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RECURRENCE RATES AND HITTING-TIME DISTRIBUTIONS FOR

RANDOM WALKS ON THE LINE

FRANÇOISE PÈNE, BENOÎT SAUSSOL AND ROLAND ZWEIMÜLLER

Abstract. We consider random walks on the line given by a sequence of independent identically
distributed jumps belonging to the strict domain of attraction of a stable distribution, and first
determine the almost sure exponential divergence rate, as ε → 0, of the return time to (−ε, ε).
We then refine this result by establishing a limit theorem for the hitting-time distributions of
(x− ε, x+ ε) with arbitrary x ∈ R.

1. Introduction and Results

We consider a recurrent random walk on R, S0 := 0 and Sn := X1 + · · · +Xn, n ≥ 1, where
the Xi are i.i.d. random variables on (Ω,F ,P) such that Sn

An
converges, for positive real numbers

An, in distribution to a stable random variable X with index α. Necessarily (due to recurrence),
α ∈ [1, 2], and the sequence (An)n≥1 is regularly varying of index 1

α , satisfying
∑

n≥1
1
An

= ∞.

To capture the speed at which recurrence appears, it is possible to specify, for such a walk,
some deterministic sequences (εn) such that Sn ∈ (−εn, εn) infinitely often, or Sn 6∈ (−εn, εn)
eventually, almost surely. This classical question was addressed, for example, in [7] and [5], the
results of which have recently been extended in [6].

Here, we are going to study the number of steps it takes to return to some small neighborhood
of the origin (or to hit a different small interval for the first time). For related work on random
walks in the plane, intimately related to the α = 1 case of the present paper, we refer to [12].

As an additional standing assumption on our walk, we will always require the distribution of
the jumps Xi to satisfy the Cramer condition

lim sup
|t|→∞

|E[eitX1 ]| < 1. (1)

This readily implies, in particular, that the event Ω∗ := {Sn 6= 0 ∀n ≥ 1} has positive probability,
and Ω∗ has probability one if and only if no individual path returning to the origin has positive
probability.

As a warm-up we first determine the a.s. rate at which the variables

Tε := min{n ≥ 1 : |Sn| < ε}, ε > 0,

diverge on Ω∗ as ε→ 0. Let β ∈ [2,∞] be the exponent conjugate to α, that is, α−1 + β−1 = 1.

Theorem 1. In the present setup,

lim
ε→0

logTε

log ε
= −β a.s. on Ω∗. (2)
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Our main objective then is to determine the precise order of magnitude, and to study
the asymptotic distributional behaviour, as ε → 0, of the more general hitting times of ε-
neighbourhoods of arbitrary given points x on the line. We shall, in fact, do so for the walk
S′
n := S′

0 + Sn, n ≥ 0, with random initial position S′
0, independent of (Sn)n≥0 and having an

arbitrary fixed distribution P on R. For any x ∈ R we thus let

Tx
ε := inf{m ≥ 1 : |S′

m − x| < ε}
and Ω∗

x := {S′
n 6= x ∀n ≥ 1}. Outside Ω∗

x we clearly have limε→0T
x
ε = min{m ≥ 1 : S′

m = x}.
It is convenient to state the results in terms of, and work with, the strictly increasing con-

tinuous function G : [0,+∞) → [0,+∞) with G(0) = 0 which affinely interpolates the values
G(n) =

∑n
k=1

1
Ak

, n ≥ 1. We denote by G−1 its inverse function. Evidently, G(n) = o(n).

Moreover, by the direct half of Karamata’s theorem (cf. Propositions 1.5.8 and 1.5.9a of [2]), G
is regularly varying with index 1

β , and satisfies

n

An
= o(G(n)) if α = 1, while

n

An
∼ G(n)

β
in case α ∈ (1, 2]. (3)

We establish a result on convergence in distribution for εG(Tx
ε ) conditioned on Ω∗

x (while
εG(Tx

ε ) → 0 outside this set). In the case α = 1, the limit distribution is the same as for square
integrable random walk on the plane, cf. [12]. Recall that X has a density fX . For simplicity
we set γ := 2fX(0)P(Ω∗).

Theorem 2. Assume that α = 1, and fix any x ∈ R. Conditioned on Ω∗
x, the variables εG(Tx

ε )
converge in law,

lim
ε→0

P (γεG(Tx
ε ) ≤ t |Ω∗

x) =
t

1 + t
∀t > 0.

