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An experimental snapshot Mueller Matrix polarimeter based on wavelength 

polarization coding is used to get a time-resolved description of electric field-induced fast 

transition within a ferroelectric liquid crystal cell. The parameters extracted from 

experimental Mueller matrices are linked to the molecule director distribution to further 

determine the average trajectory and the collective behavior of these molecules while they 

switch over to another state. © 2009 Optical Society of America. 

OCIS codes: 120.5410, 160.3710, 230.5440, 260.5430. 

Mueller matrix (MM) polarimetry is usually employed to characterize samples that show 

depolarization, birefringence and dichroism. For a more complete characterization, MMs are 

coupled with variables such as wavelength, space coordinates, wave vector. To our knowledge, 
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little has been done with time as variable, though a temporal monitoring of MMs could permit 

the study of fast polarization dynamics and widen the scope of MM polarimetry. Such 

measurements require a device allowing the acquisition of a full MM in a very short time.  

The principle of the Snapshot Mueller Matrix Polarimeter (SMMP) developed by our 

team and based on wavelength polarization coding [1,2] is that the polarization states are 

encoded in the spectral domain through use of a broadband source and high-order retarders [3]. 

On condition to use a well-suited retarder-thickness configuration, the full MM of a sample is 

available in a single spectrum, I(λ), measured with a dispersive detection system (spectrometer 

and CCD camera). As the acquisition time only depends on the aperture time of the CCD 

camera, it can be very short (about 1 µs, here). This Letter is aimed at demonstrating the 

potentiality of the SMMP to give a time-resolved description of electric field-induced fast 

switching in a ferroelectric liquid crystal (FLC) cell. To our knowledge, only two teams have 

performed time-resolved MM polarimetry on liquid crystals [4,5]. But, the polarimeters in use 

were sequential, so the MMs were reconstructed from various input and output polarization 

states and multiple synchronized acquisitions. The SMMP can acquire a full MM in a single 

shot. 

The SMMP described in Fig. 1 is composed of a broadband source (SLD from 

B&W Tek, Inc) around λ0 = 830 nm with ∆λ = 15 nm, a linear polarizer oriented at 0°, two 

calcite retarders (∆n = 0.166) of thickness e = 2.08 mm respectively oriented at 45° and 0°, two 

calcite retarders of thickness 5e = 10.4 mm respectively oriented at 0° and 45°, a linear polarizer 

oriented at 90°, a diffraction grating (1200 grooves/mm covering 10 nm) and a CCD camera 

(512 x 512 pixels). The signal I(λ) is periodic and composed of several frequencies. With this 

retarder-thickness configuration (e,e,5e,5e), 13 frequencies are generated on the analysis 
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window. The coefficients of a MM (mij) are retrieved through application of a Fourier transform 

to I(λ) since they are linked to the magnitudes of the Fourier peaks through relationships that 

only depend on the retarder-thicknesses configuration [1]. By application of the calibration 

procedures described in [2], the accuracy on the mij coefficients (normalized by m00) is below 

0.03 for measurements of well-known media (polarizer, wave-plate). 

The chiral liquid crystal (LC) material under study is Felix 015/100, which has a 

birefringence around 0.16 in the visible/NIR. Two glass plates with transparent ITO electrodes 

and with a thin film of rubbed polyimide, produced by spin coating, are used to fabricate the cell. 

Its gap, obtained by spraying of spacers, is about 1.6 µm. The cell is then filled by capillary 

suction and the LC is confined between both plates in planar orientation which means that the 

LC molecules are parallel to the substrate. At room temperature (25°C), this LC is in the smectic 

C* phase, where the molecular layers are perpendicular to the rubbing direction. The average 

orientation of molecule is specified by the unit vector n
r

, called the director (Fig. 2). The director 

is tilted by an angle θ with respect to the layer normal and in SC* bulk material, it rotates, 

forming a helical structure with the axis perpendicular to the layers. However, as the LC 

thickness is far below the helix pitch, and due to the planar anchoring conditions, the helical 

structure is suppressed so LC exhibits ferroelectricity properties. The spontaneous polarization, 

SP
uur

, lies in the smectic layers and is perpendicular to the director. This structure is called SSFLC 

(Surface-Stabilized Ferroelectric Liquid Crystal) [6]. Application of an alternative electric field, 

