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Abstract. We examined the effect of iron (Fe) and Fe-light
(Fe-L) co-limitation on cellular silica (BSi), carbon (C) and
nitrogen (N) in two marine diatoms, the small oceanic diatom
Thalassiosira oceanicaand the large coastal speciesDitylum
brightwellii. We showed that C and N per cell tend to de-
crease with increasing Fe limitation (i.e. decreasing growth
rate), both under high light (HL) and low light (LL). We ob-
served an increase (T. oceanica, LL), no change (T. ocean-
ica, HL) and a decrease (D. brightwellii, HL and LL) in BSi
per cell with increasing degree of limitation. The compari-
son with literature data showed that the trend in C and N per
cell for other Fe limited diatoms was similar to ours. Inter-
specific differences in C and N quotas of Fe limited diatoms
observed in the literature seem thus to be mostly due to vari-
ations in cell volume. On the contrary, there was no global
trend in BSi per cell or per cell volume, which suggests that
other interspecific differences than Fe-induced variations in
cell volume influence the degree of silicification. The relative
variations in C:N, Si:C and Si:N versus the relative variation
in specific growth rate (i.e.µ:µmax) followed the same pat-
terns forT. oceanicaandD. brightwellii, whatever the irradi-
ance level. However, the variations of C:N under Fe limita-
tion reported in the literature for other diatoms are contrasted,
which may thus be more related to growth conditions than to
interspecific differences. As observed in other studies, Si:C
and Si:N ratios increased by more than 2-fold between 100%
and 40% ofµmax. Under more severe limitation (HL and
LL), we observed for the first time a decrease in these ratios.

Correspondence to:E. Bucciarelli
(eva.bucciarelli@univ-brest.fr)

These results may have important biogeochemical implica-
tions on the understanding and the modelling of the oceanic
biogeochemical cycles, e.g. carbon and silica export.

1 Introduction

Warming of the climate system is now unequivocal and very
likely due to the atmospheric increase of greenhouse gases
such as carbon dioxide (CO2) (IPCC, 2007). The rate of
change in atmospheric CO2, depends, however, not only on
human activities but also on oceanic biogeochemical pro-
cesses (Falkowski et al., 2000). Oceanic ecosystems indeed
strongly affect the composition of the atmosphere, through
CO2 uptake by phytoplankton, and the export of that organic
carbon from the surface to the ocean interior. In this regard,
the phytoplanktonic group of the diatoms is thought to play a
major role (Sarthou et al., 2005). These siliceous species
contribute up to 40% of the global oceanic primary pro-
duction of carbon (Nelson et al., 1995) and the termination
of their massive blooms export large quantities of organic
carbon and biogenic silica from upper layers to the deep
ocean (Smetacek, 1999). These export events may partly
control the partitioning of carbon in the atmosphere-ocean-
sediment system over geological timescales (Barber and His-
cock, 2006; Falkowski et al., 1998). Since the 1990s, it
has been convincingly shown that the subnanomolar oceanic
concentrations of iron (Fe) are low enough to limit primary
production and in particular diatom growth in at least 40% of
the ocean (de Baar et al., 2005). Iron limitation also induces
a decoupling in the use of macronutrients by phytoplankton,
likely to influence the cycling of the major biogeochemical
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cycles (C, N, P, Si, S) over geological time scales (de Baar
and La Roche, 2003). For example, it is now well admit-
ted that Fe-limited diatoms generally increase their cellular
Si:N and Si:C ratios, which may have large consequences
for biogeochemical cycles, e.g. the efficiency and strength
of the biological carbon pump, and the depletion of Si be-
fore N, driving the system towards Si limitation (Marchetti
and Cassar, 2009; Sarthou et al., 2005). This increase has
been attributed to increased Si content and decreased C and
N content (e.g. Takeda, 1998; Timmermans et al., 2004). It
is then usually assumed in biogeochemical models that di-
atom Si content, Si:N and Si:C ratios increase under limiting
conditions (e.g. Aumont et al., 2003; Moore et al., 2004).
However, two recent studies indicated no change or even a
weak decrease in cellular biogenic silica of Fe-limited cells
of Chaetoceros dichaeta(Hoffmann et al., 2007) and some
clones ofPseudonitzschia(Marchetti and Harrison, 2007).
In those cases, an increase in Si:N and Si:C ratios under Fe
limiting conditions was due to a greater decrease in C and N
contents than in biogenic silica. Marchetti and Cassar (2009)
proposed that such discrepancies between studies may be due
to the level of Fe deficiency, different culture conditions and
implemented methodology, in situ shifts in diatom species
composition, interspecific differences, and/or change in cell
size and diatom morphology.

Other abiotic parameters, like irradiance, also control pri-
mary production and influence the elemental stoichiometry
of phytoplankton (Geider and La Roche, 2002). Besides, ir-
radiance may be a determining factor in diatom species suc-
cession and distribution (Timmermans et al., 2007). Fe-light
co-limitation occurs in the subarctic Pacific Ocean (Maldon-
aldo et al., 1999), subantarctic waters (Boyd et al., 1999),
central North Atlantic (Moore et al., 2006) and eastern North
Pacific (Hopkinson and Barbeau, 2008). Co-limitation by Fe
and light may even better describe the HNLC regions than Fe
alone (de Baar et al., 2005). Iron and light indeed interplay
at the biochemical level, because phytoplanktonic cells need
higher Fe:C for growth under low light (Sunda and Hunts-
man, 1997). However, despite the importance of this envi-
ronmentally relevant co-limitation, very few studies explored
its impact on the coupling of the major biogeochemical cy-
cles.