For α ∈ (1, 2], different limits distributions arise, and we obtain convergence in law of Tx
ε to

the 1
β -stable subordinator at an independent exponential time:

Theorem 3. Assume that α ∈ (1, 2], and fix any x ∈ R. Conditioned on Ω∗
x, the variables

εG(Tx
ε ) converge in law,

lim
ε→0

P

(

Γ

(

1

β

)

γ

β
εG(Tx

ε ) ≤ t

∣

∣

∣

∣

Ω∗
x

)

= Pr
(

EG1/β
1/β ≤ t

)

∀t > 0,

or, equivalently,

lim
ε→0

P

(

(

Γ

(

1

β

)

γ

β

)β
Tx

ε

G−1(1/ε)
≤ t

∣

∣

∣

∣

Ω∗
x

)

= Pr
(

EβG1/β ≤ t
)

∀t > 0,

where E and G1/β are independent random variables, Pr(E > t) = e−t, and G1/β having the

one-sided stable law of index 1
β with Laplace transform E[e−sG1/β ] = e−s1/β , s > 0.

In particular, we have:

Corollary 1. If (Xn)n≥1 is an i.i.d. sequence of centered random variables with variance 1,
satisfying the Cramer condition, and x ∈ R, then

lim
ε→0

P

(

2P(Ω∗
x) ε

√

Tx
ε ≤ t

∣

∣

∣
Ω∗
x

)

= Pr

( E
|N | ≤ t

)

∀t > 0,

or, equivalently,

lim
ε→0

P
(

4P(Ω∗
x)

2 ε2Tx
ε ≤ t

∣

∣Ω∗
x

)

= Pr

(

( E
|N |

)2

≤ t

)

∀t > 0,
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where E and N are independent variables, N having a standard Gaussian distribution N (0, 1).

As Cheliotis does in [6], we will use the following extension of Stone’s local limit theorem [13].

Proposition 1. Let θ be such that lim sup|t|→∞ |E[eitX1 ]| < θ < 1, and let c > 1. Then there
exist a real number h0 > 0 and an integer n0 ≥ 1 such that, for any n ≥ n0, for any interval I
contained in [−h0, h0], of length larger than θn, we have

c−1fX(0)|I| < P

(

Sn
An

∈ I

)

< cfX(0)|I|.

2. Almost sure convergence : proof of theorem 1

Proof of Theorem 1. To begin with, choose θ, c, and h0 as in Proposition 1.

To first establish an estimate from below, we fix any ξ > 1 and set εn := G(n)−ξ . This makes
the series

∑

n P(|Sn| < εn) summable: Indeed, by regular variation and (3), we have εn
An

> θn

for n large, while

εn
An

= O

(

G(n)−G(n− 1)

G(n− 1)ξ

)

= O

(∫ n

n−1

G′(t)
G(t)ξ

dt

)

,

which is summable since

∫ ∞

1

G′(t)
G(t)ξ

dt =
[G(t)1−ξ

1− ξ

]∞

1
<∞. In particular, (−εn

An
, εn
An

) ⊆ [−h0, h0]
for large n. Proposition 1 therefore applies to these intervals, and shows that P(|Sn| < εn) =
O( εn

An
) is summable as well. Hence, by the Borel-Cantelli lemma, P(|Sn| < εn i.o.) = 0.

Since εn ց 0, we can conclude that Tεn > n eventually, almost surely on Ω∗, and we get

lim infn→∞
logG(Tεn )
− log εn

≥ 1
ξ a.s. on Ω∗. Using monotonicity of logG(Tε) and the fact that

εn+1 ∼ εn, this extends from the εn to the full limit as ε → 0, and since ξ > 1 was arbi-
trary, we conclude that

lim inf
ǫ→0

logG(Tε)

− log ε
≥ 1 a.s. on Ω∗. (4)

To control the corresponding lim sup, we now fix any ξ ∈ (0, 1). From Proposition 1, using
intervals (−εn

An
, εn
An

) and regular variation of (An)n≥1, we see that there exists a constant c′ > 0

such that for every ε ∈ (0, 1) there is some mε satisfying

P(|Sk| < ε) ≥ c′ε
Ak

for k ≥ mε.

More precisely, the dependence of mε on ε comes from the requirement 2ε/Ak > θk for k ≥ mε

on the length of intervals, which is met by taking mε := κ(− log ε) with a suitable constant

κ > 0. Next, choose integers nε in such a way that G(nε) ≤ ε
− 1

ξ < G(nε + 1). Inspired
by a decomposition used by Dvoretski and Erdös [8], we consider the pairwise disjoint events
Eε

k := {|Sk| < ε and ∀j = k + 1, . . . , nε : |Sj − Sk| > 2ε}, 1 ≤ k ≤ nε. By independence and
stationarity we have

1 ≥
nε
∑

k=mε

P(Eε
k) ≥

nε
∑

k=mε

P(|Sk| < ε)P(T2ε > nε − k) ≥ c′εP(T2ε > nε)

nε
∑

k=mε

1

Ak
.

