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 Application of negative group delay active 
circuits to the design of broadband and constant 

phase shifters  
 

B. Ravelo, M. Le Roy and A. Pérennec 

 

 

ABSTRACT: The new phase-shifter configuration described in this report uses a 

negative group delay (NGD) active circuit. In this topology, a classical transmission 

line is set in cascade with an NGD circuit whose phase slopes are alike, but opposite, 

to get a constant and broadband phase shift. The proposed approach was validated 

through the design and measurement of a phase shifter, which exhibited a constant 

phase of 90°  5° over a 75% relative bandwidth around 1.6 GHz. Moreover, as the 

group delay of the NGD circuit compensated the transmission line one, the overall 

circuit group delay was kept to a small value in the operating frequency band. 
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1. INTRODUCTION  
In [1], Lucyszyn and co-workers were the first to propose a negative group delay 

synthesiser operating at microwave frequencies. This narrowband and tunable 

microwave circuit operates in reflection, needs a coupler to pass in transmission and 

exhibits high negative group delay (NGD) values together with very high losses. More 

recently, many configurations with negative group delays have been described in the 

literature. Indeed, negative group velocity and, thus, NGD are known to be 

experienced in some metamaterials and, in particular, in left-handed (LH) lines with 

resonant cells [2]. Such lines are built with a high-pass L-C network cascaded with a 

series RLC shunt cell. In this case, NGD values are always associated with high 

losses. In physics, abnormal group velocities have also been evidenced in several 

experiments [3]. To facilitate the study of this intriguing phenomenon, many low 

frequency circuits generating simultaneously NGD and gain have been implemented 

with operational amplifiers and lumped components [4]. But, their use at higher 

frequencies is limited because of the components bandwidths. So, in [5]-[6], the 

authors showed by theory and by experiments that the active topology presented in 

Figure 1(a) is able to simultaneously provide gain and NGD at microwave 

frequencies and for different bandwidths. Moreover, as the field effect transistor 

(FET) is simply modelled (Figure 1(b)) by the transconductance, gm, and the drain-

source resistor, Rds, synthesis equations were easily extracted [5]-[6]. When dealing 

with localised circuits, the notion of group delay has to be used instead of group 

velocity. The group delay is defined as the derivate of the S21 parameter phase 

response versus the angular frequency,  : 

   21S( )= -


 





       (1) 



An NGD is, therefore, induced by a positive phase slope, which can be obtained 

thanks to this topology. By way of consequence it sounded to us worth implementing 

such an active NGD circuit in order to design phase shifters with a constant 

transmission phase.  

 

2. FLAT PHASE PRINCIPLE   

Our approach should be strongly distinguished from recent applications with LH-

media [7]-[8]. Indeed, in these applications, a transmission line (low-pass topology) 

with a negative phase slope is associated with a reverse high-pass topology (LH-line) 

with an identical negative phase slope but with a positive starting phase to get a 

constant phase difference at the design frequency. By associating branches with 

such parallel phase slopes [7] or tuning between high- or low-pass topologies [7] and 

for size reductions or bandwidth-broadening considerations [7]-[8], LH-lines have 

found applications in power divider/splitters, baluns, couplers or phase shifters. 

Compared to these proposals, we designed a circuit with a constant and frequency-

independent phase instead of a constant phase shift difference. Let  be the constant 

group delay; from Eq. 1 the linear transmission phase, (f)  is given by:  

   (f)= -2π f + (0)          (2) 

Figure 2 illustrates the principle presented here: in short, it consists in the cascading 

of a classical line (referred as PGD for positive group delay), whose phase slope is 

negative, by an NGD circuit with a positive and opposite phase slope. In the 

frequency band within f1 and f2, the PGD and NGD device phases are respectively 

expressed as: 

   P P 1 P 1(f)= -2π (f - f )+ (f )         (3) 

   N N 1 N 1(f)= -2π (f - f )+ (f )         (4) 



 
For well-matched devices, once cascaded, the phase of the whole is: 
 

   T P N P N 1 P 1 N 1(f)= (f)+ (f)= -2π( + )(f - f )+ [ (f )+ (f )]        (5) 

The overall transmission phase, T, (in thick curve in Figure 2(b)) is then constant in 

the specified frequency band for opposite phase slopes or opposite group delay 

values: 

   N P= -          (6) 

   te
T P 1 N 1(f)= (f )+ (f )= C         (7) 

This total phase value is the sum, at the frequency, f1, of those of the two circuit 

parts, and it can simply be adjusted by varying the line length. As depicted in Figure 

2(b), the resulting theoretical group delay obtained by application of Eq.6 is low in the 

operational bandwidth whatever the target phases. 

