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Abstract: We present a new, to the best of our knowledge, experimental 
configuration of Mueller matrix polarimeter based on wavelength 
polarization coding. This is a compact and fast technique to study 
polarization phenomena. Our theoretical approach, the necessity to correct 
systematic errors and our experimental results are presented. The feasibility 
of the technique is tested on vacuum and on a linear polarizer. 
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1. Introduction  

Mueller matrix polarimetry allows one to determine the full polarimetric response of a 
medium, using light as a non-invasive investigation technique. Nevertheless the current 
polarimeters are not able to measure Mueller matrices instantaneously [1,2], which limits the 
application field of polarimetry. Indeed a snapshot polarimeter could study quick phenomena 
like complex fluids [3] for instance or, on the contrary, avoid motions due to the patient 
during medical diagnosis [4,5]. 

Generally a Mueller polarimeter is composed of two polarimetric parts: one that 
successively generates several states of polarization before the medium, by rotating quarter 
wave plates or variable wave plates for instance, and another that analyses the state of 
polarization modified by the medium. The snapshot Mueller polarimeter works along the 
same scheme but its originality comes from the fact that the states of polarization are 



generated simultaneously by each wavelength of a broadband spectral source. Polarization 
coding by wavelength is commonly found in birefringent filters [6] or in snapshot Stokes-
Meters [7,8]. All these techniques use birefringent plates whose thickness and orientation 
enable to select a wavelength or to measure the Stokes vector. This paper presents the 
theoretical approach and experimental methodology to get a Mueller matrix based on this 
principle. 

The paper will be organized as follows: firstly the principle of the snapshot Mueller 
polarimeter will be explained. Then we will describe the chosen experimental set-up. Finally, 
after specifying the corrections that must be made in the treatment of the spectrum, we will 
comment our experimental results for two standard media. 

2. Theoretical approach 

A lot of experimental configurations permit to extract instantaneously the elements of the 
Mueller matrix. The most basic one is composed of four birefringent plates of the same 
material and two linear polarizers. Its coding system is made of a linear polarizer at 0° and 
two wave plates with their optical axis respectively at 45° and 0°. The decoding system is 
made of two wave plates with their optical axis respectively at 0° and 45°, and a linear 
polarizer at 90°. The source has a broadband spectrum and the intensity spectrum is given by a 
spectrometer coupled with a CCD camera (Fig. 1). Since the information is measured by only 
one spectrum, acquisition time can be very short. 
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Fig. 1. Snapshot Mueller polarimeter for the configuration (e, e, 5e, 5e). 

The thickness of each birefringent plate is a crucial parameter to go back to the Mueller 
matrix. In fact, many configurations can be used [9] and we have chosen to build a snapshot 
polarimeter with the scheme (e, e, 5e, 5e), i.e. an encoding system made of two identical 
birefringent plates whose thickness is e, and a decoding system made of two identical 
birefringent plates whose thickness is 5e. The choice of the thickness is discussed at the end of 
this section.  

Let [P(θ )]and [B(φ,θ )] be respectively the Mueller matrix at angle q for a polarizer and a 
birefringent plate whose retardation is f. By using the Stokes-Mueller formalism, the action of 

the snapshot polarimeter can be written on an input Stokes vector iS
r
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where [M] is the Mueller matrix of the unknown sample, n∆ is the birefringence of the wave 
plates, e is the length of the birefringence section of the first plate and l the wavelength of the 
light. In our case, as the analysis of the signal is made on a narrow spectrum range 
( 10nmλ∆ ≈ ), the retardation can be expressed in the first-order approximation 

 0 0 ,≈ + fφ φ λ  (3) 



and the intensity measured by the spectrometer is equal to 
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where mij (i, j=0,..,3) are the coefficients of the Mueller matrix for an unknown sample. 
The choice of the thickness in our set-up leads to the generation of 12 frequencies which 

are integer multiples of the fundamental frequency0f . The Fourier transform of the signal 

( )I λ  then creates 12 peaks in real and imaginary parts whose magnitudes are expressed as a 

linear combination of mij coefficients (Table.1). 

Table 1. Magnitude of Real and Imaginary Peaks According to mij Coefficients. 

Real Part  Imaginary Part 

Frequency Magnitude (x 64)  Frequency Magnitude (x 64) 

0 00 02 20 2216 8 8 4m m m m+ − −   0 0 

f0 01 218 4m m−   f0 0 

2f0 02 224 2m m− +   2f0 03 234 2m m− +  

3f0 122m   3f0 132m−  

4f0 114m−   4f0 0 

5f0 10 128 4m m− −   5f0 0 

6f0 114m−   6f0 0 

7f0 122m   7f0 132m  

8f0 22 33m m− +   8f0 23 32m m+  

9f0 212m   9f0 312m−  

10f0 20 224 2m m+   10f0 30 324 2m m− −  

11f0 212m   11f0 312m−  

12f0 22 33m m− −   12f0 23 32m m− +  

To retrieve the mij coefficients, a 25-dimension vector V
r

, whose components are the 
magnitude of the peaks, is defined as 

 Re Re Re Re Im Im Im
0 1 2 12 1 2 12... ... , =  

r T
V V V V V V V V  (5) 



where [ ]T
 represents the transpose of a matrix, and the mij are put in a 16-dimension vector 