Combining this with G(mε) = o(G(nε)) (note that G(mε) is slowly varying), we obtain

P(G(T2ε) > ε
− 1

ξ ) ≤ P(G(T2ε) > G(nε)) = P(T2ε > nε) ≤
1

c′ε (G(nε)−G(mε))
∼ ε

1

ξ
−1

c′
.
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Therefore, if we let εp := p
− 2

1−ξ , p ≥ 1 the Borel-Cantelli lemma implies G(T2εp) ≤ ε
− 1

ξ
p

eventually almost surely, showing that lim supp→+∞
logG(T2εp )

− log(2εp)
≤ 1

ξ . Using monotonicity as

before, we can extend this from the εp to the full limit ε → 0, and since this is true for any
ξ ∈ (0, 1), we obtain

lim sup
ε→0

logG(Tε)

− log(ε)
≤ 1 a.s. on Ω. (5)

To conclude the proof, we note that for any α ∈ [1, 2] we have

lim
n→∞

logG(n)

log n
=

1

β
,

which follows readily from regular variation of G (compare Fact 2 in [6]). Together with (4) and
(5), this entails

lim
ε→0

logTε

− log ε
= lim

ε→0

logTε

logG(Tε)
· logG(Tε)

− log ε
= β a.s. on Ω∗,

as required. �

The first argument can easily be adapted to prove the lower bound (4) also for Tx
ε with x 6= 0.

3. Convergence in distribution for auxiliary processes

We need to introduce auxiliary processes. Let (M ε
0 )ε>0 be a family of random variables,

independent of (Sn)n≥0, such that M ε
0 has uniform distribution on the interval (−ε, ε). For each

ε > 0 we define the walk (M ε
n)n≥0 with random initial position M ε

0 , that is, M
ε
n :=M ε

0 + Sn.

A major step towards Theorems 2 and 3 will be to prove a version which applies to the
variables

τε := min{n ≥ 1: |M ε
n| < ε}, ε > 0.

That is, we are interested in the limiting behaviour, as ε→ 0, of the first return time distribution
of the walk (M ε

n)n≥0 to the interval (−ε, ε). The goal of the present section is to establish

Theorem 4. Assume that α = 1. Conditioned on Ω∗, the variables εG(τε) converge in law,

lim
ε→0

P (γεG(τε) ≤ t |Ω∗) =
t

1 + t
∀t > 0. (6)

Theorem 5. Assume that α ∈ (1, 2]. Conditioned on Ω∗, the variables εG(τε) converge in law,

lim
ε→0

P

(

Γ

(

1

β

)

γ

β
εG(τε) ≤ t

∣

∣

∣

∣

Ω∗
)

= Pr
(

EG1/β
1/β ≤ t

)

∀t > 0. (7)

Equivalently,

lim
ε→0

P

(

(

Γ

(

1

β

)

γ

β

)β τε
G−1(1/ε)

≤ t

∣

∣

∣

∣

Ω∗
)

= Pr
(

EβG1/β ≤ t
)

∀t > 0.

Again we start with considerations valid for any α ∈ [1, 2]. To begin with, we define, for
ε > 0, R > 0, and integers K > 0, auxiliary events

Γε,R,K := {∀i = 1, . . . ,K : Si 6= 0 and |M ε
i | ≤ R},

which asymptotically exhaust Ω∗, and on which we can work conveniently. As ε → 0 we have
P(Γε,R,K) → P(ΓR,K) and P(Γε,R,K \ Ω∗) → P(ΓR,K \ Ω∗), where ΓR,K := {∀i = 1, . . . ,K : 0 <
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|Si| ≤ R} (except, perhaps, for a countable set of R’s which we are going to avoid). Let n ∈ N.
Using again a decomposition similar to that of Dvoretski and Erdös in [8], we find, for ε ∈ (0, 12 ),

P(Γε,R,K) =
n
∑

k=0

p−k =
n
∑

k=0

p+k (8)

with p±k = p±k,n,ε,R,K := P(Γε,R,K ∩ {|M ε
k | < ε± 2ε2 and ∀ℓ = k + 1, . . . , n : |M ε

ℓ | ≥ ε± 2ε2}) for
1 ≤ k ≤ n, and p±0 = p±0,n,ε,R,K := P(Γε,R,K ∩ {∀ℓ = 1, . . . , n : |M ε

ℓ | ≥ ε ± 2ε2}). The following
estimates are the basis of the argument to follow.

Lemma 1. For arbitrary R, K, and 0 < γ′ < 2fX(0) < γ′′, there is some ε1 such that for
0 < ε < ε1 and nε > mε ≥ (log ε)4,

P(Γε,R,K) ≥ P(τε > nε) + P(Γε,R,K)γ′ε
nε
∑

k=mε

P(τε > nε − k)

Ak

− P(Γε,R,K)8γ′ε3(G(nε)−G(mε))− P(

K
⋃

i=1

{|M ε
i | > R}),

and

P(Γε,R,K) ≤ P(τε > nε) + P(Γε,R,K)γ′′ε
nε
∑

k=mε

P(τε > nε − k)

Ak
+ P(Γε,R,K \ Ω∗)

+ P(Γε,R,K)8γ′′ε3(G(nε)−G(mε)) + P(Ω∗ ∩ {τ3ε ≤ mε}).

