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Abstract 
Laminated diatom ooze samples collected during ODP Leg 177 were analysed using scanning electron 
microscope (SEM) and optical microscopy to test their potential as high-resolution records of Polar Front 
hydrography, surface production, and export. SEM analysis from two intervals, marine isotope stage (MIS) 29 
and 12/11, respectively, recovered from 50oS in the Atlantic Ocean (ODP Site 1093, Hole A, sections 13H-4 0–
18 cm and 23H-4 0–22 cm), show abundant and well-preserved Thalassiothrix antarctica mats, thought to be 
indicative of rapid export from the surface and deposition in the sediment. A preliminary analysis of laminae 
succession points to a possible annual couplet/triplet succession of laminae, and suggests exceptionally high 
local sedimentation rates of 57 and 80 cm kyr-1 for MIS 12/11 and 29, respectively. Such high accumulation 
rates imply that local export from the surface layer and sequestration of biogenic silica and organic matter to the 
sediments may have been much higher than previously suggested. 
__________________________________________________________________________________________ 
 
1. Introduction 

 
Laminated marine sediments preserve a 

highresolution record of sequential flux events from 
surface waters and thus offer a palaeo-archive 
directly comparable to core-top studies and 
sediment trap data. The recent application of 
scanning electron microscope (SEM) techniques to 
such sediments has unlocked this palaeo-sediment 
trap data and is producing new insights into 
mechanisms  of surface productivity and the 
resulting flux, as well as their biogeochemical 
significance (e.g., Grimm et al., 1997; Kemp et al., 
2000).  

 
Figure 1 ODP Leg 177 site map (Shipboard 
Scientific Party, 1999; larger image) 

The preservation of laminated marine sediments 
was thought to be confined to environments where 
anoxia had excluded bioturbating fauna, in silled 
marginal basins or beneath coastal upwelling cells  
(Bull et al., 2000; Brodie and Kemp, 1994). 
However, in the last decade, laminated diatom 
oozes have been found in deep-sea settings in the 
eastern equatorial Pacific Ocean (Kemp and 
Baldauf, 1993) and in the North Atlantic (Bod!en 
and Backman, 1996). Preservation of laminae in  
these deep-sea environments is not due to bottom 
water anoxia but rather to the rapid massive flux of 
robust diatom mats (e.g., Thalassiothrix spp.) that 
overwhelm and suppress benthic activity (King et 
al., 1995). A particular value of mat deposits is that 
not only laminae containing the Thalassiothrix 
diatom mats are preserved, but also the intercalated 
laminae record flux out of the surface layer between 
the episodes of mat sedimentation (Pearce et al., 
1995), enabling a comprehensive reconstruction of 
the surface ocean processes  that generate export 
production. 

Southern Ocean hydrography is intimately  
linked to global oceanic circulation, and 
reconstruction of the evolution of its water masses 
is a vital component in understanding past climate 
change. Based on meridional temperature/salinity 
profiles, four frontal features can be identified in  
the Southern Ocean: the Subtropical Front (STF), 
the Subantarctic Front (SAF), the Polar Front (PF) 
and the Southern Boundary of the Antarctic 
Circumpolar Current (Pollard et al. (2002), and 
references therein). Surface waters south of the 
SAF are all recognised as high nutrient regions due 
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to the ACC-induced divergence, yet primary  
productivity is generally low (El-Sayed, 1978;  
Sakshaug and Holm-Hansen, 1984; Nelson and 
Smith, 1987; Pollard et al., 2002). 

Leg 177 of the Ocean Drilling Program cored a 
N–S transect from 41oS to 53oS with the aim of 
reconstructing the palaeoceanography of the 
Southern Ocean over the last few million years. 
Three of the sites that straddle the present location 
of the Polar Front—1091, 1093 and 1094 contained 
Thalassiothrix diatom mat deposits. The most 
extensive development of laminated sediment 
occurs in Site 1093, which lies directly beneath the 
present Polar Front (Fig. 1). The mat deposits 
commonly occur between sediment characteristic of 
glacial periods (dark, clastic-rich with abundant 

Eucampia antarctica) and pale carbonate-rich 
sediment characteristic of maximum interglacial or 
interstadial conditions (Shipboard Scientific Party, 
1999). Extensive mat deposits also occur within 
some glacial periods such as MIS 6 (Pearce et al., in 
prep.). The purpose of this paper is to report an 
initial SEM study of these laminated diatomaceous 
sediments, to assess their potential for 
reconstruction of palaeo-flux, and to discuss 
implications for water-column processes. 

