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Abstract— This paper adresses the problem of symbol estima-
tion in the case of a spread spectrum based system where the
receiver has only the information about the nonlinear function
used to generate the spreading sequence. We propose two methods
to achieve this, first based on the already considered DUAL form
and a correlator second based one. For the DUAL form we
consider multiple Kalman filter implementations suited to the case
of nonlinear estimation methods among them Unscented Kalman
Filter (UKF) and Exact Polynomial Kalman Filter (ExPKF).
Finaly to provide a perfomance evaluation on the proposed
methods we obtain throughout Monte-Carlo simulations theBit
Error Rate (BER) characteristics with respect toSignal to Noise
Ratio (SNR).

I. I NTRODUCTION

The first nonlinear Kalman filtering method represented by
the Extended variant (EKF) has been for many years the only
method implemented to cope with the nonlinear model char-
acteristics. Some attractive nonlinear Kalman filtering methods
have recently been proposed to avoid previous limitations of
the EKF without any significant additional computation cost.
The UKF, first introduced by Julieret al. [6] in the context
of nonlinear control addresses the approximation issues of the
EKF. The state distribution is considered to be a Gaussian
random variable, but is now specified using a minimal set of
carefully chosen sample points (thesigma points). At each step
of the recursion, these sample points are propagated through
the true nonlinear functions of the model (UnscentedTransfor-
mation), hence avoiding Jacobians computation. Following this
approach, posterior mean and covariance are captured up to
the third or second order terms of the Taylor series expansion,
whatever the nonlinearity is.

Another newly introduced method is the Exact polynomial
transform that performs the closed-form calculus for the poste-
rior mean and covariance without any constraints on the anterior
distribution. Actually as it is briefly presented in the second
section, and largely exposed in [11], for the particular case of
monodimensional polynomial functions we can obtain general
matrix formulation for the first twoa posteriorimoments. It is
unfortunate that we can not benefit completly from the closed
form calculus, as the recursive implementation using a Kalman
algorithm will calculate the first two moments and we are forced
to express the next statistical distribution of the state using
these two moments, meaning that we still work with Gaussian
hypothesis. To show the significance of this filtering scheme
we consider a direct application to synchronization of chaotic
signals [1] generated through Chebyshev maps [9].

There has been significant interest in recent years in ex-
ploiting chaos in communication systems [2], [3]. Due to
its random-like behavior and its wideband characteristics, a
chaotic dynamical system can be very helpful to secure or
encrypt a transmission. Leung and Zhu [4] have recently derived
important results about chaos synchronization through Extended
Kalman Filtering (EKF); the authors showed that the EKF-
based technique is a generalization of two conventional schemes
(unidirectionally coupled and drive-response methods). It is
also shown that the EKF-based synchronization approaches
the averaged Cramer-Rao Lower Bound at high SNR. In [11]
the authors apply the Exact Polynomial Filtering (ExPKF)
to the same problem of chaos synchronization and observe
through analitical and simulation that this approach can offer
a better solution to high nonlinearity models, keeping a low
computational cost.

To apply the ExPKF to some data demodulation scheme we
consider the DUAL approach presented in papers [7], [8] and
compare it with a newly introduced correlator approach.

The paper is organized as follows. In section II, we shortly
present the general matrix formulas giving the second-order
statistics of any random variable which has been transformed
through a polynomial function. Then, in section III, an Exact
Kalman Filter relying on these analytical results is applied to a
chaos synchronization model. A short presentation of the DUAL
demodulation scheme is considered in section IV. In section
V we present a new method of retriving the data transmitted
through a direct spread spectrum modulation, using only the
generator nonlinearity. Finally, before the conclusions, some
numerical results are presented comparing the different methods
for different Chebyshev polynomials and process gains.

II. EXACT POLYNOMIAL TRANSFORMATION

As the name of the section suggests, the goal of the transfor-
mation, and as the ulterior application to the general Kalman
filtering algortihm requires, is to exactly calculate the first two
moments of the random variable transformed distributiony,
with the complete knowledge of the initial distributionx, and
of the polynomial transform functiony = f(x). The general
form of the monodimensional polynomial transformation can
be expressed as:

f(x) =
N∑

n=0

anxn (1)

The first two moments expression calculated below supposes
no restrictions about the initial probability density functions,
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but later when the transformation will be employed for a
Kalman filter model the gaussianity restriction over the a priori
distribution will be considered.

In general, we can write the first two moments of the
transformed distribution of the random variabley using the
Taylor series expansion. So we consider the initial distribution
written asx = x̄+∆x, where∆x is a random variable having a
zero mean distribution. Now we can write the Taylor expansion
for y as

y = f (x̄) +
N∑

n=1

(∆x)n

n!
dnf

dxn

∣∣∣∣
x=x̄

(2)

and we can determine the first moment:

ȳ = E [y]

= f (x̄) +
N∑

n=2

mn

n!
dnf

dxn

∣∣∣∣
x=x̄

(3)

where mn denotes thenth- order moment of the random
variable∆x.