In the present study, we examined the effect of Fe limita-
tion and Fe-light co-limitation on cellular silica, carbon and
nitrogen in the small oceanic diatomThalassiosira ocean-
ica and the large coastal speciesDitylum brightwellii over a
large range of Fe limitation and at two different irradiances.
We then compared our results to literature data, taking into
account the degree of Fe limitation.

2 Materials and methods

2.1 Culture conditions

Batch cultures of the centric diatomsThalassiosira ocean-
ica (CCMP 1005, axenic, small solitary oceanic species
from the Sargasso Sea, ca. 80 µm3) andDitylum brightwellii
(CCMP 358, axenic, large solitary coastal species from the
Gulf of Mexico, ca. 16 000 µm3) were grown at 20◦C in
polycarbonate bottles. Cultures were grown under cool white
fluorescent light at an irradiance of 75 (high light: HL) and
7.5 µmol photons m−2 s−1 (low light: LL) and a 14 h:10 h
light:dark cycle. The culture media (see below) were steril-
ized by micro wave treatment (Keller et al., 1988). Cultures
were grown as duplicates or triplicates at each Fe concentra-
tion. Cultures were gently mixed twice a day by hand to pre-
vent cell sedimentation. Both species were pre-acclimated to
each culture condition (Fe concentration and irradiance level)
until their growth rate remained constant over several days.
When filtered, at least 10 generations have been grown in the
same conditions and at an equivalent growth rate (see Sup-
plementary Material: http://www.biogeosciences.net/7/657/
2010/bg-7-657-2010-supplement.pdf). Cultures were sam-
pled in the mid-exponential phase of growth for total cell
concentration (CC), biogenic silica (BSi), and particulate
(i.e. cellular) carbon (C) and nitrogen (N). Samples were col-
lected at the same time of the day to avoid diel cycle varia-
tions between treatments.

2.2 Culture media

The complete medium consisted of artificial AQUIL sea-
water enriched with 300 µmol L−1 nitrate, 10 µmol L−1

phosphate, 100 µmol L−1 silicate, 0.55 µg L−1 vitamin B12,
0.5 µg L−1 biotin, 100 µg L−1 thiamin, 10 nmol L−1 selen-
ite and 100 nmol L−1 molybdate (Price et al., 1988/1989).
The medium also contained a trace metal ion buffer sys-
tem consisting of 100 µmol L−1 ethylene diamine tetra
acetic acid (EDTA), 19.6 nmol L−1 Cu, 50.3 nmol L−1 Co,
79.7 nmol L−1 Zn and 121 nmol L−1 Mn. The buffer sys-
tem generated free ion concentrations of Cu, Co, Zn and
Mn of 10−13.79, 10−10.88, 10−10.88 and 10−8.27 mol L−1, re-
spectively, at pH 8.1 (Price et al., 1988/1989). Added iron
concentrations to the medium ranged from 0 (no addition)
to 500 nmol L−1. Background iron in the medium without
EDTA (0.61 nmol L−1) was measured by ICP-MS after pre-
concentration onto an 8-HQ resin. Total iron concentration
was computed from the sum of added iron and the back-
ground iron concentration. In this medium, inorganic iron
concentrations ([Fe′]) can be estimated from total iron con-
centrations, and depend on the irradiance (Sunda and Hunts-
man, 1997). They varied between 0.9 and 699 pmol L−1 at
HL and between 0.7 and 610 pmol L−1 at LL (Table 1).
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Table 1. Inorganic Fe concentrations in the medium ([Fe′], in
pmol L−1) at high light (HL) and low light (LL) forT. oceanicaand
D. brightwellii. Starred values indicate that specific growth rates
were measured at these concentrations but not elemental composi-
tion.

Fe′ (pmol L−1)
Thalassiosira oceanica Ditylum brightwellii
HL LL HL LL

0.9 0.7 8.7 11*
2.2 2.0 11* 19*
7.8 6.8 12 37
43 13 13* 98*
112 37 15* 610
154 98 44
698 135 113*

610 699

2.3 Specific growth rate and volume per cell

No Coulter counter was available on site, and cellular con-
centrations (CC, cells mL−1

medium) were determined by mi-
croscopic counts. Specific growth rate (µ, d−1) was deter-
mined by linear regression of the natural log CC versus time.
The cells exhibited a constant daily specific growth rate over
several days before the experiment. During the samplings,
10 ml were fixed with 600 µl of 25% glutaraldehyde. The
volume per cell (Vcell, µm3) was measured a week later with
a Z2 Coulter electronic particle counter forThalassiosira
oceanica(LPI, Station Exṕerimentale d’Argenton d’Ifremer,
France). The cylinder shape ofDitylum brightwellii does
not allow to use a Coulter counter: fifty randomly selected
cells were digitized on an inverted microscope using an ana-
logic Leica camera and analyzed with software image anal-
ysis (Visilog 5) to determine the maximal width (a, µm) and
length (A, µm). The average cell volume was determined
using the geometric formula for a cylinder: Volume=π a2 A.