 
2. Material and methods  
 
2.1. Ocean Drilling Program core description 

and sampling 
 

Figure 2 Sedimentological logs of the two analysed intervals: marine isotope stage 12/11 transition and marine isotope 
stage 29 (see text  for discussion on interval dating). During MIS 29 laminated diatom ooze (LDO) is deposited 
continuously, while during MIS 12/11 the alternation between laminated (LDO) and massive diatom ooze (MDO) 
horizons persists for the entire glacial-interglacial transition. Palaeomagnetic and biostratigraphic columns are adapted 
from Channell and Stoner (2002) and Zielinski and Gersonde (2002), respectively. 
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The sediment was collected on ODP Leg 177 
undertaken in the Atlantic Sector of the Southern 
Ocean between December 1997 and January 1998 
Fig. 1). A total of seven sites were drilled in a orth–
south transect across the main subdivisions f the 
Southern Ocean. At each site, multiple oles were 
cored to produce a complete composite ediment 
record. Visual core description in ombination with 
smear slide analysis (Shipboard arty, 1999) was 
used to identify laminated nd non-laminated 
intervals. A suite of samples ere taken from 
representative laminated zones n Site 1093, of 
which two intervals of approximately 0 cm were 
chosen for a detailed electron icroscope analysis 
(1093A-13H-4,  0–18 cm and 093A-23H-4, 0–22 
cm). Based on magneto-biostratigraphy (Zielinski 
and Gersonde, 2002; Channell & Stoner, 2002), and 
the good correlation between oxygen isotopes and 
sediment colour reflectance data (Shipboard 
Scientific Party, 1999; Kanfoush and Hodell, 2002; 
Hodell and Venz, 1992), core section 1093A-13H-
4, 0–18 cm lies in the middle of an approximately 
5m of intermittently laminated interval spanning the 
MIS 12/11 transition and part of the MIS 11 
climatic optimum (Shipboard Scientific Party, 
1999). Low-magnification (x5) backscatter electron 
imaging (BSEI) analysis of the sediment fabric has 
revealed a persistent alternation of cm-scale 
bundles of laminated diatom ooze (LDO) and 
massive diatom ooze (MDO) (Fig. 2). LDO bundles 
are continuously laminated, rarely contain evidence 
of bioturbation and have high porosity. In contrast, 
MDO intervals appear homogenous and brighter in 
BSEI, and lack laminations (i.e., denser, as deposits 
are predominantly composed of biogenic silica). 
Burrow structures are also evident.  

The second selected interval, 1093A-23H-4, 0–
22 cm, is tentatively correlated using raw sediment 
colour reflectance (Shipboard Scientific Party, 
1999), to a section at Site 1094 dated as MIS 29 
(Kleiven and Jansen, 2002) and contains 
continuously laminated sediments (Fig. 2). 

 
2.2. Backscatter electron microscope analysis 
Diatom ooze samples were embedded with a 

Spurr low-viscosity epoxy resin following the 
method outlined in Pike and Kemp (1996). The 
procedure allows the preparation of polished thin 
sections cut perpendicular to bedding with 
minimum disturbance of the delicate sediment 
fabric. These sections were carbon coated and 
examined using a low-vacuum JEOL JSM 5300 
SEM or a high-vacuum JEOL JSM 6400 SEM in 
backscatter electron imagery (BSEI) mode. In 
addition, sediment counterparts were broken along 
the bedding plane and the fresh surface gold coated 
for topographic imaging (BSEI mode) under the 
SEM. This allows microfossil identification and 
analysis of the undisturbed sediment fabric 
including diatom mats. 

 
2.3. Diatom analysis 
The BSEI maps produced were used as a 

‘basemap’ for further subsampling of the sediment 
fabric at millimetre scale in order to examine the 
link between the types of sediment fabric as 
observed in thin sections, and relative diatom 
abundance. This is necessary as cruise smear slides 
(Shipboard Scientific Party, 1999) and BSEI 
analysis of the same material show differences in 
their floral composition, especially regarding the 
relative abundance of Fragilariopsis kerguelensis. 
The sediment was subsampled to enable description 
of the full range of changes in sediment fabric  
observed in BSEI. Diatom slides were prepared 
following a method outlined in Schrader (1973). A  
minimum of 450 valves were identified to species 
level, where possible, using an Olympus BH2 
optical microscope. Counts were undertaken at 
1000x magnification using a 100x oil immersion 
objective DPlan 100PO. The counting convention 
outlined in Fenner (1991) was used, according to 
which only specimens continuity with one-half or 
more of the valve were counted. The pennate 
diatom Thalassiothrix antarctica can be very 
fragmented and only the valve poles can be reliably 
identified. The final count was therefore divided by 
two to give a representative valve count, following 
the convention used by Shemesh et al. (1989) and 
Fenner (1991).  