Using the developpement of the derivatives we can obtain
a general matricial expression of the first order moment as
presented in [11]:

ȳ = aT
0:NCx̄mx

0:N (4)

where ai:j stands for [ai, ai+1, ..., aj ]
T , mx

i:j =
[mi,mi+1, ...,mj ]

T and Cx̄ denoting a lower triangular
matrix where entries are powers of̄x and some binomial
coefficients.

Considering again the Taylor series expansion, the second
order centered momentσ2

y can be computed following a similar
approach:

σ2
y = 1T

N

(
Mx � Cx̄

)
1N − (mx

1:N )T Cx̄mx
1:N (5)

where the matrixCx̄ has entries:̄x, the binomial coefficients
and the polynomial coefficients vectorsai:j ; Similarly Mx is
computed only from the centered moments vector of the initial
distributionx. From the operator point of view� denotes the
Hadamard product and1N stands for a column vector of size
N whose entries are all one.

Our objective being to derive a Kalman filter relying on
the previous relations, it remains to express the transition
covariancePxy between the variablesx andy:

Pxy = E [(x− x̄) (y − y)] (6)

Once again we can put the relation in matrix form:

Pxy = aT
0:NCx̄mx

1:N+1 (7)

We would like to point out that the relations (4), (5) and
(7) are given for any initial random variablex for which we
know the centered moments, and for any polynomial form of
the functionf (·). It doesn’t mean that these relations minimize
the computationnal cost but in exchange offer a general formula
to calculate exactly the first two moments

(
ȳ, σ2

y

)
.

We will present in the next section a particular approach, for
a 2nd- order Chebyshev polynomial function, where the general
matricial equations of the moments can be reduced to a much
simpler form.

III. T HE APPLICATION OF THEEXPKF TO CHAOS

SYNCHRONIZATION

We will apply the nonlinear transformation presented above
to the problem of chaos synchronization, where the character-
istic non-linear function is chosen to be polynomial.

The general model of synchronization for a mono-
dimensional chaotic polynomial map, can be expressed as:

xk+1 = f (xk) + vk

yk = xk + nk (8)

which will allow us to write the equations of the proposed
ExPKF algorithm using the analytical formulas of

{
ȳ, σ2

y

}
.

As an example, for a second order Chebyshev sequence syn-
chronizationf (xk) = 2x2

k − 1; The filter is implemented as
follows, once the second order statistics have been computed
analytically.

The time-update equations are:

x̂k+1|k = E [f (xk)] = 2Pk + 2x̂2
k − 1 (9)

Pk+1|k = E
[(

xk+1|k − x̂k+1|k
)2

]
= 8P 2

k +16Pkx̂2
k+Q (10)

Also, considering the observation function linearity and the
independence of the model and observation noises between
them and with the states, the measurement-update equations
become:

ŷk+1|k = E
[
h

(
xk+1|k

)]
= x̂k+1|k (11)

Pxk+1|kyk+1|k = E
[(

xk+1|k − x̂k+1|k
) (

yk+1|k − ŷk+1|k
)]

= Pk+1|k (12)

Pyk+1|kyk+1|k = E
[(

yk+1|k − ŷk+1|k
) (

yk+1|k − ŷk+1|k
)]

= Pk+1|k + R (13)

Kk+1 =
Pk+1|k

Pk+1|k + R
(14)

x̂k+1 = x̂k+1|k + Kk+1

(
yk+1 − x̂k+1|k

)
(15)

Pk+1 = Pk+1|k−K2
k+1Pyk+1|kyk+1|k =

Pk+1|kR

Pk+1|k + R
= Kk+1R

(16)
As can be seen by the relations (11) - (16), the ExPKF

algorithm applied to the chaos synchronization of a second
order Chebyshev polynomial model, offers if not the best,
one of the most cost-effective solutions. So complementary
with the general matrix form, for particular system models,
some low computational cost implementations with very good
performances can be expressed, as it will be confirmed by the
numerical results presented in the next section.
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Fig. 1. Code/Symbol Dual Estimation Block

IV. T HE DEMODULATION VIA DUAL ESTIMATION

We have considered the CD3S receiver relying on EKF or
UKF dual estimations, reported into [7], [8]. If the cited papers
consider only the Unscented implementation but deal with gain
control methods, carrier recovery options and even multipath
channel supposition, in this article we will consider only the
base band signal affected by a gaussian noise, the goal beeing
to see how the new filter approach can cope with the non-
linearity of the models.

As shown by figure 1, the dual Kalman filtering scheme
enables the estimation, at chip rateFc, of the original chaotic
spreading codeck together with the data symbolbk from noisy
observationsyk. Each of the two filters uses last estimate of
the other as a parameter, the general model being presented by
equation (17). The dynamical model and the observation model
used for code estimation take the following form:{

ck+1 = f (ck) + vc
k

yk+1 = sgn
(
b̂k

)
ck+1 + nk+1

(17)

wheref(·) stands for the nonlinear chaotic function, and where
the noise sequencevc

k ∼ N (0, Qc), independent of the past and
current stateck, reflects the model uncertainty due to channel
imperfections; the noise termnk ∼ N (0, R) in the observation
model will be mainly dependent upon the SNR at the receiver
input.