X
r

 as follows 

 [ ]00 01 02 03 30 31 32 33... .=
r T
X m m m m m m m m  (6) 

From Table 1, the 25 16×  dimension transformation matrix [ ]P  can be found for which we 

have 

 [ ]. ,=
r r

V P X  (7) 

and the measurement of V
r

 provides the mij coefficients by the relationship 

 [ ] [ ] [ ]1( . ) . . .−=
r rT T
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Many configurations allow this inversion of the system. The configuration (e, e, 5e, 5e) 
has the advantage of providing equidistant peaks in the Fourier domain. Nevertheless an other 
theoretical configuration (2e, e, 7e, 14e) provides the greatest number of equations 
(equidistant peaks generated from 0f  to 024 f ) but, in practice, it would generate too high 
frequencies which could make it difficult to measure peak magnitudes because of the response 
of the detection. 

At last, we must also note that the model assumes the mij coefficients to be independent of 
the wavelength. 

3. Experimental set-up and corrections 

The source is a super luminescent diode with a 15 nm-broadband spectrum around the 
wavelength 0 829nmλ = . The signal of the snapshot polarimeter is measured with a grating of 

1200 lines/mm and a 512 512×  pixel CCD camera whose spectrum coverage is about 10 nm. 
For this range, we can reasonably assume that the mij coefficients are independent of the 
wavelength. 

The choice of the material and the thickness for the birefringent plates must respect two 
conditions. On the one hand, the fundamental frequency 0f  has to be high enough to perform 
a Fourier transform with a satisfactory accuracy. On the other hand, the highest frequency 

012 f  has to be small enough for the magnitude of the related peak not to be dwindled by the 

response of the detection. So, we decided to use calcite plates (∆n(λ0)=0.166) with a thickness 
2.08 0.01mme = ±  for the coding plates and 5 10.4 0.01mme = ±  for the decoding plates. 

The major interest of the calcite is its high birefringence that permits the use of reasonably 
thick plates. With this configuration we get 7 sampled points per period for the 12f0-
frequency, which largely respects Nyquist criteria.  

Fig. 2 shows the measured spectrum ( )I λ  for a vacuum measurement, i.e. without any 
sample, and compares it to the theoretical spectrum based on the model. We have suppressed 
the shape of the spectrum for the experimental signal by using the Flat Field function on the 
spectrometer. 

 



 
Fig. 2. Theoretical (a) and experimental (b) signals given by the snapshot Mueller polarimeter. 
The experimental signal is split into 5 zones for which the instantaneous frequency will be 
studied. 

Differences between the two signals require us to make several corrections. 
For a start, we notice that the experimental signal has a lower contrast than the theoretical 

signal. This is due to the response of the detection which reduces the amplitude of high 
frequencies because of pixel size and the spectrometer slit. The response of the detection has 
been measured by comparing the height of peaks in the Fourier domain for both theoretical 
and experimental signals obtained from vacuum (Fig. 3). The 12f0-frequency peak is reduced 
by more than half for our device, which shows that the choice of the wave plate thickness is 
not restricted by the sampling but by pixel size 

 
Fig. 3. Theoretical (black) and experimental (red) absolute values of the Fourier transform for 
vacuum. The inset graph shows the experimental response of the detection from the vacuum 
signal. 

Moreover, we can observe from Fig. 2 that the intensity according to CCD pixels is not 
exactly a periodic signal. Indeed the period is slightly different for each zone (Fig. 4) due to 
the nonlinear relationship between retardation f and wavelength from (2) and, to a smaller 
degree, because of the index law of the birefringent plates in the spectral window analysis 
[10], the birefringence going down from 0.16618 to 0.16601 on the analysis window (10 nm).  



 
Fig. 4. Relative evolution of the instantaneous frequency fi in each zone defined in Fig. 2. b. 

On the other hand, the experimental signal differs from the theoretical one because the 
thickness of the four wave plates does not correspond exactly to the theoretical scheme (e, e, 
5e, 5e). Indeed, owing to the accuracy of the calcite cut, the wave plates are rotated to adjust 
the optical path but there are still errors that must be measured. The theoretical scheme then 
becomes (e, e+e2, 5e+e3, 5e+e4) for which e2, e3, and e4 are respectively the thickness errors of 
the second, third, and fourth wave plate, the first wave plate setting the reference thickness. 
These errors can be written in the form of phase errors f2, f3, and f4 respectively and the 
output Stokes vector is expressed as 
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For vacuum, the intensity results in 
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where fw comes from the position of the analysis window in which f0 has been included to 
simplify the formula. Thus if phase errors f2, f3, and f4 exist, whatever the position of the 
analysis window, the Fourier transform of the signal leads to peaks whose imaginary part is 
not null, as shown in Fig. 5. 

 
Fig. 5. Fourier transform of the experimental signal of vacuum. (a) Real Part. (b) Imaginary 
Part. 