2.4 Cellular nitrogen and carbon

All the glassware used for cell carbon and nitrogen deter-
mination (filter holders, filtration funnels, and vials) were
washed with 10% HCl, rinsed with Milli-Q water and dried.
They were then pre-combusted at 450◦C for 4.5 h. Cells
from culture samples were filtered as duplicates onto GF/F
filters (pre-combusted as the glassware) and rinsed with arti-
ficial seawater containing no nutrient. Samples were stored
frozen at−20◦C and were dried before analysis. Samples
were analyzed using a Carlo-Erba NA-1500 elemental ana-
lyzer.

3

0

0.4

0.8

1.2

1.6

0 100 200 300 400 500 600 700 800

HL

LL

(a)

0

0.4

0.8

1.2

1.6

0 100 200 300 400 500 600 700 800

[Fe'] (pmol L
-1

)

HL

LL

(b)

S
p

e
ci

fi
c 

g
ro

w
th

 r
a
te

 (
d

-1
)

Fig. 1. Specific growth rate (µ, d−1) of (a) Thalassiosira oceanica
and(b) Ditylum brightwellii versus inorganic iron concentration in
the medium ([Fe′], pmol L−1) under high light (HL, open symbols)
and low light (LL, closed symbols).

2.5 Biogenic silica (BSi)

Culture samples were filtered as duplicates onto 0.6 µm poly-
carbonate membrane and rinsed with artificial seawater con-
taining no nutrient. The filters were oven dried at 60◦C
for 24 h, digested for 7 days in 2.9 mol L−1 HF, and the re-
sulting orthosilicic acid was measured by spectrophotometry
(Ragueneau and Tréguer, 1994).

3 Results

3.1 Specific growth rate and volume per cell

The specific growth rate decreased with the irradiance and
the inorganic iron concentrations in the medium for both
species (Fig. 1a, b). The maximum specific growth rate
(µmax) and the half-saturation constant for growth with re-
spect to iron (KµFe′) were determined using a Monod sat-
uration function (Table 2). When the irradiance decreased
by 10-fold, µmax decreased by 1.8-fold and 1.6-fold for
T. oceanicaand D. brightwellii, respectively. In the same
time, KµFe′ increased by 2.3-fold forT. oceanica. De-
spite the large standard error at low light, a 1.4-fold in-
crease inKµFe′ was significant forD. brightwellii between
HL and LL (ANOVA, p < 0.001, F=51.1). Maximum
growth rates are within the range of values reported in the
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Table 2. Maximum specific growth rateµ (d−1) and half-saturation constant for growth with respect to iron (KµFe′) for T. oceanica
andD. brightwellii under high light (HL) and low light (LL). The squared correlation coefficient of the Monod saturation function versus
inorganic Fe concentration (R2) and the number of data used for the regression (n) are also given.

Thalassiosira oceanica Ditylum brightwellii
HL LL HL LL

µmax (d−1) 1.18±0.02 0.65±0.02 1.60±0.04 0.98±0.07
KµFe′ (pmol L−1) 1.29±0.17 3.01±0.43 25.4±1.99 36.5±9.79

n 20 24 19 10
R2 0.92 0.93 0.97 0.88
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Fig. 2. Cell volume (Vcell, µm3) of Thalassiosira oceanicaversus
specific growth rate (µ, d−1) under high light (HL, open symbols)
and low light (LL, closed symbols).

literature at the same temperature and higher irradiances
for T. oceanica(e.g.∼0.9 d−1 at 180 µmol photons m−2 s−1,
Peers et al., 2005, 1.1 d−1 at 500 µmol photons m−2 s−1,
Sunda et al., 1991) andD. brightwellii (e.g. ∼1 d−1 at
100 µmol photons m−2 s−1, Eppley and Rogers, 1970, and
1.2–1.9 d−1 at 190 µmol photons m−2 s−1, Goldman, 1999).

The volume per cell ofT. oceanicadid not vary under Fe
limitation at HL (Vcell=79.0±1.2 µm3, n=15, CI=95%) ex-
cept at the lowest specific growth rate (Vcell=62.9±2.3 µm3,
n=2, CI=95%) (Fig. 2). The volume per cell of this species
decreased significantly between HL and LL (t-test,p < 0.01)
and remained stable at LL whatever the Fe concentration
(Vcell=61.2±2.1 µm3, n=16, CI=95%). In other Fe-limited
experiments at HL,µ decreased down to 0.1 d−1, and values
of Vcell were similar to those observed here under LL (Buc-
ciarelli, unpublished data). The difference between HL and
LL in the present study is thus most likely due to a decrease
in the specific growth rate, and not to a direct effect of light
limitation.

While we did not measure any change in cell volume due
to glutaraldehyde preservation forT. oceanica, the use of glu-
taraldehyde induced an increase (up to 3-fold) in cell volume
of D. brightwellii that could not be corrected. As a result,
the elemental compositions of both diatoms are presented on

a per cell basis to allow interspecific comparisons. Data of
T. oceanicaare also discussed on a per cell volume basis.