Similarly, the symbol will be estimated at chip rate through
the following model:{

bk+1 = bk + vb
k

yk+1 = bk+1f(ĉk) + nk+1
(18)

where the gaussian noise sequencevb
k ∼ N

(
0, Qb

)
, inde-

pendent of the past and current statebk, will influence the
adaptability of the symbol filter; a low valueQb will result
in slow changes whereas a larger value will result in rapid
variations of the symbol estimates.

V. CORRELATOR BASED RECEIVER USING THE CHAOTIC

DYNAMIC

The simplest way to retrieve the information signal spreaded
by some chaotic sequence is to use a correlator implementation.
In general the correlator based receiver is also the optimal one
with the condition of complete knowledge of the spreading
sequence. If the spreading sequence is not known we will prove
in this section that the information signal can still be retrieved
by a correlator based scheme with only the knowledge of the
chaotic generator dynamics. Actually we will prove that under

the hypothesis of some odd generating function and BPSK data
modulation, the current spreading chip can be obtained by just
propagating the previous observation, with the consequence of
some channel noise amplification. For example in the case of
the 2nd-order Chebyshev polynomial we obtain:

f (yk) = f (bkck + nk)
= 2 (bkck + nk)2 − 1
= f (ck) + 4bkcknk + 2n2

k

= ck+1 + nr
k (19)

wherenr
k = 4bkcknk + 2n2

k is the noise resulting from the
observed chip propagation. We can qualitatively affirm that this
noise term is2nd- degree dependent with the noise present
in the channel and in a low SNR scenario the effect of the
propagation will decrease a lot the performances of the method.
With a 4th- order Chebyshev generator the problem will be
more critical as the greatest coefficient of the recursive noise
term will be4th- order dependent with the noise present in the
channel, and as a consequence a larger performance decrease
will occur as shown in the next section.

Finally the decision over the current informational symbol
is done by correlating the supposed propagated sequence with
the received one over the symbol length, and in our BPSK
modulation case a regularsign operator it is used.

VI. N UMERICAL RESULTS

One of most important performance criteria for any commu-
nication scheme is the BER achieved by the selected method
with respect to some noise coefficient factor. As our case
considers a binary data modulation, the SNR is the most
pertinent one. To exemplify the performances achieved by the
methods presented above we will consider two principal cases:
2nd and 4th-orders Chebyshev polynomials as generating the
spreading sequence.

The goal is to identify how the methods can cope with the
increased nonlinearity presented by the generator, the spreading
gain and the noise present in the channel. In figures 2, 3 we have
considered the case of the2nd-order polynomial for spreading
gains of 31, respectively 63. We observed that in both cases
the correlator based method has the best performances, but
increasing the gain, the difference with the dual estimation
based receiver diminishes. The scaled-UKF has a small uphold
over the ExPKF implementation as the moments calculation
has been modified to cope with some divergence of the error
covariance. At this order we do not observe an important
difference betwwen the ExPKF and the UKF implementations
as the UKF assures the correct expression of the moments for
this order.

Considering now the4th-order polynomial we observe in
figures 4 and 5, a general decrease of performances for all the
methods. As it was supposed to happen, the correlator based
can not cope with the noise present in the channel, and this
time the chaos synchronization based methods have the lead
with ExPKF and standard UKF implementations surpassing the
scaled-UKF method. We put this slight performance decrease of
the scaled-UKF on the adaptation of the method to perform well
with relatively low non-linear charateristics. A last observation
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Fig. 2. BER estimated for the2nd-order Chebyshev spreading sequence with
a 31 spreading gain
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Fig. 3. BER estimated for the2nd-order Chebyshev spreading sequence with
a 63 spreading gain

can be done over the calculus burden in which the ExPKF
implementation excels as there is no point propagation method
and the expression of the moments is calculated directly, in
opposition with the UKF filtering methods.
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Fig. 4. BER estimated for the4th-order Chebyshev spreading sequence with
a 31 spreading gain
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Fig. 5. BER estimated for the4th-order Chebyshev spreading sequence with
a 63 spreading gain

VII. C ONCLUSIONS

An Exact Polynomial (ExP) transformation has been applied
to the problem of dual code/symbol estimation in chaotic DS-
SS receivers. The analytical computations of the moments in
the proposed ExP Kalman Filter leads to better performances
in presence of strong code nonlinearity and a very limited
computational cost. An alternative approach, based on direct
propagation through the code nonlinear function, enables sym-
bol detection by correlation. Due to channel noise amplification,
good performances are obtained for weak nonlinearity only. The
compared BER show that the proposed ExPKF is a pertinent
approach for pseudo-blind demodulation of chaotic DS-SS
signals.
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