From the measurement of the argument for each peak (Fig. 5) and Eq. (10), it is then possible 
to go back to phase errors. Nevertheless the signal for vacuum is not sufficient to measure 
errors, as only f2+f3 and f4 can be found. So, using a linear polarizer instead, with p/4 



orientation for instance, enables to determine completely the phase errors and to calculate the 
corrected transformation matrix [P] associated to Eq. (9). 

Finally, to improve the retrieval of mij coefficients, we can analyze the imaginary part of 
peaks versus the position of the analysis window (Fig. 6). 

 
Fig. 6. (a) The analysis window, whose length is D, is positioned at the pixel x for vaccum. (b) 
According to the analysis window position, the imaginary parts of the 6f0-frequency peak (red 
points) and of the 7f0-frequency peak (black asterisks) are measured. For vacuum, we expect 
the snapshot Mueller polarimeter to get a 6f0-frequency peak and no 7f0-frequency peak. 

If there is actually a peak, the imaginary part versus the analysis window corresponds to a 
sinusoidal function whose frequency is equal to the frequency of the peak. If not, the 
imaginary part is not well fitted by a sinusoidal function, which permits us to assume that the 
absolute value of the peak is equal to zero. This noise filter is less effective if the signal is 
very noisy, which can lead to mistakes for small values of mij, so it must be used with caution. 

4. Experimental Mueller matrices 

In this section we present the experimental Mueller matrices for two standard media: vacuum 
(Table 2) and a linear polarizer aligned by a step-by-step motor with an accuracy of 0.01° 
(Table 3). These results are the first measurements obtained by a snapshot Mueller 
polarimeter. Both have been obtained from a single acquisition of 1 ms and we have found 
that experimental Mueller matrices differ from the theoretical matrices. In order to eliminate 
the systematic errors, some corrections must be carried out such as the response of the 
detector and the adjustment of the plates described in section 3. Nevertheless some significant 
errors still remain - 2% for vacuum and 8% for a linear polarizer at 6π . In order to know if 
these differences came from systematic errors and random errors, a statistical treatment has 
been carried out with 100 data acquisitions. For an acquisition time of 1ms the maximum 
standard deviation on coefficients is then equal to 0.005, which shows that the residual errors 
are systematic errors which are not totally compensated by correction methods. 

Thus, the mij retrieval is very dependent on the systematic errors and their importance 
increases with the complexity of the signal. Indeed, the polarizer at 0° only has 5 peaks in the 
Fourier domain whereas the polarizer at p/6 has 12 peaks, i.e. the maximum number of peaks. 
A part of the systematic errors could be due to the weak sampling (only 512 pixels) which 
might affect the measurement of phase errors f2, f3 and f4, and the response of the 
spectrometer. 

 
 
 
 
 
 
 
 

 



 

Table 2. Experimental Mueller Matrix for Vacuum Obtained from a Single Acquisition of 1 ms with and without 
Corrections.  

Corrections Experimental Mueller Matrix 

without any corrections 

1 0.026 0.245 0.002

0.028 0.899 0.012 0.006

0.053 0.007 0.565 0.171

0.053 0.006 0.18 0.554

− 
 − 
 
 

− 

 

+ response of the detection 

1 0.024 0.005 0.069

0.029 0.992 0.017 0.006

0.022 0.011 0.956 0.292

0.097 0.009 0.304 0.941

− 
 − 
 
 

− 

 

+ phase error correction 

1 0.024 0.004 0.02

0.03 1.009 0.01 0.017

0.007 0.013 1.002 0.002

0.012 0.005 0.017 1.001

− 
 − 
 −
 

− 

 

+ noise filter 

1 0 0.002 0.016

0 1.007 0 0

0.009 0 0.999 0.007

0.008 0 0.007 0.999

− 
 
 
 
 

− 

 

 
 

Table 3. Experimental Mueller Matrix (1ms) for Different Positions of a Linear Polarizer after Corrections: Response 
of the Detector + Phase Error Correction + Noise Filter. 

 Theory Experiment 

Polarizer (0°) 

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 

1 0.993 0 0

1.018 1.001 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 

Polarizer (p/2) 

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

− 
 − 
 
 
 

 

1 1.014 0 0

0.989 0.996 0 0

0 0 0 0

0 0 0 0

− 
 − 
 
 
 

 

Polarizer (p/6) 

1 0.500 0.866 0

0.500 0.250 0.433 0

0.866 0.433 0.75 0

0 0 0 0

 
 
 
 
 
 

 

1 0.489 0.829 0.027

0.508 0.255 0.390 0.037

0.860 0.416 0.726 0.017

0.013 0.008 0.073 0.012

 
 − 
 −
 

− 

 



5. Conclusion 

The validity of the snapshot Mueller polarimeter is proved experimentally. We have measured 
full Mueller matrices of two different media in 1 ms with a maximum absolute error of nearly 
0.08 on coefficients. The retrieval of the mij is very dependent on systematic errors. The 
accuracy and the time of our measurements could be widely improved by using a better-
adapted spectrometer (sampling and acquisition time). 
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