Proof. For the course of this proof, we simplify notations by suppressing the parameters ε, R,
and K in mε, nε, M

ε
i , and Γε,R,K. We will apply (8) with n = nε. Also, let ν := ε2.

(i) Starting with the k = 0 term, we see that

p−0 ≥ P(Γ ∩ {∀ℓ = 1, . . . , n : |Mℓ| ≥ ε}) ≥ P(Γ ∩ {τε > n}).
We now consider the case where m ≤ k ≤ n. Let A := (2νZ)∩ (−ε+3ν, ε−3ν). Notice that the
sets Qa := (a− ν, a+ ν) with a ∈ A are disjoint and contained in (−ε+ 2ν, ε − 2ν). Therefore
the kth term in equation (8) satisfies

p−k ≥
∑

a∈A
P(Γ ∩ {Mk ∈ Qa and ∀ℓ = k + 1, . . . , n : |Mℓ| ≥ ε− 2ν})

≥
∑

a∈A
P(Γ ∩ {Mk ∈ Qa and ∀ℓ = k + 1, . . . , n : |Sℓ − Sk + a| ≥ ε− ν})

=
∑

a∈A
P(Γ ∩ {Mk ∈ Qa}) P(∀ℓ = 1, . . . , n− k : |Sℓ + a| ≥ ε− ν)

(9)

by independence (where we assume that ε is so small that (log ε)4 > K). Note that

P(Γ ∩ {Mk ∈ Qa}) =
∫

{∀i:xi 6=x0,|xi|≤R}
P(Sk−K ∈ Qa − xK) dP(M0,...,MK)(x0, . . . , xK),

with dP(M0,...,MK) denoting the distribution of (M0, . . . ,MK). Now fix θ as in Proposition 1,

and c ∈ (0, 1) such that γ′ < 2fX(0)/c. Elementary considerations (based on our condition on
m = mε) show that Proposition 1 applies to I = 1

Ak−K
(Qa − xK) if ε is sufficiently small, and

in this case gives

P(Γ ∩ {Mk ∈ Qa}) ≥ P(Γ)
γ′ν
Ak

. (10)
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Using this, plus the observation that conditioning on {M0 ∈ Qa} amounts to looking at M∗
n :=

M∗
0 +Sn, n ≥ 0, with M∗

0 uniformly distributed on Qa, we can continue to estimate, for small ε,

p−k ≥ P(Γ)
γ′ν
Ak

∑

a∈A
P(∀ℓ = 1, . . . , n− k : |Sℓ + a| ≥ ε− ν})

≥ P(Γ)
γ′ν
Ak

∑

a∈A
P({∀ℓ = 1, . . . , n− k : |Mℓ| ≥ ε} | {M0 ∈ Qa})

≥ P(Γ)
γ′ε
Ak

∑

a∈A
P({∀ℓ = 1, . . . , n− k : |Mℓ| ≥ ε} ∩ {M0 ∈ Qa})

≥ P(Γ)
γ′ε
Ak

(P(∀ℓ = 1, . . . , n− k : |Mℓ| ≥ ε)− P(ε− 4ν ≤ |M0| ≤ ε))

= P(Γ)
γ′ε
Ak

(P(τε > n− k)− 8ν) .

(11)

Putting together these estimates via Equation (8) gives

P(Γ ∩ {τε > n}) + P(Γ)γ′ε
n
∑

k=m

P(τε > n− k)

Ak
≤ P(Γ) + P(Γ)8γ′εν(G(n) −G(m)).

Since Γc ∩ {τε > n} ⊆ ⋃K
i=1{|Mi| > R} for ε so small that n = nε > K, this proves the first

assertion of the lemma.

(ii) We only provide a sketch of the proof of the second point since the arguments are very
similar to the above. Using Equation (8) gives

P(Γ) ≤ P(Γ ∩ {τε > n}) + P(Γ \ Ω∗) + P(Ω∗ ∩ {τ3ε ≤ m}) +
n
∑

k=m

p+k ,

since
∑m

k=1 p
+
k ≤ P(Γ ∩ {τ3ε ≤ m}). Next, take Ā := (2νZ) ∩ (−ε − 3ν, ε + 3ν) and intervals

Q̄a := [a− ν, a+ ν], a ∈ Ā, which cover (−ε− 2ν, ε+ 2ν). We can then use arguments parallel
to those of part (i) to obtain

n
∑

k=m

p+k ≤
n
∑

k=m

∑

a∈Ā
P(Γ ∩ {Mk ∈ Q̄a and ∀ℓ = k + 1, ..., n : |Mℓ| > ε+ 2ν)})

...