Different sampling strategies were adopted for 
both intervals, due to the observed difference in  
sediment fabric. MIS 29 was sampled almost 
continuously over 4 cm in order to pick out very 
fine resolution floral changes, whereas in MIS 
12/11 the objective was to differentiate between 
LDOs and MDOs. In order to compare both the 
BSEI sediment fabric and species relative 
abundance as determined in this study, the 
following two ratios were calculated: 

(1) K=T ratio=relative abundance of 
Fragilariopsis  kerguelensis divided by the relative 
abundance of T. antarctica; and 

(2) C=T ratio=relative abundance of all centric  
diatoms/relative abundance of T. antarctica.  

The aim of the two ratios was to compare two  
methods of diatom ooze analysis on the same 
spatial scales where possible.  

Preservation was assessed using a preservation 
index defined by Shemesh et al. (1989). 
Preservation is expressed as K/(K+L), where K is 
the relative abundance of Fragilariopsis 
kerguelensis and L, that of Thalassiosira 
lentiginosa . Since modern seawater diatom 
assemblages are never dominated by Thalassiosira 
lentiginosa , a preservation index <<1 is thought to 
represent T. lentiginosa  enrichment in the 
sediments due to the selective dissolution of F. 
kerguelensis (see Shemesh et al. (1989) for full 
discussion). 
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3. Results 
Optical microscopy and SEM examination 

show a negligible lithogenic particle content. 
Washings using sodium hexametaphosphate were 
unnecessary to separate the particles, as previously 
observed in a study of South Atlantic diatomites by 
Fenner (1991). Carbonate is only seen as 
foraminiferal tests under the SEM. 

 
3.1. Microscale fabric analysis: Lamina types 
(MIS 29/12–11) 
Preliminary BSEI fabric analysis identified five 

laminae distinguished by their different fabric cross 
sections (Fig. 3). These are not directly indicative 
of the relative abundances of individual species as 
determined by traditional optical microscopy 
methods. The laminae types determined here are 
differentiated by their apparent diatom species 
abundance, packing, degree of fragmentation, and 
corrosion of the diatoms (Table 1). 

Thalassiothrix antarctica  laminae comprise a 
near-monospecific assemblage of the pennate 
diatom T. antarctica  (Hasle and Semina, 1987). 
More than half of these laminae contain no other 
diatom frustules and are classed as pure, 
monospecific T. antarctica deposits. Unfortunately, 
it is  not possible to subsample reliably only one 
lamina type due to their thickness (Table 1), and 
BSEI observations about monospecific deposits 
therefore cannot be confirmed using standard 
micropalaeontology methods. 

Topographic imaging of Au coated samples 
shows that the pennate diatom frustules form 
entangled masses (Fig. 4a). Whole T. antarctica 
valves are rarely seen, but fragments exceeding 
1mm are abundant and well preserved. As a result  
these laminae appear highly porous and are very 
prominent in BSEI even at low magnification. 
Thalassiothrix antarctica mats dominate the LDO 
deposits in MIS 12/11 material. In terms of the 
overall thickness of the measured intervals in MIS 
12/11 and 29, this lamina type represents 30% and 
21%, respectively.  

Mixed pennate laminae (also referred to as 
mixed lamina Type I) comprise mainly intact 
Fragilariopsis kerguelensis and T. antarctica 
valves, sometimes with poorly preserved diatom 
mats (Fig. 4b). Although F. kerguelensis is seen in 
association with T. antarctica  in MIS 12/11 
sediments, it is difficult to distinguish between 
Thalassiothrix antarctica laminae and mixed 
pennate laminae in BSEI mode, due to their similar 
porosities and the difficulties in identifying F. 
kerguelensis from cross section. As a result, while  
logging MIS 12/11 material, these two laminae 
types were classed together.  

Mixed centric/fragmented pennate laminae 
(Type II) are dominated by pennate fragments and 
the complete frustules of a mix of centric diatoms, 

often with the girdle bands (Fig. 4c). The species 
identified are Thalassiosira lentiginosa  (T. 
elliptipora  in MIS 29) and Azpeitia tabularis, all 
evenly distributed within a matrix of fragmented 
Thalassiothrix antarctica and minor amounts of F. 
kerguelensis. These deposits have a lower 
porositythan mixed pennate laminae in BSEI. In 
MIS12/11 sediments, Type II deposits appear more 
homogenous and no mats are seen either in cross 
section or in Au-coated topographic samples (Figs. 
3 and 4). 

