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Pseudo-blind demodulation of chaotic DS-SS signal
through Exact Kalman Filtering
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1| aboratoire d’Electronique et des Systéemes de Télécommunications (UMR CNRS 6165), Brest, France
2Military Technical Academy, Bucharest, Romania

_ Abstract—This paper adresses the problem of symbol estima- There has been significant interest in recent years in ex-
tion in the case of a spread spectrum based system where thep|oiting chaos in communication systems [2], [3]. Due to

receiver has only the information about the nonlinear function s random-like behavior and its wideband characteristics, a
used to generate the spreading sequence. We propose two methodsh tic d ical t b heloful t
to achieve this, first based on the already considered DUAL form chaotc dynamical system can be very helpiul to secure or

and a correlator second based one. For the DUAL form we €ncrypta transmission. Leung and Zhu [4] have recently derived
consider multiple Kalman filter implementations suited to the case important results about chaos synchronization through Extended
of nonlinear estimation methods among them Unscented Kalman Kalman Filtering (EKF); the authors showed that the EKF-
Filter (UKF) and Exact Polynomial Kalman Filter (ExPKF). 4564 technique is a generalization of two conventional schemes
Finaly to provide a perfomance evaluation on the proposed . . . .
methods we obtain throughout Monte-Carlo simulations theBit (unidirectionally coupled and drlve-respons.e methods). It is
Error Rate (BER) characteristics with respect to Signal to Noise @lSo shown that the EKF-based synchronization approaches
Ratio (SNR). the averaged Cramer-Rao Lower Bound at high SNR. In [11]
the authors apply the Exact Polynomial Filtering (ExPKF)
to the same problem of chaos synchronization and observe
. INTRODUCTION through analitical and simulation that this approach can offer
The first nonlinear Kalman filtering method represented kgy better solution to high nonlinearity models, keeping a low
the Extended variant (EKF) has been for many years the omymputational cost.
method implemented to cope with the nonlinear model char-To apply the EXPKF to some data demodulation scheme we
acteristics. Some attractive nonlinear Kalman filtering methodensider the DUAL approach presented in papers [7], [8] and
have recently been proposed to avoid previous limitations edmpare it with a newly introduced correlator approach.
the EKF without any significant additional computation cost. The paper is organized as follows. In section Il, we shortly
The UKF, first introduced by Julieet al. [6] in the context present the general matrix formulas giving the second-order
of nonlinear control addresses the approximation issues of #tatistics of any random variable which has been transformed
EKF. The state distribution is considered to be a Gaussitimough a polynomial function. Then, in section Ill, an Exact
random variable, but is now specified using a minimal set &alman Filter relying on these analytical results is applied to a
carefully chosen sample points (thigma points At each step chaos synchronization model. A short presentation of the DUAL
of the recursion, these sample points are propagated throdgimodulation scheme is considered in section IV. In section
the true nonlinear functions of the modélr(scentedlransfor- V we present a new method of retriving the data transmitted
mation), hence avoiding Jacobians computation. Following thtsrough a direct spread spectrum modulation, using only the
approach, posterior mean and covariance are captured upmeéoerator nonlinearity. Finally, before the conclusions, some
the third or second order terms of the Taylor series expansionmerical results are presented comparing the different methods

whatever the nonlinearity is. for different Chebyshev polynomials and process gains.
Another newly introduced method is the Exact polynomial
transform that performs the closed-form calculus for the poste- II. EXACT POLYNOMIAL TRANSFORMATION

rior mean and covariance without any constraints on the anterioias the name of the section suggests, the goal of the transfor-
distribution. Actually as it is briefly presented in the seconghation, and as the ulterior application to the general Kalman
section, and largely exposed in [11], for the particular case fatering algortihm requires, is to exactly calculate the first two
monodimensional polynomial functions we can obtain genefigloments of the random variable transformed distribution
matrix formulation for the first twa posteriorimoments. It is with the complete knowledge of the initial distributian and
unfortunate that we can not benefit completly from the closefl the polynomial transform functiony = f(z). The general
form calculus, as the recursive implementation using a Kalmgstm of the monodimensional polynomial transformation can
algorithm will calculate the first two moments and we are forcegk expressed as:

to express the next statistical distribution of the state using N

these two moments, meaning that we still work with Gaussian fl) =) anz" @
hypothesis. To show the significance of this filtering scheme n=0

we consider a direct application to synchronization of chaotic The first two moments expression calculated below supposes
signals [1] generated through Chebyshev maps [9]. no restrictions about the initial probability density functions,
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but later when the transformation will be employed for a I1l. THE APPLICATION OF THEEXPKF TO CHAOS
Kalman filter model the gaussianity restriction over the a priori SYNCHRONIZATION
distribution will be considered. We will apply the nonlinear transformation presented above