E
ur

, to this cell (Fig. 2) makes SP
uur

 aligns with E
ur

 and the molecules move between two stable 

states (“up” and “down”). The experiments were made with the FLC cell set perpendicular to the 

incident light. 
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The parameters issued from experimental MMs (M) were extracted by the Lu and 

Chipman decomposition [7], which consists in assuming that the medium under study is 

composed successively of a diattenuator, MD, a retarder, MR, and a depolarizer, M∆, so that 

R DM M M M∆= . For a FLC cell in normal incidence, no diattenuation is expected, and the values 

obtained are only associated to the experimental noise. In that case, the parameters used for the 

characterization are the depolarization index, PD, the retardance, R, the fast axis-orientation, αR, 

and -ellipticity, εR [8]. They are linked to the director-orientation and -distribution in the FLC 

cell. The orientation of the fast axis, αR, is equal to the apparent angle, θapp (Fig. 2). It represents 

the angle between the projection of the director on the (Ox,Oy) plane and the smectic layer 

normal (Oy axis). The retardance, R, is linked to the angle, χ, by the following relationships: 
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where no is the ordinary index of the FLC, and ne is the extraordinary one. As R gives insight into 

the director position in the (Oy,Oz) plane, the knowledge of θapp and χ is sufficient to describe n
r

 

in a 3-D system on condition to assume a homogeneous distribution of the latter within the light 

beam. The last two parameters characterize the homogeneity of the director distribution. The 

ellipticity of the FLC cell-associated retarder appears when the distribution of the director 

orientation is non-homogeneous in the Oz direction (twist). Indeed, if one considers a succession, 

in the Oz direction, of thin layers of thickness, ξ, composed of molecules with an orientation, ψi, 

the resulting MM is ( , )Z R iM M ξ ψ= ∏ , where MR is the MM of a linear retarder of thickness, ξ, 

and fast axis orientation, ψi. If ψi is varying across the total thickness, d, Mz will be an elliptic 

retarder. Ellipticity gives thus insight into the homogeneity of the director orientation along the 

cell thickness. The depolarization index, PD, is equal to 1 for an elliptic retarder. If one now 
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considers, within the light beam (~0.5mm), multiple areas with different orientation, ψi, the 

resulting MM is ( , )xy R iM M d ψ=∑ . If ψi is varying within the (Ox,Oy) plane, PD associated to 

Mxy will decrease. One should note that this statement is valid because the FLC cell was imaged 

on a depolarizing medium, in turn imaged on the entrance of the detection system. The 

depolarization index is thus expected to evidence the presence of domains with different 

apparent angles at the beam scale. A key-asset of this method is the simultaneous extraction of 

all of the above parameters. It is the warrant of a good correlation between them, conversely to 

the case where several experiments are needed to quantify the described effects since they 

generate additional noise [4]. 

A square voltage between ± 15 V at 30 Hz was applied to the FLC cell to investigate the 

dynamics of switching between the up and the down states. But the great difference between the 

CCD refreshment time and the duration of switching (≈ 1 ms vs ≈ 100 µs) hindered its 

measurement over a single period. This drove us to synchronize the detection with the applied 

voltage; then, the acquisition was progressively delayed of the same time-increment to 

reconstruct the transition. Each MM was measured with a gate aperture of 5 µs and 

25 accumulations. A total of 50 points were acquired with an increment of 6 µs. Figure 3 

illustrates the time evolution of the four parameters under study. 

The rotational viscosity, η, of the liquid crystal is determined through extraction of the 

switching duration from αR(t). Indeed, in the simplest theoretical model, the director behavior 

over the transition is described by η.∂f/∂t = PS.E.Sin[f] , where f is the angle between the 

applied electric field, E
ur

, and the spontaneous polarization,SP
uur

 [9]. The transition rise-time tud is 

given by the interval between, for example, 10 and 90%. In this study, the spontaneous 

polarization value was given by PS = 33 nC/cm2, the applied voltage was set at E ≈ 10 V/µm and 
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the measured rise-time was tud ≈ 70 µs. From the solution of the above equation expressed in [9], 

the relation /(1,32. . )ud St P Eη=  led to η ≈ 0.175 Pa.s for the rotational viscosity. However, this 

simple relation gives a poor account of the true dynamic behavior since it fails to give a good fit 

of the experimental curve when only the ferroelectric torque is taken into account. A more 

elaborated model of the FLC switching dynamics will be presented and tested against 

experimental data elsewhere. 