≤ P(Γ)γ′′ε
n
∑

k=m

P(τε > n− k)

Ak
+ P(Γ)8γ′′εν(G(n)−G(m)),

which proves our claim. �

Suitable choice of the nε then enables us to derive an asymptotic bound for the tails of the
distributions of the εG(τε) as ε→ 0.

Lemma 2. For all α ∈ [1, 2] and any t > 0 we have

lim sup
ε→0

P(γεG(τε) > t) ≤ P(Ω∗)
1 + t

.

Proof. Fix t, R, K, and 0 < γ′ < 2fX(0). For ε > 0 we take mε := (log ε)4 and choose nε so
that G(nε) ≤ t

γε ≤ G(nε+1), whence P(εγG(τε) > t) ∼ P(τε > nε). As in the proof of Theorem
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1 we see that G(mε) = o(G(nε)). Therefore

ε

nε
∑

k=mε

P(τε > nε − k)

Ak
≥ ε(G(nε)−G(mε))P(τε > nε) ∼

t

γ
P(τε > nε). (12)

Together with the first part of Lemma 1, this yields

lim sup
ε→0

P(εγG(τε) > t) ≤ P(ΓR,K) + P(∃1 ≤ i ≤ K : |Si| > R− 1)

1 + tγ
′

γ P(ΓR,K)
,

since 8γ′ε3(G(nε)−G(mε)) → 0.

Taking successively R→ ∞, then K → ∞, and finally γ′ → 2fX(0), we obtain the lemma. �

When α = 1, this upper bound actually is the limit:

Lemma 3. If α = 1, then for any t > 0 we have

lim inf
ε→0

P(γεG(τε) > t) ≥ P(Ω∗)
1 + t

.

Proof. Fix t, R, K, and γ′′ > 2fX(0), and choose mε and nε as in the previous proof. Similar to
that situation we have P(Γε,R,K)8γ′′ε3(G(nε)−G(mε)) → 0, and, as a consequence of Theorem
1, also P(Ω∗ ∩ {τ3ε ≤ mε}) → 0.

Since α = 1 means that G is slowly varying, we have G(2nε)−G(nε) = o(G(nε)). Hence

P(τε > 2nε) + P(Γε,R,K)γ′′ε
2nε
∑

k=mε

P(τε > 2nε − k)

Ak

≤ P(τε > nε) + P(Γε,R,K)γ′′ε





nε
∑

k=mε

P(τε > nε)

Ak
+

2nε
∑

k=nε

1

Ak





≤ P(τε > nε) + P(Γε,R,K)γ′′εG(nε)[P(τε > nε) + o(1)]

≤ P(τε > nε) + t
γ′′

γ
P(Γε,R,K)P(τε > nε) + o(1).

(13)

Combining these observations with the second estimate of Lemma 1 (replacing nε by 2nε) entails

lim inf
ε→0

P(τε > nε) ≥
P(ΓR,K)− P(ΓR,K \ Ω∗)

1 + tγ
′′

γ P(ΓR,K)
.

We conclude by successively taking R→ ∞, K → ∞, and γ′′ → 2fX(0). �

Proof of Theorem 4. Immediate from Lemmas 2 and 3, as εG(τε) → 0 outside Ω∗. �

When α ∈ (1, 2], Lemma 1 does not yet give the limit distribution. Still, it immediately
implies the tightness of the family of distributions with the normalisation given there:

Lemma 4. The family of distributions of the random variables εG(τε), ε ∈ (0, 1), is tight.

Hence it will be enough to prove that the advertised limit law is the only possible accumulation
point of our distributions. We henceforth abbreviate

Zε :=
γ

β
εG(τε), ε > 0.
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Lemma 5. Suppose that α ∈ (1, 2]. Let (εp)p≥1 be a positive sequence with limp→∞ εp = 0, and
such that the conditional distributions of the Zεp on Ω∗ converge to the law of some random
variable Y . Then its tail satisfies the integral equation

1 = Pr(Y > t) + t

∫ 1

0

Pr(Y > t(1− u)
1

β )

u
1

α

du ∀t > 0.

Proof. (i) We write f(t) := Pr(Y > t), and first prove that

∀t > 0, 1 ≥ f(t) + t

∫ 1

0
u−

1

α f(t(1− u)
1

β ) du.

Let us only consider ε belonging to {εp, p ≥ 1}. Note that by monotonicity and right continuity
of f it suffices to prove the inequality for all t ∈ (0,∞) such that, for all N ≥ 1 and all

r = 0, ..., N − 1, the function f is continuous at t
(

1− r
N

)
1

β . Henceforth such a t will be fixed.

