
HAL Id: hal-00485785
https://hal.univ-brest.fr/hal-00485785

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Blind recovery of the second convolutional encoder of a
turbo-code when its systematic outputs are punctured

Roland Gautier, Mélanie Marazin, Gilles Burel

To cite this version:
Roland Gautier, Mélanie Marazin, Gilles Burel. Blind recovery of the second convolutional encoder
of a turbo-code when its systematic outputs are punctured. 7-th IEEE-Communications 2008, Jun
2008, Bucharest, Romania. pp.345-348. �hal-00485785�

https://hal.univ-brest.fr/hal-00485785
https://hal.archives-ouvertes.fr

 BLIND RECOVERY OF THE SECOND CONVOLUTIONAL ENCODER

OF A TURBO-CODE WHEN ITS SYSTEMATIC OUTPUTS ARE

PUNCTURED

R. Gautier, M. Marazin and G. Burel

LEST – UMR CNRS 6165, University of Brest

CS 93837, 29238 BREST cedex 3, FRANCE

phone: + 33.(0)2.98.01.82.40, fax: + 33.(0)2.98.01.63.95, email: Roland.Gautier@.univ-brest.fr

http://www.univ-brest.fr/lest/tst

ABSTRACT

Turbo-codes are error-correcting codes used in power-

ful digital transmission systems to ensure a low binary

error rate. This paper presents different approaches

aimed at recovering a convolutional encoder in a non-

cooperative context; it also explains the residual inde-

termination due to “equivalent” coders. Moreover, it

reports on a new approach developed to recover the

interleaved version of the second encoder of a Turbo-

code when its systematic outputs are punctured.

1. INTRODUCTION
Error-correcting codes enhance the quality of

communications by enabling the binary data stream to

better withstand channel impairments such as noisy

transmission channel, interference or channel fading.

For this purpose, error-correcting codes introduce some

redundancy in the informative binary data stream.

Turbo-codes, first introduced in [2], belong to a family

of error-correcting codes designed to reach the best

correction capacity through an iterative decoding

scheme. Figure 1 shows the generic form of a Turbo-

code consisting of a parallel concatenation of two

convolutional encoders and one interleaver. In a coop-

erative context, every parameter of the two encoders

and of the interleaver are all known; the signal ob-

tained on the receiver side can be demodulated and

decoded to correct the errors due to the propagation

channel and to the imperfections of digital transmis-

sion systems. In the case of military or spectrum sur-

veillance applications, the parameters of the encoders

are unknown, and the received data are the only avail-

able information. Under such conditions, the encoder

parameters have to be blindly estimated.

This paper introduces a method dedicated to the blind

recovery of the second convolutional encoder of a

Turbo-code located after the interleaver in the case

where its systematic parts are punctured. It explains

why the previous methods developed in [1] and [4] are

inefficient in this specific configuration used in the

most recent digital communication systems. At first,

section 2 gives the principle of convolutional codes

and introduces the concept of equivalent code, which is

essential for encoder recovery. Section 3 describes the

approach we developed from the techniques proposed

in [3] and [5] in order to blindly estimate the convolu-

tional encoder parameters in a well-conditioned case.

Moreover, it also explains briefly how the generator

matrix of a convolutional code can be recovered by

application of the methods developed in [1] and [4].

Finally, Section 4 reports on the blind estimation of the

second encoder in the case of a classical implementa-

tion of the Turbo-code.

Figure 1: Turbo-code

2. CONVOLUTIONAL ENCODER

2.1 Principe and mathematical model

A convolutional code is an error-correcting code de-

fined by three parameters (n,k,K), where n is the num-

ber of outputs, k is the number of inputs, and K is the

constraint length of the code. Convolutional encoding

can be modeled and implemented by shift-registers.

Each block of n encoded bits at the output depends on

K blocks of k information bits, which means that each

of the n encoded bits at the output is a linear combina-

tion of the content of k×K shift-register cells. The en-

coder can be easily described by using its generator

polynomial form given hereafter:

1 1 1,1 ,1

1 1, ,

() (). () (). ()

 (1)

() (). () (). ()

k k

n n k k n

c x m x g x m x g x

c x m x g x m x g x

= + +

= + +







⋯

⋮ ⋮

⋯

where the information data binary stream is

represented by k binary sequences mi(x) (with

i = 1,…,k). Moreover, the encoded binary data are

represented by n sequences cj(x) (with j = 1,…,k), and

gi,j(x), in the general case, stand for the generator

polynomial rational fraction associated to the input and

output, i and j, respectively.