In general, we can write the first two moments of thg, e problem of chaos synchronization, where the character-
transformed distribution of the random variahjeusing the istic non-linear function is chosen to be polynomial
Taylor series expansion. So we consider the initial distribution The general model of synchronization for a mono-
written asz - if"A_x’ whereAa is a fa”‘?'om variable having 2dimensional chaotic polynomial map, can be expressed as:
zero mean distribution. Now we can write the Taylor expansion

for y as N
_ (Ax)" d"f Ter1 = f (k) + vk
y=1r(@+ g o der| 2 o — ot @
and we can determine the first moment: which will allow us to write the equations of the proposed
g = E[y ExPKF algorithm using the analytical formulas ¢fj, o7 }.
N dn f As an example, for a second order Chebyshev sequence syn-
= f(@+ Z —'"—n (3) chronizationf (z;) = 222 — 1; The filter is implemented as
n—2 " dz™ | p—s follows, once the second order statistics have been computed
where m,, denotes then'”- order moment of the random analytically.
variable Az. The time-update equations are:
Using the developpement of the derivatives we can obtain
a general matricial expression of the first order moment as Eppre = Ef (z1)] = 2P, + 247 — 1 )
presented in [11]:
= a,yC'mfy 4)

. Poap=E {(xk.ﬂw _ gzkﬂw)z} — 8P2+16Pi2+Q (10)

where a;; stands for [a;,a;t1,...,a5] , my; =

[mi,miﬂ,...,mj]T and C® denoting a lower triangular Also, considering the observation function linearity and the

matrix where entries are powers af and some binomial independence of the model and observation noises between

coefficients. them and with the states, the measurement-update equations
Considering again the Taylor series expansion, the secditome:

order centered momemg can be computed following a similar

approach: Ges1jk = B [h (Tegapn)] = Bogapn (11)
02 =1} (M*EC") 1y — (mf,y)" C*mf,y  (5)

where the matrixC® has entriesz, the binomial coefficients

and the polynomial coefficients vectoss ;; Similarly M* is

computed only from the centered moments vector of the initial = Prtip (12)

distribution z. From the operator point of vielw denotes the

Hadamard product antly stands for a column vector of size

N whose entries are all one. Pyvivvese = E[(Wrrk — Orr1ie) Wrsrie — Orgi)]
Our objective being to derive a Kalman filter relying on = P +R (13)

the previous relations, it remains to express the transition

covarianceP,, between the variables andy:

Poiivvense = B [(@ree — Trgage) Wrsre — Grs1e) ]

Pri1ik
Kyi1=———— 14
B B ht P+ R 14)
Poy = Ellz-2)(y—7) (6)
Once again we can put the relation in matrix form: Err1 = Bpgrpk + Kigp1 (Yo — Trrap) (15)
Py = a&wcimgf:ml (7) ) PR
We would like to point out that the relations (4), (5) and #+1 = Pt = Kt P aiwnan = Peyip+ R = Kin R
(7) are given for any initial random variable for which we (16)

know the centered moments, and for any polynomial form of As can be seen by the relations (11) - (16), the ExPKF
the functionf (-). It doesn’t mean that these relations minimizelgorithm applied to the chaos synchronization of a second
the computationnal cost but in exchange offer a general formweder Chebyshev polynomial model, offers if not the best,
to calculate exactly the first two momer(tg, 0,3). one of the most cost-effective solutions. So complementary

We will present in the next section a particular approach, farith the general matrix form, for particular system models,
a2"- order Chebyshev polynomial function, where the genersbme low computational cost implementations with very good
matricial equations of the moments can be reduced to a mymdrformances can be expressed, as it will be confirmed by the
simpler form. numerical results presented in the next section.
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i’kfl\i, the hypothesis of some odd generating function and BPSK data
Code modulation, the current spreading chip can be obtained by just
Estimation propagating the previous observation, with the consequence of
Chip Rate A | some channel noise amplification. For example in the case of
Baseband Gk | the 2"4-order Chebyshev polynomial we obtain:
Signal Pog
Symbol L by _
Estimation > f (yk) - f (bkck + nk)Q
= 2 (bkck + le) -1
Fig. 1. Code/Symbol Dual Estimation Block = f(cx)+ dbrerng + 2”%
= Cpy1 Ny (19)