 

3. DESIGN OF FREQUENCY-INDEPENDENT PHASE SHIFTER AND RESULTS  

A prerequisite to the design process was the calculation of the RLC component 

values of the NGD circuit of Figure 1 from the synthesis equations [5] extracted from 

Eqs. (8) and (9): 
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Relation (9) guarantees that the group delay is always negative at the RLC series 

resonance frequency, 0. A direct cascading of circuits with opposite phase slopes in 

order to get a constant phase value is valid only when the two devices are well 

matched. So, here, the NGD circuit was matched at the input by the shunt resistor, 



Rm1, and at the output by the series resistor, Rm2 ; then, it was cascaded with two 50-

 transmission lines, TL1 and TL2, set at the input and output to get the frequency-

constant phase. At first, the circuit used for simulations was the one described in 

figure 3(a)) with the given values for components and substrate and with the S-

parameters available for this FET.  Then, electromagnetic simulations of the layout 

shown in Figure 3(b) were run with ADS Momentum software prior to the final 

optimisation of the line lengths. Figure 4 compares the frequency responses obtained 

by EM simulations and experiments. It shows (Figure 4.a), a 90°  5° transmission 

phase shift from 1.08 to 2.42 GHz. One should note that the group delay is even 

slightly negative from 1.4 to 2 GHz. On the other hand, between 1.08 and 2.42 GHz, 

the measured S21 magnitude lies within 2 and -2 dB. Conversely, input and output 

return losses are better than in simulations. It is worth pointing out that every 

constant phase values within +180° and -180° can be obtained, and among them, the 

negative values require smaller line lengths on condition the number of active cells is 

even (initial NGD-circuit phase value at 0° instead of 180°). 

 

4. CONCLUSION 

We designed and fabricated an active phase shifter with a flat and constant phase 

over a broad frequency band; experimental results confirmed the expected 

behaviour. To get this frequency-independent phase, an active NGD circuit with a 

positive phase slope was cascaded with a classical transmission line. As the 

proposed phase shifter topology provides a constant transmission phase and not a 

phase shift, it can be readily distinguished from existing approaches. Moreover, this 

flat phase induced a low and rather constant group delay value whatever the target 

phase. Wider frequency bands can be achieved by cascading stages with different 



NGD operating frequency bands as proposed in [6] and such circuits can operate 

simultaneously as phase shifter and pulse compressor in UWB devices for example. 

This topology also offers opportunities to build tunable phase shifters by replacing 

either the capacitor with a varactor or the inductance with an active inductor [8] or 

even both of them. Moreover, to overcome the frequency limitation problem of 

localised components, implementation of LC localised components in distributed 

circuits is scheduled. 
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Figure captions 
 
Figure 1 NGD active cell and its equivalent model.   
 
Figure 2 Principle of the NGD phase-shifter: block diagram (a) and the 
corresponding ideal phases and group delays (b) (Z0: reference impedance port). 

 
Figure 3 Schematic (a) of the negative group delay phase shifter with 
Rm1 = 51 , Rm2 = 22 , R = 33 , L = 4.3 nH, C = 1 pF, Rb = 1 k, Lb = 1 µH and Cb 

= 22 µF, TL1, TL2 (Zc = 50 , dTL1+TL2 = 10.2 mm), FET: EC-2612 (gm  = 98.14 mS 
and Rds = 116.8 ) and the corresponding layout (b) on an FR-4 substrate: r = 4.3, 
h = 508 µm, size: 20.7 mm  20.5 mm. Bias networks are in thin lines (Vds = 3 V, Ids = 
30 mA). 

 
Figure 4 Simulations and measurements of the phase shifter: S21 phase and 
group delay (a) and S21 magnitude and return losses (b) 
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Figure 2 
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Figure 4-a 
 
 
 



 
 
 
 
 
 
Figure 4-b 
 
 

 
 


