate this transformation with the 

example of a C(2,1,3) encoder: 
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The equivalent RSC encoder is expressed as follows: 
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• NRNSC encoder of rate k/n: 

In this case, where k > 1, it is more difficult to get the 

equivalent generator matrix. Let us assume that the 

generator matrix, GNRNSC(x), is given by equation (2) 

and that the matrix composed of the k first groups of 

the generator polynomials given hereafter is denoted 

Q(x): 
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Computing the inverse of matrix Q(x) leads to: 
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and the generator matrix of the equivalent RSC form is 

given by: 
1

( ) ( ). ( )                  (3)
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This matrix is composed of Ik the k × k identity matrix 

and of k × (n-k) polynomial rational fractions, such as: 
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where f1,1(x) = det(Q(x)) is called the feedback polyno-

mial part, and the polynomials fi,j(x), ∀ i∈{1,…k} and 

∀ j∈{k+1,…n} are the numerator polynomials of the 

non systematic outputs of the RSC encoder. Let us 

exemplify this transformation by detailing these 

calculations for an NRNSC C(2,3,3) encoder whose 

generator matrix is given by: 
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Using equation (3) to calculate GRSC(x) leads to:  
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3. CONVOLUTIONAL ENCODER 

3.1 Blind estimation of the convolutional 

encoder parameters 
 

It is now worth focusing on the blind estimation of 

convolutional encoder parameters in the non-

cooperative context. The method proposed in [3] per-

mits estimations of the interleaver period and of the 

code rate for a block code by taking profit from the 

redundancy introduced by the error-correcting code. A 

similar approach was used in [5] when the intercepted 

sequence was severely corrupted. From both methods, 

we developed an approach to be applied to the 

convolutional code in the case of a perfect transmission 

(no transmission error).  

 

Its principle is to reshape columnwise the intercepted 

data bit stream under matrix form. This matrix, de-

noted Hi, is computed for different values of i where i 

is the number of rows. For each matrix, the rank in the 

Galois Field GF(2) is computed. For i ≠ α·n with 

α∈ℕ , Hi is a full rank matrix. But, for l = α ·n, Hl is 

not a full rank matrix because some among the col-

umns are linear combinations of the others induced by 

the redundancy introduced by the code. In this case, 

the rank of Hl is given by equation (4): 

     (H ) . .( 1),  . ,        (4)
l

k
rank l k K l n

n
α α= + − ∀ = ∈ℕ  

So, the encoder parameters, n, k and K, are identified 

by application of a linear regression method. 
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Figure 2: Estimation of the encoder parameters 

Let us illustrate this approach with a C(3,2,3) code. 

The matrices, Hi, are built, and then the rank is com-

puted for increasing values of i. Figure 2 presents the 

obtained values of rank as a function of i. It is worth 

noting that: the rank is equal to i, except when i is a 

multiple of n and the method permits to estimate that n 

is equal to 3. Furthermore, when i is a multiple of n, 

the slope is equal to 2/3, and it is easy to find that k= 2. 

Finally, K= 3 is estimated by using equation (4). 

 

3.2 Blind estimation of the generator 

matrix  
 

Now, it is possible to estimate the generator matrix of 

the code by applying a part of the methods developed 

in [1] and [4]. The method described in [1] is a general 

implementation of [4]. Both permit a global estimation 

of n, k, K and G in an iterative way. In these algo-

rithms, the values of n, k and K are incremented at each 

iteration and, for each iteration, the (n-k) systems of 

(k+1) equations have to be solved. The fact that the 

rank computation of a matrix is easier than an iterative 

solving of linear-equation systems for every combina-

tion of n, k and K drove us to improve these methods 

by reducing the total number of equations to be solved. 

Once n, k and K have been estimated, there are only  

(n-k) systems of (k+1) equations to be solved to 

estimate G. In fact, the part of the methods described 

in [1] and [4] and used, here, to estimate the generator 

matrix allows one to find the NRNSC equivalent form, 

GNRNSC, of the encoder really used. Thus, if the encoder 

is known to be in the RSC form, the algorithm pro-

posed in subsection 2.3 can be used to get the genera-

tor matrix, GRSC. 

4. BLIND RECOVERY OF TURBO-
CODER 

This section deals with the problem of the blind recov-

ering of convolutional encoders used in Turbo-code. 