3.2 Cellular nitrogen and carbon

The trends in variations in cellular carbon were similar for
both diatoms under HL. Cellular C decreased with Fe lim-
itation under HL from∼1 pmol cell−1 to ∼0.5 pmol cell−1

for T. oceanica (Fig. 3a) and from∼50 pmol cell−1 to
∼30 pmol cell−1 for D. brightwellii (Fig. 3b). At a
given growth rate, the C content was higher under LL
than under HL forD. brightwellii and almost similar for
T. oceanica. Indeed, whenµ varied between 0.4 and
1.05 d−1 for D. brightwellii and between 0.4 and 0.75 d−1

for T. oceanica, the average values of the C content at
LL and HL were respectively 53.6±15.7 pmol cell−1 (n=5,
CI=95%) and 30.0±2.1 pmol cell−1 (n=9, CI=95%) for
D. brightwellii, and 0.70±0.04 pmol cell−1 (n=12, CI=95%)
and 0.59±0.07 pmol cell−1 (n=5, CI=95%) for T. ocean-
ica. However, when considering cell volume, C con-
centration forT. oceanicawas significantly higher under
LL (11.2±0.6 mol L−1

cell, n=12, CI=95%) than under HL
(8.4±1.1 mol L−1

cell, n=5, CI=95%). Under LL, cellular
C decreased with Fe limitation forD. brightwellii (from
∼80 pmol cell−1 to ∼30 pmol cell−1) but did not change for
T. oceanica(0.67±0.07 pmol cell−1 and 11.0±1.0 mol L−1

cell,
mean±SD,n=16).

For both species and light conditions, atµ higher than
0.1 d−1, the nitrogen content decreased with Fe limitation
(Fig. 3c, d). At a given specific growth rate, the average
value was similar forT. oceanicaunder LL and HL, on a
per cell and on a cell volume basis (forµ between 0.4 and
0.75 d−1, 0.057±0.004 pmol cell−1 and 0.92±0.06 mol L−1

cell,
n=12, CI=95%, under LL, and 0.061±0.013 pmol cell−1 and
0.84±0.11 mol L−1

cell, n=5, CI=95%, under HL). It decreased
from ∼0.1 pmol cell−1 at 1.2 d−1 to ∼0.04 pmol cell−1 at
0.3 d−1. At the most severe Fe-L co-limitation (µ=0.09 d−1),
the nitrogen content ofT. oceanica increased up to
0.07 pmol cell−1 (i.e. 1.2 mol L−1

cell). For D. brightwellii, the
average value was higher at LL than at HL (forµ between
0.4 and 1.05 d−1, 9.32±3.04 pmol cell−1, n=5, CI=95%,
and 4.56±0.36 pmol cell−1, n=9, CI=95%, respectively).
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Fig. 3. Carbon(a, b), nitrogen(c, d) and biogenic silica(e, f) per cell (in pmol cell−1) versus specific growth rate (µ, d−1) of Thalassiosira
oceanica(left panels) andDitylum brightwellii (right panels) under high light (HL, open symbols) and low light (LL, closed symbols).

It decreased approximately from 11.5 to 5 pmol cell−1 at
1 d−1 (LL and HL, respectively) and from 6 pmol cell−1 to
4.5 pmol cell−1 at 0.5 d−1 (LL and HL, respectively).

3.3 Biogenic silica (BSi)

The BSi content ofT. oceanicawas scattered under Fe
limitation at HL and did not change significantly with
the specific growth rate, either on a per cell (Fig. 3e)
or per cell volume basis (r2 < 0.1, p > 0.25, n=17).
For µ between 0.4 and 0.75 d−1, the average BSi per
cell was lower under LL than under HL on a per
cell basis (0.065±0.002 pmol cell−1, n=9, CI=95%, and
0.083±0.008 pmol cell−1, n=5, CI=95%, respectively) but
similar on a per cell volume basis (1.06±0.05 mol L−1

cell, n=9,
CI=95% and 1.16±0.11 mol L−1

cell, n=5, CI=95%). Under
LL, it increased with Fe limitation forµ decreasing from
0.7 to 0.1 d−1, per cell (r2=0.60, p < 0.01, n=13) and per
cell volume (r2=0.72, p < 0.01, n=13). The reverse trend

was observed forD. brightwellii, with a decrease with Fe
limitation (µ < 0.6 d−1) for both light conditions (Kruskall
Wallis test,χ2=12.55,p=0.0057,n=18) and similar values
at a given specific growth rate under low and high light
(for µ between 0.4 and 1.05 d−1, 11.2±2.0 pmol cell−1, n=5,
CI=95%, and 9.89±1.89 pmol cell−1, n=9, CI=95%, respec-
tively) (Fig. 3f).

3.4 Elemental ratios C:N, Si:C and Si:N

When the specific growth rate varied between 0.4 and
1.05 d−1 for D. brightwellii and between 0.4 and 0.75 d−1

for T. oceanica, the average value of the molar ratio
C:N was lower at LL than at HL forD. brightwellii
(respectively 5.84±0.32 mol mol−1, n=5, CI=95%, and
6.58±0.28 mol mol−1, n=9, CI=95%) and similar at LL and
HL for T. oceanica(respectively 12.33±0.56 mol mol−1,
n=12, CI=95%, and 10.06±1.77 mol mol−1, n=5, CI=95%)
(Fig. 4a, b).
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Fig. 4. Molar ratios of C:N(a, b), Si:C (c, d) and Si:N(e, f) versus specific growth rate (µ, d−1) of Thalassiosira oceanica(left panels) and
Ditylum brightwellii (right panels) under high light (HL, open symbols) and low light (LL, closed symbols).