IV. THE DEMODULATION VIA DUAL ESTIMATION wheren!, = 4b,cpng + 2n2 is the noise resulting from the

We have considered the CD3S receiver relying on EKF observed chip propagation. We can qualitatively affirm that this
UKF dual estimations, reported into [7], [8]. If the cited papersoise term is2"?- degree dependent with the noise present
consider only the Unscented implementation but deal with gaim the channel and in a low SNR scenario the effect of the
control methods, carrier recovery options and even multipgtilopagation will decrease a lot the performances of the method.
channel supposition, in this article we will consider only thgvith a 4'"- order Chebyshev generator the problem will be
base band signal affected by a gaussian noise, the goal be@inge critical as the greatest coefficient of the recursive noise
to see how the new filter approach can cope with the noerm will be 4t~ order dependent with the noise present in the
linearity of the models. channel, and as a consequence a larger performance decrease

As shown by figure 1, the dual Kalman filtering schemwiill occur as shown in the next section.
enables the estimation, at chip réftg, of the original chaotic  Finally the decision over the current informational symbol
spreading code,, together with the data symbaoj, from noisy is done by correlating the supposed propagated sequence with
observationsy;,. Each of the two filters uses last estimate ahe received one over the symbol length, and in our BPSK
the other as a parameter, the general model being presentednbylulation case a regulaign operator it is used.
equation (17). The dynamical model and the observation model

used for code estimation take the following form: VI. NUMERICAL RESULTS
Chy1 = fer) +vg One of most important performance criteria for any commu-
Vesr = sgn (3k> Cht -+ Ty (17) nication scheme is the BER achieved by the selected method
* + * with respect to some noise coefficient factor. As our case

where f(-) stands for the nonlinear chaotic function, and wheonsiders a binary data modulation, the SNR is the most
the noise sequenag ~ N (0, Q°), independent of the past andpertinent one. To exemplify the performances achieved by the
current state,, reflects the model uncertainty due to channénethods presented above we will consider two principal cases:
imperfections; the noise term, ~ N (0, R) in the observation 2"¢ and 4"-orders Chebyshev polynomials as generating the
model will be mainly dependent upon the SNR at the receivépreading sequence.

input. The goal is to identify how the methods can cope with the
Similarly, the symbol will be estimated at chip rate througicreased nonlinearity presented by the generator, the spreading
the following model: gain and the noise present in the channel. In figures 2, 3 we have
considered the case of ti2&<-order polynomial for spreading
{ b1 = br, + v} (18) gains of 31, respectively 63. We observed that in both cases
Urks1 = brrif(Ck) +nppa the correlator based method has the best performances, but

increasing the gain, the difference with the dual estimation
based receiver diminishes. The scaled-UKF has a small uphold
over the ExPKF implementation as the moments calculation
Iaas been modified to cope with some divergence of the error
] . ; )

covariance. At this order we do not observe an important
difference betwwen the ExPKF and the UKF implementations

as the UKF assures the correct expression of the moments for
V. CORRELATOR BASED RECEIVER USING THE CHAOTIC  this order.

where the gaussian noise sequenfe~ N (0,Q"), inde-
pendent of the past and current staje will influence the
adaptability of the symbol filter; a low valu@® will result
in slow changes whereas a larger value will result in rap
variations of the symbol estimates.

DYNAMIC Considering now thet*"-order polynomial we observe in

The simplest way to retrieve the information signal spreadéidures 4 and 5, a general decrease of performances for all the
by some chaotic sequence is to use a correlator implementatioethods. As it was supposed to happen, the correlator based
In general the correlator based receiver is also the optimal cze not cope with the noise present in the channel, and this
with the condition of complete knowledge of the spreadingme the chaos synchronization based methods have the lead
sequence. If the spreading sequence is not known we will provgh EXPKF and standard UKF implementations surpassing the
in this section that the information signal can still be retrievestaled-UKF method. We put this slight performance decrease of
by a correlator based scheme with only the knowledge of ttiee scaled-UKF on the adaptation of the method to perform well
chaotic generator dynamics. Actually we will prove that undevith relatively low non-linear charateristics. A last observation
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Fig. 2. BER estimated for th2"?-order Chebyshev spreading sequence witlrig. 5. BER estimated for thét"-order Chebyshev spreading sequence with
a 31 spreading gain a 63 spreading gain

VIlI. CONCLUSIONS

An Exact Polynomial (ExP) transformation has been applied
to the problem of dual code/symbol estimation in chaotic DS-
SS receivers. The analytical computations of the moments in
the proposed ExP Kalman Filter leads to better performances
in presence of strong code nonlinearity and a very limited
computational cost. An alternative approach, based on direct
propagation through the code nonlinear function, enables sym-
bol detection by correlation. Due to channel noise amplification,
good performances are obtained for weak nonlinearity only. The
compared BER show that the proposed ExPKF is a pertinent
approach for pseudo-blind demodulation of chaotic DS-SS
signals.
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