Now take some δ > 0, and choose Nδ > 1 such that for all N ≥ Nδ,

∣

∣

∣

∣

∣

∫ 1

0

f(t(1− u)
1

β )

u
1

α

du− 1

N

N−1
∑

r=1

f(t(1− (r/N))
1

β )

((r + 1)/N)
1

α

∣

∣

∣

∣

∣

≤ δ.

Now fix integers N ≥ Nδ, K ≥ 1, and some 0 < γ′ < 2fX(0). For ε > 0 small enough take nε
such that G(nε) ≤ βt

γε < G(nε + 1) (and hence G(nε) ∼ βt
γε). Finally, let mε := nε/N .

According to the first point of Lemma 1, we have

P(Γε,R,K) ≥ P(Zε > t) + P(Γε,R,K)γ′ε
nε
∑

k=mε

P(τε > nε − k)

Ak

− P(Γε,R,K)8γ′ε3(G(nε)−G(mε))− P(

K
⋃

i=1

{|M ε
i | > R}),

Due to our assumption on the Zεp and t, we see that P(Zε > t) → P(Ω∗)f(t) as εp → 0. Next,
by monotonicity,

nε
∑

k=nε/N

P(τε > nε − k)

Ak
≥

N−1
∑

r=1

nε/N−1
∑

k=0

P(τε > nε − k − (rnε/N))

Ak+(rnε/N)

≥
N−1
∑

r=1

(

G

(

r + 1

N
nε

)

−G
( r

N
nε

)

)

P

(

τε >
(

1− r

N

)

nε

)

.

By regular variation, the first term of the product is asymptotically equivalent to

G(nε)

[

(

r + 1

N

) 1

β

−
( r

N

)
1

β

]

≥ G(nε)

βN
(

r+1
N

)
1

α

as εp → 0. On the other hand, the second term is equal to

P

(

Zε > ε
γ

β
G
((

1− r

N

)

nε

)

)

→ P(Ω∗) f
(

t
(

1− r

N

) 1

β

)

,
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since G
((

1− r
N

)

nε
)

∼
(

1− r
N

)
1

β G(nε). As a consequence, we see that

lim inf
p→∞

εp

nεp
∑

k=nεp/N

P(τεp > nεp − k)

Ak
≥ P(Ω∗)

t

γ

1

N

N−1
∑

r=1

f(t
(

1− r
N

)1− 1

α )
(

r+1
N

)
1

α

≥ P(Ω∗)
t

γ

(

∫ 1

0

f(t(1− u)1−
1

α )

u
1

α

du− δ

)

.

(14)

Furthermore, we again have P(Γε,R,K)8γ′ε3(G(nε) − G(mε)) → 0. Moreover, P(
⋃K

i=1{|M ε
i | >

R}) → P(
⋃K

i=1{|Si| > R}). Combining all these asymptotic estimates and taking the limit
εp → 0, we end then up with

P(ΓR,K) ≥ P(Ω∗)

[

f(t) +
P(ΓR,K)γ′t

γ

(

∫ 1

0

f(t(1− u)1−
1

α )

u
1

α

du− δ

)]

− P(

K
⋃

i=1

{|Si| > R}).

Successively letting R→ ∞, K → ∞, γ′ → 2fX(0) and δ → 0 we obtain the desired inequality.

(ii) The converse inequality is proved analogously, using the other half of Lemma 1 and the
fact that P(Ω∗ ∩ {τ3ε ≤ mε}) = o(1). �

Now let us identify the limit distribution satisfying the equality given by Lemma 5. To this
end we consider the variables

Z ′
ε :=

(

γ

β

)β τε
G−1(1/ε)

, ε > 0.

Lemma 6. The conditional distributions of the Zεp converge to a random variable Y iff the

conditional distributions of the Z ′
εp converge to Y β. The latter then satisfies

1 = Pr(Y β > t) +

∫ t

0

Pr(Y β > t− v)

v
1

α

dv ∀t > 0.

Proof. The equivalence of the two conditional distributional convergence statements follows from
regular variation of G−1, see e.g. Lemma 1 of [4]. Suppose that they hold. Then, according to
Lemma 5, for any t > 0, we have

1 = Pr(Y β > t) + t
1

β

∫ 1

0

Pr(Y β > t(1− u))

u
1

α

du,

and the conclusion follows by a change of variables, v = tu. �

Lemma 7. Let W be a random variable with values in [0,∞) satisfying

Pr(W ≤ t) =

∫ t

0

Pr(W > t− v)

v
1

α

dv ∀t > 0. (15)

Then

E
[

e−sW
]

=
1

1 + cβs
1

β

∀s > 0,

with cβ := Γ( 1β )
−1

. In particular, the distribution of W coincides with that of cββEβG 1

β
, where

the independent variables E and G 1

β
are as in the statement of Theorem 3.
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Proof. Let s > 0. We have