It increased for both diatoms when the specific growth
rate decreased (∼1.6-fold for T. oceanicaand 1.4-fold for
D. brightwellii), except at the most severe Fe-L co-limitation
for T. oceanica, where it equalled the non limited value. Mo-
lar ratios Si:C (Fig. 4c, d) and Si:N (Fig. 4e, f) did not fol-
low the same patterns for the two species. ForT. oceanica,
Si:C increased by∼1.8-fold and 1.4-fold under Fe limita-
tion and Fe-L co-limitation respectively, and Si:N increased
by ∼2-fold and 1.5-fold under Fe limitation and Fe-L co-
limitation respectively, with the exception of the most severe
Fe-L co-limitation where a decrease was observed. When
the specific growth rate varied between 0.4 and 0.75 d−1

for T. oceanica, the average value of Si:C was lower under
LL than under HL (respectively 0.09±0.01 mol mol−1, n=9,
and 0.14±0.01 mol mol−1, n=5, CI=95%), while the average
value of Si:N was equivalent under LL and HL (respectively
1.13±0.09 mol mol−1, n=9, and 1.40±0.26 mol mol−1, n=5,
CI=95%). ForD. brightwellii, Si:C and Si:N increased re-
spectively by 2-fold and 2.4-fold under Fe-limitation down
to a specific growth rate of 0.6 d−1. Below 0.6 d−1, the ra-

tios decreased to similar values as for non limited conditions.
Under Fe-L co-limitation, the same pattern was observed, but
it was harder to characterize due to the lower number of val-
ues. Besides, Si:C and Si:N were lower at LL than at HL for
µ > 0.6 d−1, and similar forµ < 0.6 d−1.

To compare the effects of the limitations on the two di-
atoms, we will use in the discussion section the R ratio, de-
fined as the relative variation of a given parameter between
a limiting condition and the Fe-replete condition (e.g., at a
specific growth rateµ, R(Si:N)µ=(Si:N)µ: (Si:N)µmax). The
degree of Fe limitation will be defined by its impact on the
growth rate using the ratioµ:µmax (i.e.R(µ)), with the value
of maximum growth rate measured at the highest Fe concen-
tration, either under HL (e.g.:µmax∼ 1.2 d−1 for T. ocean-
ica), or under LL (e.g.:µmax∼ 0.7 d−1 for T. oceanica).

Biogeosciences, 7, 657–669, 2010 www.biogeosciences.net/7/657/2010/



E. Bucciarelli et al.: Composition of Fe-L co-limited diatoms 663

4 Discussion

4.1 Growth parameters and the decoupling of cellular
C and N

The half-saturation constants for growth with respect to iron
(KµFe′ , Table 2) agree well with previous studies, showing
a much lower value, i.e. a better adaptation to limitation (Fe
and Fe-L) of a small diatom than of a large one (Sunda and
Huntsman, 1995; Timmermans et al., 2001b, 2004). Once
the limitation is relieved, the smallest cells should have the
highest growth rates according to allometric relationship be-
tweenµmax and cell volume (Sarthou et al., 2005). However,
this allometric relationship is very scattered and in our study
the largest diatom would outgrow the smallest one due to
its higher maximum specific growth rate. The better adapta-
tion of T. oceanicacan be explained by a more favorable sur-
face to volume ratio for a small species than for a bigger one
(Hudson and Morel, 1990) and a general lower Fe require-
ment for growth in the oceanic species than in the coastal
species (Sunda and Huntsman, 1995; Sunda et al., 1991). For
example, oceanic diatoms can synthesize flavodoxin instead
of ferredoxin (La Roche et al., 1995). It has also recently
been shown thatT. oceanicauses the copper-containing plas-
tocyanin instead of the functionally equivalent Fe-containing
cytochrome c6 (Peers and Price, 2006), and has a different
photosynthetic apparatus from a coastal species, i.e. lower
cellular concentrations of Fe-rich cytochrome b6/f and PSI
(Strzepek and Harrison, 2004). This could also explain how
cellular C remained constant forT. oceanicawith increasing
Fe limitation under LL (Fig. 3a). Cells acclimatize to low
light by increasing their Fe content and Fe:C ratio, i.e. their
photosynthetic capacity (Strzepek and Price, 2000; Sunda
and Huntsman, 1997). Its photosynthetic apparatus allows
T. oceanicato decrease its cellular iron requirements but not
its photosynthetic rates (Strzepek and Harrison, 2004), which
may help this species to maintain its C content under LL
and increasing Fe limitation. On the contrary, the C con-
tent of D. brightwellii decreased under LL with increasing
Fe limitation. However, although not measured in our study,
it is known that the size of this species shows a large plastic-
ity. It increases by 4-fold under Cu toxicity (from∼25 000
to ∼100 000 µm3, Rijstenbil and Gerringa, 2002), and de-
creases from 4500 to 3000 µm3 when irradiance decreases
from 110 to∼10 µmol photons m−2 s−1 (Waite et al., 1992).
The decrease in C content could thus be compensated for by
a 2-fold decrease in cell volume.