The generator polynomial rational fractions are all

components of the code generator matrix, G(x), used to

rgautier
Zone de texte
7th IEEE-Communications 2008, June 5-7, 2008, Bucharest, Romania.

rewrite equation (1) as follows:

() (). ()x x x=c m G

where c(x) = (c1(x)…cn(x)), m(x) = (m1(x)…mk(x)) and

G(x) given as follow:

1,1 1, 1,

,1 , ,

() () ()

() (2)

() () ()

k n

k k k k n

g x g x g x

x

g x g x g x

=
 
 
 
 

G

⋯ ⋯

⋮ ⋱ ⋮ ⋮

⋯ ⋯

In the general case, gi,j(x) are polynomial rational frac-

tions. But, as found in the NRNSC (No Recursive and

No Systematic Code) version of a convolutional code,

they can be only simple polynomials with no denomi-

nator polynomial, which means that there is no feed-

back part in the encoder. The other well known convo-

lutional code configuration or convolutional code type

is RSC (Recursive Systematic Code). The term

“systematic” means that the k first output sequences

(c1(x), … ,ck(x)) are exact replicas of the input informa-

tion sequences (m1(x), … ,mk(x)); on the other hand,

the term, “recursive”, indicates that the output can be

re-injected at the input side as the feedback part. It is

worth noting that, according to only mathematical

considerations, any convolutional code can be de-

scribed by either an NRNSC form or an RSC one. This

point will be detailed hereafter.

2.2 Equivalent encoder

“Equivalent” encoder or “equivalent” code means that

the codewords, or the encoded sequences, generated by

two equivalent encoders belong to the same codeword

set. Let C1 and C2 be equivalent encoders, then the

sequences c1(x) and c2(x) generated by the two encod-

ers span the same subspace Θ, but usually they are

different. In practice, the decoding of an encoded se-

quence, c(x) by two equivalent encoders, C1 and C2, in

order to recover information data, usually leads to two

decoded sequences, m1(x) and m2(x), where

m1(x) ≠ m2(x). The encoded data obtained by encoding

a binary data stream with C1 will allows one to

identify one version of possible encoders belonging to

the same equivalence class as C1, but liable to be

different from C1. Even more, it is impossible to

recover the true informative data.

This notion of equivalent encoder is of key-importance

because it makes the problem of blind encoder identifi-

cation non-trivial. Even when an equivalent encoder is

identified, the obtained informative data are not the

true ones. In practice, an equivalence class of convolu-

tional encoders will always contain, at least, one

NRNSC form and its equivalent encoder in RSC form.

2.3 Generator matrix of NRNSC encoder

to RSC equivalent encoder

Given that each NRNSC encoder has its equivalent

form RSC, and that it is essential to get the right en-

coder (used at the transmitter side), but not its equiva-

lent, the issue is to transform the generator matrix, in

NRNSC form, of a convolutional encoder into its RSC

equivalent form

• NRNSC encoder of rate 1/n (i.e k = 1):

For such an NRNSC encoder, the RSC equivalent

encoder generator matrix is easily obtained by dividing

each generator polynomial of NRNSC encoder by the

first one. Let us illustrate this transformation with the

example of a C(2,1,3) encoder:

() 2 2
1 1

NRNSC
x x x x= + + +  G

The equivalent RSC encoder is expressed as follows:

() () 2

2 2

1
1

1 1

NRNSC

RSC

x x
x

x x x x

+
= =

+ + + +
 
 
 

G
G

• NRNSC encoder of rate k/n:

In this case, where k > 1, it is more difficult to get the

equivalent generator matrix. Let us assume that the

generator matrix, GNRNSC(x), is given by equation (2)

and that the matrix composed of the k first groups of

the generator polynomials given hereafter is denoted

Q(x):

()
() ()

() ()
1,1 1,

,1 ,

k

k k k

g x g x

x
g x g x

=
 
 
  

Q

⋯

⋮ ⋱ ⋮

⋯

Computing the inverse of matrix Q(x) leads to:

1 ()
()

det(())

adj x
x

x

− =
Q

Q
Q

and the generator matrix of the equivalent RSC form is

given by:
1

() (). () (3)
RSC NRNSC

x x x
−=G Q G

This matrix is composed of Ik the k × k identity matrix

and of k × (n-k) polynomial rational fractions, such as:

()

()
()

()
()

()
()

()
()

1, 1 1,

1,1 1,1

, 1 ,

1,1 1,1

1 0

0 1

k n

RSC

k k k n

f x f x

f x f x

x

f x f x

f x f x

+

+

=

 
 
 
 
 
 
  

G

⋯

⋱ ⋮ ⋮

⋯

where f1,1(x) = det(Q(x)) is called the feedback polyno-

mial part, and the polynomials fi,j(x), ∀ i∈{1,…k} and

∀ j∈{k+1,…n} are the numerator polynomials of the

non systematic outputs of the RSC encoder. Let us

exemplify this transformation by detailing these

calculations for an NRNSC C(2,3,3) encoder whose

generator matrix is given by:

()
2 2

2 2

1 1

1 1
NRNSC

x x x
x

x x x x

+ +
=

+ + +

 
 
 

G

2

2

1 1
So, the matrix (x), is () ,

1

x x
x

x x

+ +=
+

 
  

Q Q

()
2

1

23 4

1 1 1
and

11

x
x

x x xx x

− +=
+ ++ +

 
  

Q .