The minimum observed on the plot of R(t) (Fig. 3) corresponds to the lowest value of the 

angle, χ (see Eq.(1)). It indicates that, over the transition, the molecules get out of the cell plane 

for a while. Indeed, according to the theory, in FLC cells the molecules switch around a cone. 

One should also note that PD is equal to 1 (uniform state) in the up and down states. The 

short minimum (≈ 0.900) means that, within the light beam, the various molecules switch from 

the up to down states at different times (dispersion of switching starts). However, a domain 

propagation-induced switching would have strongly lowered depolarization value (≈ 0.650). 

According to Fig. 3, εR is close to 0° in the up and down states, which means that the 

director distribution is almost homogeneous in the Oz direction despite a small twist, likely 

located near the surfaces due to the anchoring strengths. The change in εR sign indicates a change 

in the direction of twist. Analysis of εR behavior at the transition is more complex because of the 

non homogeneity of the director distribution in the (Ox,Oy) plane. On-going researches are 

focused on the development of a more detailed model of the director distribution within the cell 

to further quantify ellipticity and depolarization. 

To gain more insight into the molecule behavior over the up/down switching, the 

trajectory of the director extremity in the (Ox,Oz) plane was plotted by using the experimental 

angles, χ and θapp, linked to the director coordinates (x,y,z) by the relations x = r.Sin[χ].Sin[θapp], 
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y = r.Sin[χ].Cos[θapp], z = r.Cos[χ] , where r is the size of the rigid stick that symbolizes the 

molecule. Figure 4 illustrates the trajectory followed by the molecules when they switch from the 

up to down states for two different positions of the light beam within the cell. One should note 

changes (from a cone to a deformed ellipse) in the shape of the different trajectories. This finding 

suggests the existence of different layer structures within the cell. The authors are currently 

trying to give more thorough interpretations of these results, which will be published elsewhere. 

This study demonstrated that snapshot Mueller matrix polarimetry can give account of 

the behavior of FLC molecules over a fast transition. All of the parameters relative to the 

collective motions of the molecule director were simultaneously extracted from a single 

acquisition shot through use of a Lu and Chipman decomposition. For liquid crystal 

characterizations, the simplicity and power of time-resolved Mueller polarimetry together with 

the resulting enhancement of the signal-to-noise ratio make it more attractive than classical 

optical techniques. Further investigations are in progress to better describe the theoretical and 

experimental dynamics in FLCs, where the chevron structures of the smectic layers will be taken 

into account. 
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List of Figure caption 

Fig. 1. Snapshot Mueller Matrix Polarimeter in the configuration (e,e,5e,5e). 

Fig. 2. SSFLC cell and representation of the director (n
r

) in an (x,y,z) coordinate system; FLC 

molecules are symbolized by rigid sticks. The spontaneous polarization SP
r

 is perpendicular to 

the director, and tangential to the circle of intersection of the cone with the boundary plane of the 

layer. 

Fig. 3. Evolution of the parameters, (αR(t), R(t), PD(t), εR(t)), throughout the up/down transition. 

The voltage switches from +15V to -15V at t = 100 µs.  

Fig. 4. Representation of the director end in the (Ox,Oz) plane during the up/down transition for 

two positions of the beam within the cell. The trajectory showed in the left is calculated from the 

parameters depicted in Fig.3. This representation assumes a collective movement of the directors 

(no depolarization). The associated error bars are for an uncertainty of 0.5°on the retardance 

value; r is normalized to 1. 
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Fig. 1. Snapshot Mueller Matrix Polarimeter in the configuration (e,e,5e,5e). 
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Fig. 2. SSFLC cell and representation of the director (n
r

) in an (x,y,z) coordinate system; FLC 

molecules are symbolized by rigid sticks. The spontaneous polarization SP
r

 is perpendicular to 

the director, and tangential to the circle of intersection of the cone with the boundary plane of the 

layer. 
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Fig. 3. Evolution of the parameters, (αR(t), R(t), PD(t), εR(t)), throughout the up/down transition. 

The voltage switches from +15V to -15V at t = 100 µs. 
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Fig. 4. Representation of the director end in the (Ox,Oz) plane during the up/down transition for 

two positions of the beam within the cell. The trajectory showed in the left is calculated from the 

parameters depicted in Fig.3. This representation assumes a collective movement of the directors 

(no depolarization). The associated error bars are for an uncertainty of 0.5°on the retardance 

value; r is normalized to 1. 

 