The inefficiency of photosynthesis also reduces the effi-
ciency of nitrate and nitrite reduction by lowering the amount
of reductants. This directly disrupts the metabolism of ni-
trogen, whose energetic needs are important (Muggli et al.,
1996; Timmermans et al., 1994). Besides, Fe is the metal at
the center of the nitrate and nitrite reductases. These com-
bined effects of Fe limitation on N metabolism may explain
why we observed a stronger effect of Fe on N than on C of

Fe and Fe-L (co-)limited cells, except at the most severe de-
gree of limitation forT. oceanica(i.e. at the highest degree of
Fe-L co-limitation). If we exclude these two singular points,
N content indeed decreased by 60% and 50% forT. ocean-
ica andD. brightwellii respectively (same relative decrease at
LL and HL, Fig. 3c, d) while C content decreased by∼40%
for T. oceanicaandD. brightwellii at HL and did not vary
(T. oceanica) or decreased by 40% (D. brightwellii) at LL.
As indicated above, however, at the highest degree of Fe-L
(co)-limitation forT. oceanica, the N content doubled while
C remained stable. This sharp increase might be explained
by the high level of Fe limitation, even more important under
LL. It has indeed been suggested that under severe Fe stress,
T. oceanicamay produce a Fe reductase that is also a plas-
malemma bound form of nitrate reductase (Maldonado and
Price, 2000). In that case, severely Fe-limited cells might in-
crease their N quota while increasing Fe uptake. Our results
give support to this hypothesis.

Many other studies focused on the intracellular C and/or
N quota of Fe-limited diatoms. Their conclusions are rarely
similar, even for the same species. To better compare all of
these studies, we considered the relative variation in C and N
per cell (i.e.R(C) andR(N)), versus the relative variation in
the specific growth rate, i.e.R(µ) for 14 other Fe-limited
species in six other studies (5 species ofPseudonitzschia:
Marchetti and Harrison, 2007; 6 species ofThalassiosira
including T. oceanica: Gallinari et al., 2010; Maldonado
and Price, 1996; Timmermans et al., 2004;Actinocyclussp.:
Muggli et al., 1996; Timmermans et al., 2004;Fragilariop-
sis kerguelensis: Hoffmann et al., 2007; Timmermans et al.,
2004;Corethron pennatum: Timmermans et al., 2004; and
Chaetoceros dichaeta: Hoffmann et al., 2007). Results are
reported on Fig. 5a and b. If we exclude the two values of
T. oceanicaat the most severe limitation,R(C) andR(N)
tend to decrease when Fe or Fe-L co-limitation increases
(for R(C): r2=0.58,p < 0.00001,n=63, andR(N): r2=0.54,
p < 0.00001,n=87). However, when considering the N or C
quota per cell volume (when available: Gallinari et al., 2010;
Maldonado and Price, 1996; Marchetti and Harrison, 2007;
Muggli et al., 1996), there is no significant trend inR(C)
or R(N), as also observed by Price (2005) forT. weissflogii.
Interspecific differences in C and N quotas of Fe-limited di-
atoms observed in the literature seem thus to be mostly due
to variations in cell volume.

Given the importance of cell volume in comparing the dif-
ferent species and studies, we considered the relative varia-
tion in C:N, i.e.R(C:N), versus the relative variation in the
specific growth rate, i.e.R(µ). In our study, and exclud-
ing the two values ofT. oceanicaat the most severe lim-
itation, we observed a similar increase with limitation for
both species and both limitations (r2=0.31,p=0.0001,n=47)
(Fig. 6a). The relative variation in C:N of the other species
cited above, however, does not show any dependency on
R(µ) (r2=0.003,p=0.8,n=24, data not shown). Growth con-
ditions and species difference have been invoked to explain
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these contrasting results (Price, 2005). However, in the same
growth conditions, we did not observe a significant interspe-
cific difference in our study. The contrasting results observed
on the coupling or decoupling of C and N under Fe limitation
may thus be more related to growth conditions (temperature,
length of the daily cycle. . . ) than to interspecific differences.
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4.2 Biogenic silica and ratios Si:C, Si:N

Most of the studies show an increase in biogenic silica un-
der Fe limitation. We also observed a significant increase
in the degree of silicification of Fe-L co-limitedT. ocean-
ica, but no clear trend under Fe limitation (Fig. 3e). The
increase under Fe-L co-limitation may be due to light limi-
tation only. Claquin et al. (2002) indeed showed that light
limitation increases the amount of biogenic silica per cell of
Thalassiosira pseudonana. Two recent studies also showed
no change or a weak decrease in cellular biogenic silica of
Fe-limited cells ofChaetoceros dichaeta(Hoffmann et al.,
2007) and some clones ofPseudonitzschia(Marchetti and
Harrison, 2007), respectively. These results are observed be-
tween two values (“low Fe” and “high Fe”), but the effect of
Fe on silicification may depend on the degree of Fe limita-
tion (this study; Timmermans et al., 2004). However, there is
no significant trend inR(BSi) versusR(µ) when comparing
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different diatoms, either on a per cell (Fig. 5c) or per cell
volume basis (data not shown). This suggests interspecific
differences in terms of silicification in response to Fe or Fe-
L limitation.

Marchetti and Harrison (2007) invoke different mecha-
nisms likely to induce a decrease in biogenic silica under Fe
limitation, like the changes in cell volume, cell morphology
and the existence of soluble pools. A change in cell vol-
ume with iron and light limitation has indeed been shown
for some diatom species (e.g. Hoffman et al., 2008; Timmer-
mans et al., 2001a). In our study, the observed decrease in
BSi per cell with increasing Fe limitation could be compen-
sated for by a 2.3-fold decrease in cell volume under HL and
a 1.4-fold decrease under LL. As stated above, such varia-
tions in cell volume can occur forD. brightwellii (e.g. Ri-
jstenbil and Gerringa, 2002; Waite et al., 1992).