Using equation (3) to calculate GRSC(x) leads to:

()

4

3 4

2 3 4

3 4

1
1 0

1

1
0 1

1

RSC

x x

x x
x

x x x

x x

+ +
+ +=

+ + +
+ +

 
 
 
 
  

G

3. CONVOLUTIONAL ENCODER

3.1 Blind estimation of the convolutional

encoder parameters

It is now worth focusing on the blind estimation of

convolutional encoder parameters in the non-

cooperative context. The method proposed in [3] per-

mits estimations of the interleaver period and of the

code rate for a block code by taking profit from the

redundancy introduced by the error-correcting code. A

similar approach was used in [5] when the intercepted

sequence was severely corrupted. From both methods,

we developed an approach to be applied to the

convolutional code in the case of a perfect transmission

(no transmission error).

Its principle is to reshape columnwise the intercepted

data bit stream under matrix form. This matrix, de-

noted Hi, is computed for different values of i where i

is the number of rows. For each matrix, the rank in the

Galois Field GF(2) is computed. For i ≠ α·n with

α∈ℕ , Hi is a full rank matrix. But, for l = α ·n, Hl is

not a full rank matrix because some among the col-

umns are linear combinations of the others induced by

the redundancy introduced by the code. In this case,

the rank of Hl is given by equation (4):

 (H) . .(1), . , (4)
l

k
rank l k K l n

n
α α= + − ∀ = ∈ℕ

So, the encoder parameters, n, k and K, are identified

by application of a linear regression method.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

i

ra
nk

Figure 2: Estimation of the encoder parameters

Let us illustrate this approach with a C(3,2,3) code.

The matrices, Hi, are built, and then the rank is com-

puted for increasing values of i. Figure 2 presents the

obtained values of rank as a function of i. It is worth

noting that: the rank is equal to i, except when i is a

multiple of n and the method permits to estimate that n

is equal to 3. Furthermore, when i is a multiple of n,

the slope is equal to 2/3, and it is easy to find that k= 2.

Finally, K= 3 is estimated by using equation (4).

3.2 Blind estimation of the generator

matrix

Now, it is possible to estimate the generator matrix of

the code by applying a part of the methods developed

in [1] and [4]. The method described in [1] is a general

implementation of [4]. Both permit a global estimation

of n, k, K and G in an iterative way. In these algo-

rithms, the values of n, k and K are incremented at each

iteration and, for each iteration, the (n-k) systems of

(k+1) equations have to be solved. The fact that the

rank computation of a matrix is easier than an iterative

solving of linear-equation systems for every combina-

tion of n, k and K drove us to improve these methods

by reducing the total number of equations to be solved.

Once n, k and K have been estimated, there are only

(n-k) systems of (k+1) equations to be solved to

estimate G. In fact, the part of the methods described

in [1] and [4] and used, here, to estimate the generator

matrix allows one to find the NRNSC equivalent form,

GNRNSC, of the encoder really used. Thus, if the encoder

is known to be in the RSC form, the algorithm pro-

posed in subsection 2.3 can be used to get the genera-

tor matrix, GRSC.

4. BLIND RECOVERY OF TURBO-
CODER

This section deals with the problem of the blind recov-

ering of convolutional encoders used in Turbo-code.

The past section described a method to recover the

convolutional parameters and the generator matrix. On

the other hand, its direct application to Turbo-coders is

non-trivial because of the particular configuration of

the convolutional encoders. In practice, the encoders

are both in the RSC form and the encoder rate is

k/(k+1), which means that n = k+1; moreover, the sys-

tematic part of the second encoder is punctured. In

such a specific configuration, the method described in

section 3 is inapplicable to the second encoder because

it requires data from, at least, two outputs for each

encoder. For the first encoder, the blind estimation is

achievable; if this encoder is in RSC form the encoded

data, c(x), are decoded to get the information data,

m(x). One should note that the blind determination of

the encoder form is out of the scope of this paper.

When the rate of the second encoder is k/n with

n > k+1, its parameters as well as the generator matrix

are both given by this method even with punctured k-

systematic outputs, because after puncturing the

outputs are, at least, (n - k) ≥ 2. But, in the case where

the rate of the second encoder is k/(k+1) together with

a punctured systematic part, it remains only one output

and, thus, the above method is not applicable.