The past section described a method to recover the 

convolutional parameters and the generator matrix. On 

the other hand, its direct application to Turbo-coders is 

non-trivial because of the particular configuration of 

the convolutional encoders. In practice, the encoders 

are both in the RSC form and the encoder rate is 

k/(k+1), which means that n = k+1; moreover, the sys-

tematic part of the second encoder is punctured. In 

such a specific configuration, the method described in 

section 3 is inapplicable to the second encoder because 

it requires data from, at least, two outputs for each 

encoder. For the first encoder, the blind estimation is 

achievable; if this encoder is in RSC form the encoded 

data, c(x), are decoded to get the information data, 

m(x). One should note that the blind determination of 

the encoder form is out of the scope of this paper. 

When the rate of the second encoder is k/n with           

n > k+1, its parameters as well as the generator matrix 

are both given by this method even with punctured k-

systematic outputs, because after puncturing the 

outputs are, at least, (n - k) ≥  2. But, in the case where 

the rate of the second encoder is k/(k+1) together with 

a punctured systematic part, it remains only one output 

and, thus, the above method is not applicable. 



Let us now focus on the case where 1/n the extension 

of our method to the general k/(k+1) case is still under 

study. It sounded us worth, at first, to consider all of 

the outputs of the Turbo-code. But, the outputs of the 

second and first encoder are not direct linear combina-

tions of the same input since the output of the second 

one are obtained after interleaving of the information 

data. Figure 3 deals with the most critical case: 1/2 (k 

= 1,   n = 2). Application of the rank method described 

in section 3.1 to this case gives the parameters, n, K 

and le. It ensues that there are (n-1) non systematic 

outputs, denoted c’ (with c’ = c’2…c’n) in vector form, 

as well as the vector of information data, m, for C2 

recovery.  

 

Figure 3: Special equivalent scheme of Turbo-code 

The block interleaver can be modelled by a permuta-

tion matrix E0 of size, le × le. This permutation matrix 

operates on le-sized blocks, and the global interleaver 

can be represented by a square matrix, E: 

=
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The vector of all the interleaved data denoted m’ is 

equal to m’ =  m·E, and with an RSC-type encoder the 

total output stream and the input stream for all              

j = 2,…,n are linked by equation (5): 
' '

1 1
          . . . . . . 0          (5)

j j j j
= ⇒ + =c G mEG c G mEG  

where Gi contains the binary coefficients of the i
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Since the interleaver operated by le-sized blocks, equa-

tion (5) can be rewritten as a vector form of size le on 

condition to not take into account the overlap-related 

problem. One should note that the interleaver is miss-

ing in the first part (c’j.G1) of equation (5). It ensues 

that the number of bits required for the determination 

of the first generator polynomial is only K instead of 

le; moreover, these bits have to be taken from every le-

bit block. So, for each block of size le, this system can 

be rewritten in vector form as follows:   

1
' . . . 0
j j

c f m f+ =
0

Ε  

where the vector, c’j , is composed of the K first bits 

from each le-sized block of c’j, and m is composed of 

le bits of m. The vectors, f1 and fj, correspond to the K 

binary coefficients of the feedback generator polyno-

mial and to the le bits of Gj, respectively, so that:  

[ ] TT

1 1 1
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Now, it is easy to construct and to solve the (n-1) sys-

tems given hereafter to recover the generator 

polynomials 
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and the vector column   of size ( + ): 
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This method gives the first generator polynomial (f1) 

and the interleaving version of the other generator 

polynomials. The complete blind estimation of the 

Turbo-code with recovery of the interleaver as well as 

the determination of encoder type are both out of the 

scope of this paper and will be described in the future. 

Once the interleaver has been estimated, the generator 

matrix of the encoder is easily obtained after             

de-interleaving. 

5. CONCLUSION 
This paper presented an approach developed to esti-

mate convolutional codes in a non-cooperative context. 

This method allows a reduction of the complexity of 

previous algebraic approach introduced in [1] and [4]. 

Moreover, it leads to the generator matrix of an RSC 

encoder from its equivalent NRNSC. We also de-

scribed a new approach aimed at estimating the second 

encoder of Turbo-code in the case of puncturing on its 

systematic part; it allowed us to get the interleaved 

version of these generator polynomials. 
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