E[e−sW ] =

∫ +∞

0
Pr(e−sW ≥ u) du =

∫ +∞

0
Pr

(

W ≤ − log(u)

s

)

du =

∫ +∞

0
Pr (W ≤ v) se−sv dv.

Hence, for any s > 0, we find

E[e−sW ] =

∫ +∞

0

[∫ v

0

Pr(W ≥ v − w)

w
1

α

dw

]

se−sv dv

=

∫ +∞

0

1

w
1

α

[∫ +∞

w
Pr(W ≥ v − w)se−sv dv

]

dw

=

∫ +∞

0

e−sw

w
1

α

[∫ +∞

0
Pr(W ≥ z)se−sz dz

]

dw

=

∫ +∞

0

e−sw

w
1

α

[

1−
∫ +∞

0
Pr(W ≤ z)se−sz dz

]

dw

=

∫ +∞

0

e−sw

w
1

α

dw ·
[

1− E[e−sW ]
]

,

and our claim about the Laplace transform of W follows since

∫ +∞

0

e−sw

w
1

α

dw =
β

s
1

β

∫ +∞

0
e−zβ dz =

1

cβs
1

β

with cβ :=
1

Γ( 1β )
.

Given this, a routine calculation (cf. XIII.11.10 of [9]) shows that W indeed has the same

Laplace transform as cββEβG 1

β
. �

Proof of Theorem 5. According to Lemma 4 the family of distributions of the Zε, ε ∈ (0, 1),

is tight. By Lemma 5, Lemma 6 and Lemma 7, the law of cβ EG1/β
1/β

is the only possible

accumulation point of these distributions. �

4. Convergence in distribution for Tx
ε

To complete the proof of Theorems 2 and 3 we now utilize Theorems 4 and 5. Note first that
it suffices to prove Theorems 2 and 3 under the additional assumption that S′

0 = 0, in which
case

Tx
ε = T̂x

ε := inf{n ≥ 1 : |Sn − x| < ε} and Ω∗
x = Ω̂∗

x := {Sn 6= x ∀n}.
Indeed, in the situation of Theorem 2, with arbitrary distribution P of S′

0, we then have

P (γεG(Tx
ε ) ≤ t) =

∫

R

P

(

γεG(T̂x−y
ε ) ≤ t

)

dP (y) →
∫

R

P

(

Ω̂∗
x−y

)

dP (y) · t

1 + t

by the P = δ0 case of Theorem 2 and dominated convergence. Analogously for Theorem 3.

Therefore, for the remainder of this section we assume that S′
0 = 0.

Next, we observe that our key lemma (Lemma 1) can be adapted as follows. Let Γx
R,K be the

event defined by

Γx
R,K := {∀i = 1, . . . ,K : Si 6= x and |Si| ≤ R}.
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Lemma 8. For arbitrary R, K, and 0 < γ′ < 2fX(0) < γ′′, there is some ε1 > 0 such that for
0 < ε < ε1 and nε > mε ≥ (log ε)4,

P(Γx
R,K) ≥ P(Tx

ε > nε) + P(Γx
R,K)γ′ε

nε
∑

k=mε

P(τε > nε − k)

Ak

− P(Γx
R,K)8γ′ε3(G(nε)−G(mε))− P(

K
⋃

i=1

{|Si| > R}),

and

P(Γx
R,K) ≤ P(Tx

ε > nε) + P(Γx
R,K)γ′′ε

nε
∑

k=mε

P(τε > nε − k)

Ak
+ P(Γx

R,K \ Ω∗
x)

+ P(Γx
R,K)8γ′′ε3(G(nε)−G(mε)) + P(Ω∗

x ∩ {T3ε ≤ mε}).

Proof of Lemma 8. We have the following analogue of formula (8),

P(Γx
R,K) =

nε
∑

k=0

px,−k =
nε
∑

k=0

px,+k , (16)

with

px,±0 := P(Γx
R,K ∩ {∀ℓ = 1, . . . , nε : |Sℓ − x| ≥ ε± 2ε2})

and

px,±k := P(Γx
R,K ∩ {|Sk − x| < ε± 2ε2 and ∀ℓ = k + 1, . . . , nε : |Sℓ − x| ≥ ε± 2ε2}).

We follow the proof of Lemma 1.

(i) Observe first that

px,−0 ≥ P(Γx
R,K ∩ {Tx

ε > nε}).
Now consider indices with mε ≤ k ≤ nε. With the same set A as in the proof of Lemma 1, we
find, arguing as in (9), that

px,−k ≥
∑

a∈A
P(Γx

R,K ∩ {Sk − x ∈ Qa and ∀ℓ = k + 1, . . . , nε : |Sℓ − x| ≥ ε− 2ν})

≥
∑

a∈A
P(Γx

R,K ∩ {Sk − x ∈ Qa}) P(∀ℓ = 1, . . . , nε − k : |Sℓ + a| ≥ ε− ν).