Let us now focus on the case where 1/n the extension

of our method to the general k/(k+1) case is still under

study. It sounded us worth, at first, to consider all of

the outputs of the Turbo-code. But, the outputs of the

second and first encoder are not direct linear combina-

tions of the same input since the output of the second

one are obtained after interleaving of the information

data. Figure 3 deals with the most critical case: 1/2 (k

= 1, n = 2). Application of the rank method described

in section 3.1 to this case gives the parameters, n, K

and le. It ensues that there are (n-1) non systematic

outputs, denoted c’ (with c’ = c’2…c’n) in vector form,

as well as the vector of information data, m, for C2

recovery.

Figure 3: Special equivalent scheme of Turbo-code

The block interleaver can be modelled by a permuta-

tion matrix E0 of size, le × le. This permutation matrix

operates on le-sized blocks, and the global interleaver

can be represented by a square matrix, E:

=
 
 
 
  

0

0

0

E

E
E

E

⋱

The vector of all the interleaved data denoted m’ is

equal to m’ = m·E, and with an RSC-type encoder the

total output stream and the input stream for all

j = 2,…,n are linked by equation (5):
' '

1 1
 0 (5)

j j j j
= ⇒ + =c G mEG c G mEG

where Gi contains the binary coefficients of the i
th

generator polynomial (for all i = 1,…,n) :

()

(1) ()

(1)

(1) ()

(1) (1)

(1)

i

i i

i

i i i

i i

i

g K

g K g K

g K

g g K

g g K

g

−
−

=
−

 
 
 
 
 
 
  

G

⋮ ⋱

⋮ ⋱

⋱ ⋮

Since the interleaver operated by le-sized blocks, equa-

tion (5) can be rewritten as a vector form of size le on

condition to not take into account the overlap-related

problem. One should note that the interleaver is miss-

ing in the first part (c’j.G1) of equation (5). It ensues

that the number of bits required for the determination

of the first generator polynomial is only K instead of

le; moreover, these bits have to be taken from every le-

bit block. So, for each block of size le, this system can

be rewritten in vector form as follows:

1
' . . . 0
j j

c f m f+ =
0

Ε

where the vector, c’j , is composed of the K first bits

from each le-sized block of c’j, and m is composed of

le bits of m. The vectors, f1 and fj, correspond to the K

binary coefficients of the feedback generator polyno-

mial and to the le bits of Gj, respectively, so that:

[] TT

1 1 1
() (1) , () (1) 0 0

j j j
f g K g f g K g= =   ⋯ ⋯ ⋯

Now, it is easy to construct and to solve the (n-1) sys-

tems given hereafter to recover the generator

polynomials

. . 0 2,...,
j
f j n= ∀ =C

with the matrix Cj given by:

' '

' '

(1) () (1) ()

(1) () (1) (2.)

j j

j j j

c c K m m le

c le c le K m le m le= + + +

 
 
 
  

C

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮

1

0

and the vector column of size (+):
. j

f K le f
f

E f
=
 
 
 

This method gives the first generator polynomial (f1)

and the interleaving version of the other generator

polynomials. The complete blind estimation of the

Turbo-code with recovery of the interleaver as well as

the determination of encoder type are both out of the

scope of this paper and will be described in the future.

Once the interleaver has been estimated, the generator

matrix of the encoder is easily obtained after

de-interleaving.

5. CONCLUSION
This paper presented an approach developed to esti-

mate convolutional codes in a non-cooperative context.

This method allows a reduction of the complexity of

previous algebraic approach introduced in [1] and [4].

Moreover, it leads to the generator matrix of an RSC

encoder from its equivalent NRNSC. We also de-

scribed a new approach aimed at estimating the second

encoder of Turbo-code in the case of puncturing on its

systematic part; it allowed us to get the interleaved

version of these generator polynomials.

REFERENCES

[1] J. Barbier, “Reconstruction of turbo-code encod-

ers”, in Proc. SPIE Security and Defence Symposium,

Vol. 5819, pp. 463-473, Mar. 2005.

[2] C. Berrou, A. Glavieux and T. Thitimajshima ,

“ Near shannon limit error-correcting coding and de-

coding: turbo-codes”, in Poc. ICC, pp 1064-1070,

Geneva, Switzerland, May 1993.

[3] G. Burel and R. Gautier, “Blind estimation of en-

coder interleaver characteristics in a non-cooperative

context”, in Poc. IASTED-CIIT, Scottsdale, AZ, USA,

Nov. 2003.

[4] E. Filiol, “Reconstruction of punctured convolu-

tional encoder”, in Proc. SITA, pp. 4-7, Hawaii, USA,

Nov. 2000.

[5] G.. Sicot and S. Houcke, “Blind detection of inter-

leaver parameters”, in Proc. ICASSP, vol. 3, pp 829-

832, Philadelphia, USA, Mar. 2005.