Although we did not study cell morphology or soluble
pools, these hypotheses may also be valid forD. brightwellii.
Indeed, this species has spines, which may contain a large
fraction of biogenic silica (e.g.C. gracilis, Rogerson et al.,
1986). Timmermans et al. (2001a) observed more/longer
spines for the Fe-limited diatomsC. calcitransandC. bre-
vis when grown at LL. A decrease in their number or length
in D. brightwellii, due to Fe and light limitations, may thus
affect the BSi content. Besides, Chisholm et al. (1978)
showed that forD. brightwellii, the intracellular pool of Si
may represent up to 50% of total cellular Si, and the size
of internal soluble pool can be influenced by environmental
variables (Martin-J́eźequel et al., 2000). However, although
these mechanisms may explain why we observed a variation
in the silicification of diatoms, the underlying processes are
not explained. The causal link between iron and silicification
has still to be discovered. A few hypotheses can be proposed,
based on the silicification process and the possible role of the
frustule as a defense mechanism.

It is known that the energy for silicon metabolism is
closely linked to respiration (Martin-Jéźequel et al., 2000).
Iron limitation can impair respiration in microalgae (Allen et
al., 2008; Petroutsos et al., 2009), which may disrupt silici-
fication in diatoms. Another effect might be the control of
Fe on the cell cycle via the cellular growth rate. Claquin
et al. (2002) indeed showed for light and nutrient (N, P)-
limited cells ofT. pseudonanaa relationship between the in-
creased length of the G2 phase (during which Si is assimi-
lated) and the higher degree of silicification under limitation.
The increase in silicification ofT. oceanicaunder the Fe-L
co-limitation may indeed be due to an increase in the G2
phase duration (Claquin and Bucciarelli, 2010). However,
limitation does not seem to systematically induce an increase
in the G2 phase length, since it was not observed for our Fe-
limited cells ofT. oceanica(Claquin and Bucciarelli, 2010).
If this is not a general rule, then Fe limitation might decrease
the length of the G2 phase for species such asD. brightwellii,
and decrease their silicification. More studies are obviously
needed to verify this hypothesis.

This difference between the two species may also be re-
lated to their ability to escape grazing. Predation avoidance
mechanisms include larger size and spines (Irigoien et al.,
2005). The frustule is also an effective protection against
zooplankton grazing (Hamm et al., 2003). A recent study
showed a grazing-induced increase in cell wall silicifica-
tion in the marine diatomT. weissflogii(Pondaven et al.,
2007). Under energy limitation (Fe and Fe-L), large cells
with spines that are not as sensitive as small ones to grazing
may reduce their silicification and save on respiratory energy.
On the contrary, smaller cells which are easier to graze may
need stronger frustules. Besides, even when small enough to
be ingested whole by their predators, more silicified diatoms
better survive the gut passage of copepods (Jensen and Bath-
mann, 2007).

Under mild Fe limitation (µ > 40%µmax), we observed an
increase in Si:C and Si:N ratios (Fig. 4c–f), which has been
noted previously by other studies (see review by Marchetti
and Cassar, 2009). We also noted a decoupling between Si,
C and N under Fe-L co-limitation, which has been described
recently for in situ studies (Hopkinson and Barbeau, 2008;
Moore et al., 2007) but not for monospecific laboratory cul-
tures yet. As changes in BSi were lower than in C or N under
LL or HL at a given specific growth rate, the differences in
Si:C and Si:N between the two irradiances depended mainly
on the differences in the C and N contents. Under LL, the
higher C content and the lower BSi value (forT. oceanica)
and higher C and N content (forD. brightwellii), compared
to HL conditions, induced a lower value of Si:C forT. ocean-
ica at a given specific growth rate and a lower value of Si:C
and Si:N forD. brightwellii at µ > 0.6 d−1. Besides, un-
der severe limitation, we observed a decrease in these ratios.
This pattern was especially clear forD. brightwellii. The de-
crease observed in this species was due to a larger decrease
in biogenic silica under Fe limitation (by 60%) than in the
cellular N and C content (by 50% and 40%, respectively).

When comparing the relative variation in these ratios ver-
sus the relative decrease inµ, both limitations and both
species showed very similar patterns (Fig. 6).R(Si:C) and
R(Si:N) increased significantly from 100% to∼40% of
µmax:

R(Si : C)=2.11(±0.17)−1.07(±0.22) ·R(µ);

r2
= 0.48, p < 0.00001, n= 28

and

R(Si : N)=2.40(±0.22)−1.53(±0.29) ·R(µ);

r2
= 0.52, p < 0.00001, n= 28

For values ofµ:µmax below 40%,R(Si:N) tends to decrease
down to values close to 1, i.e. close to the value atµmax:

R(Si : N)=0.05(±0.59)+4.93(±1.70) ·R(µ);

r2
= 0.75, p < 0.01, n= 10
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A decrease inR(Si:C) is also significant forµ:µmax between
20% and 40% (i.e. if the two lowest growth rates are not
taken into account):