A proof parallel to that of (10) shows that

P(Γx
R,K ∩ {Sk − x ∈ Qa}) ≥ P(Γx

R,K)
γ′ν
Ak

if ε is sufficiently small. Therefore,

px,−k ≥ P(Γx
R,K)

γ′ν
Ak

∑

a∈A
P(∀ℓ = 1, . . . , nε − k : |Sℓ + a| ≥ ε− ν})

≥ P(Γx
R,K)

γ′ε
Ak

(P(τε > nε − k)− 8ν) ,

where the second step uses an estimate contained in (11). Continuing as in the proof of Lemma
1, we obtain the first assertion of our lemma.

(ii) Similar adaptations give the second assertion of the lemma. �

We can now complete the proofs of our main distributional limit theorems:
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Proof of Theorem 2. We go back to Lemmas 2 and 3, observing that we already have (6) at our
disposal. Take t ∈ (0,∞), R,K ≥ 1, and γ′ < 2fX(0) < γ′′. For ε > 0 let mε := (log ε)4 and
choose nε, such that G(nε) ≤ t

γε ≤ G(nε + 1), meaning that P(εγG(Tx
ε ) > t) ∼ P(Tx

ε > nε).

In view of (6), the estimate (12) of Lemma 2 becomes

lim inf
ε→0

ε

nε
∑

k=mε

P(τε > nε − k)

Ak
≥ P(Ω∗)

γ

t

1 + t
.

Combining this with the first part of Lemma 8 leads to

lim sup
ε→0

P(Tx
ε > nε) ≤ P(Γ∗

R,K)

(

1− γ′

2fX(0)

t

1 + t

)

+ P(∃1 ≤ i ≤ K : |Si| > R− 1).

Successively letting R→ ∞, then K → ∞, and finally γ′ → 2fX(0), we obtain

lim sup
ε→0

P(Tx
ε > nε) ≤

P(Ω∗
x)

1 + t
.

To get the corresponding lower bound, recall that P(Ω∗ ∩ {Tx
3ε ≤ mε}) → 0 by Theorem 1.

Parallel to (13) we have

P(Tx
ε > 2nε)+P(Γx

R,K)γ′′ε
2nε
∑

k=mε

P(τε > 2nε − k)

Ak
≤ P(Tx

ε > nε)+ t
γ′′

γ
P(Γx

R,K)P(τε > nε)+ o(1).

Together with the second part of Lemma 8 (with nε replaced by 2nε) and (6), this implies

lim inf
ε→0

P(Tx
ε > nε) ≥

P(Ω∗
x)

1 + t
,

completing the proof. �

Proof of Theorem 3. We fix t ∈ (0,∞), and choose nε such that G(nε) ≤ βt
γε < G(nε + 1).

According to the proof of Theorem 5 (see, in particular, (14) in Lemma 5), we know that for
mε with mε = o(nε),

lim
ε→0

ε

nε
∑

k=mε

P(τε > nε − k)

Ak
=

P(Ω∗)
γ

Pr(Y ≥ t) =: ψ,

where Y = Γ( 1β )
−1EG1/β

1/β is the limiting random variable of the γβ−1εG(τε). Therefore, if we

take mε := (log ε)4, then Lemma 8 implies that for R,K ≥ 1 and γ′ < 2fX(0) < γ′′,

lim sup
ε→0

P(Tx
ε > nε) ≤ P(Γx

R,K)
(

1− γ′ψ
)

+ P

(

K
⋃

i=1

{|Si| > R}
)

and
lim inf
ε→0

P(Tx
ε > nε) ≥ P(Γx

R,K)
(

1− γ′′ψ
)

− P (ΓR,K \ Ω∗
x) .

Since limK→+∞ limR→+∞ P(Γx
R,K) = P(Ω∗

x) and limK→+∞ limR→+∞ P

(

⋃K
i=1{|Si| > R}

)

= 0,

we get

P(Ω∗
x)
(

1− γ′′ψ
)

≤ lim inf
ε→0

P(Tx
ε > nε) ≤ lim sup

ε→0
P(Tx

ε > nε) ≤ P(Ω∗
x)
(

1− γ′ψ
)

,

and hence
lim
ε→0

P(Tx
ε > nε) = P(Ω∗

x) (1− 2fX(0)ψ) = P(Ω∗
x) Pr(Y > t),

as required. �
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Proof of Corollary 1. This is an α = 2 case with An =
√
n and fX(0) = 1√

2π
. Recalling that

G1/2 =
1

2N 2 in distribution (cf. XIII.3.b of [9]) proves our claim. �
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