R(Si : C)=−0.65(±0.74)+6.09(±2.12) ·R(µ);

r2
= 0.58, p < 0.05, n= 8

Such a decrease has never been observed yet. Our results are
difficult to compare with in situ Fe fertilization data, among
other things because of shifts in the phytoplanktonic com-
munity towards large cells after Fe addition, which prevents
from comparingµ andµmax. Such shifts were not observed
during onboard Fe addition experiments along the Califor-
nia coast, where large phytoplankton dominated both control
and Fe treated samples at most of the stations (Firme et al.,
2003). In that study exploring the impact of Fe limitation on
ratios of particulate nutrients, 34 out of 44 stations presented
some form of Fe limitation, and BSi:PON and BSi:POC were
generally found to decrease in Fe amended samples com-
pared to the control (Firme et al., 2003). However, out of 25
stations that were considered Fe-limited, where no change
in phytoplankton size classes occurred after Fe addition,
and where elemental composition was measured, BSi:PON
and/or BSi:POC ratios were similar in both treatments at 3
stations, and lower in the control at 5 stations. These results
thus present interesting similarities with ours, and more stud-
ies, both in vitro and in situ, should be conducted to further
investigate the link between variations in the elemental com-
position and variations in the specific growth rate.

4.3 Oceanographic relevance

Results indicating that diatoms increase their Si:N ratio under
Fe limitation led to the assumption that (i) Fe increases the
degree of silicification of diatoms and that (ii) more silicified,
Fe limited diatoms would sink faster and that their frustule
would be better preserved when reaching the seafloor, with
implications for the use of opal as a paleoproxy (Hutchins
and Bruland, 1998; Takeda, 1998; Boyle, 1998). In biogeo-
chemical models which consider the cycling of major nutri-
ents such as C, N, P or Si, it is thus usually assumed that
diatom Si content, Si:N and Si:C ratios increase under limit-
ing conditions, and that biogenic silica is efficiently exported
below the mixed layer depth because of a lower reminer-
alisation rate than organic C, N or P (e.g. Aumont et al.,
2003; Fasham et al., 2006; Moore et al., 2004). This gen-
eral mechanism fuels the so-called “silica pump” in systems
like the Southern Ocean or the Equatorial Pacific (Dugdale et
al., 1995). However, in the Southern Ocean, the drawdown
of silicic acid occurs during the diatom spring bloom, when
limitations (e.g. iron and light) are relieved. In the Ross Sea
for example, large silicic acid drawdown and subsequent ex-
port of biogenic silica to the deep ocean are concomitant with
the diatom bloom (SO-JGOFS AESOPS program, Landry
et al., 2002; Nelson et al., 2002; Sigmon et al., 2002). In
the Indian sector of the Southern Ocean, in situ observations

and results from a coupled physical-biogeochemical model
also suggest that more than 80% of the annual C and Si ex-
port occur between December and March at the end of the
spring bloom (Pondaven et al., 1998, 2000). Additionally,
the production of fecal pellets and the formation of aggre-
gates, which are both a major source of biogenic matter to-
wards the deep ocean, increase at the end of blooms (Thorn-
ton, 2002), and BSi is better preserved in fecal pellets and
aggregates (Moriceau et al., 2007). All together, these ob-
servations suggest that most of the silica pump occurs during
bloom events, under non limiting conditions.

Our results show that a large diatom may be more silici-
fied under conditions of optimal growth than when its spe-
cific growth rate is<∼ 40% of µmax due to Fe and Fe-L
limitations (Fig. 3f). If this pattern also holds for other large
diatoms, especially HNLC ecologically relevant species, it
might reinforce the impact of the spring bloom on the silicon
sink. Besides, less silicified, Fe limited diatoms may dissolve
more rapidly. Although this pattern has not been documented
yet, high dissolution rates of biogenic silica have indeed been
reported in Fe-limited systems such as the Southern Ocean
(Beucher et al., 2004).

Overall, our results suggest that the decoupling between
Si, C and N in surface waters of Fe and Fe-L limited areas
may be less straightforward than previously thought. These
results may have important implications for the understand-
ing of the biogeochemical cycles and estimates of biogenic
matter export.

5 Conclusions

General trends in the elemental composition of Fe limited
and Fe-L co-limited diatoms could be determined by taking
into account our results and literature data, and by consider-
ing the degree of limitation (i.e. reduction in growth rate).

We showed that C and N per cell tend to decrease with Fe
and Fe-L co-limitation for all species, but an increase in C:N
with increasing limitation was only significant for the species
we studied. Contrasting results between literature data on C
and N contents in Fe-limited diatoms may be more related
to growth conditions and cell volume variations than to in-
terspecific differences. On the whole, these results show that
using a constant C:N ratio to infer Si:C from Si:N, as often
done for modelling and in situ experiments, may lead to a
bias.

On the contrary, there was no significant trend in silica
content when comparing different Fe or Fe-L limited di-
atoms, which suggests that other interspecific differences
than Fe-induced variations in cell volume influence the de-
gree of silicification. The mechanisms controlling the sili-
cification process are not fully elucidated yet and a few hy-
potheses can be proposed to explain the role of iron in sili-
cification. They include (i) the direct effect of Fe on silicon
metabolism through the impairment of respiration, (ii) the
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indirect control of Fe on the cell cycle via the cellular growth
rate.

Variations in Si:C or Si:N seem to be more constrained, at
least under mild limitation. Forµ:µmax> 40%, a clear trend
is indeed observed, with an increase in Si:N ratio with in-
creasing limitation. Under more severe limitation, Si:N and
Si:C tend to decrease. More in vitro, in situ and modelling
studies are needed in that range of limitation, in order to fur-
ther investigate the link between variations in the elemental
composition, variations in the specific growth rate, and their
impact on the biogeochemical cycles at the ecosystem level.
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