Mixed fragmented laminae  (Type III) are a 
dense mixture of fragmented frustules of several of 
the common species, none of which appear to 
dominate. In MIS 12/11 fragmented lamina types 
may contain relics of laminated fabric and are  
possibly bioturbated or disturbed. Types II and III 
tend to dominate or entirely comprise the MDO 
intervals observed throughout the MIS 12/11 
transition (Pearce et al., in prep.).   

Centric diatom laminae comprise articulated 
and intact frustules of the centric diatoms 
Thalassiosira lentiginosa , Azpeitia tabularis, 
Thalassiosira elliptipora  and Actinocyclus ingens 
(Fig. 4d). Such deposits are common in MIS 29, 
where they account for 15% of the total lamina 
count. In contrast, centric laminae are rare in MIS 
12/11, and most centric diatom-rich layers are 
classified as mixed pennate/centric laminae.  

 
3.2. Variation in lamina thickness 
Compared to MIS 29, laminae from MIS 12/11 

 transition have a greater thickness range (Table 1) 
and there is less of a variation in lamina types. The 
large thickness range is due to the fact that mixed 
lamina types II and III comprise MDO deposits 
where is difficult to establish a lamina cycle. 

 
3.3. Laminae succession 
Analysis of laminae succession in the LDO 

deposits of MIS 12/11 reveals the robust recurrence 
of a couplet of pure T. antarctica mats, followed by 
a mixed centric/fragmented pennate lamina. This 
couplet is representative of more than 80% of all 
lamina successions counted in the interval. In 
contrast, in MIS 29 five different lamina 
successions commonly occur (Fig. 5) without 
interruptions. Thalassiothrix antarctica laminae are 
observed in most lamina couplets, although these 
may be replaced by mixed pennate laminae. In the 
few occasions when a couplet comprises a 
succession of the same lamina type, there is a subtle 
but detectable increase in centric diatom 
abundance, and decrease of porosity toward the top 
(Fig. 5). 

 
3.4. Diatom species abundance 
The diatom assemblages observed using 

traditional optical microscopy are broadly similar to 
those described from core tops from the South  
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Figure 3  BSE map of fabric cross section showing the main  lamina 
types, and the resulting lamina successions in MIS 29 (see text for 
discussion). 
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Table 1. Lamina types and description 
Lamina Type Mean 

thickness 
(µm) 

Range 
(µm) 

SD porosity n 

MIS 12/11      
T. antarctica ooze +Type I 347 60-2000 319 high 66 
Type II mixed assemblage 1290 60-8000 1836 low 50 
Type III mixed assemblage 1646 100-3500 1290 low 8 
      
MIS 29      
T. antarctica diatom ooze 304 50-1600 269 high 150 
Centric diatom ooze 207 50-600 119 moderate 71 
Type I mixed assemblage 531 70-4500 461 moderate 197 
Type II mixed assemblage 351 60-1600 293 low 53 
Type III mixed assemblage 439 70-1600 402 low 18 

 
Atlantic (DeFelice and Wise, 1981; Zielinski 

and Gersonde, 1997), other than the presence of the 
extinct species Thalassiosira elliptipora  and 
Actinocyclus ingens, in MIS 29 material. Downcore 
relative abundance and K=T; C=T ratios for both 
time intervals can be seen in Fig. 6. In MIS 12/11, 
there is no obvious relationship between the major 
diatom species (as determined by optical 
microscopy) and sediment fabric. Statistically only 
the relative abundance of Fragilariopsis 
kerguelensis and Thalassiothrix antarctica show a 
significant change with sediment fabric: 
Fragilariopsis kerguelensis is less abundant in 
MDO deposits (ANOVA, p = 0.05; 95% confidence 
level) and Thalassiothrix antarctica is more  
abundant in LDO deposits (ANOVA, p =0.01; 99% 
confidence level). ANOVA tests also show that 
MDO deposits have significantly higher C/Tand 
K/T ratios. The C/T ratio incorporates species most 
readily observed in BSEI and hence determined 
sediment fabric. The fact that C/T ratio correlates 
well with LDO/MDO deposits shows that BSEI 
logs of the sediment cross section are broadly 
representative of the diatom assemblages. This 
places greater confidence in the BSEI established 
lamina types (Figs. 3 and 4).   

Changes in species relative abundance are 
more  pronounced in the shorter MIS 29 interval, 
with a gradual two-fold increase in the relative 

abundance of F. kerguelensis toward the top of the 
subsampled interval. Although it is impossible to 

subsample reliably the sediment for optical diatom 
slides on the spatial scale of the BSEI logs (<1000 

microns), the high sampling density used in MIS 29 
shows that changes are detectable at that level and 
is complimentary to the sediment fabric  analysis. 

 
3.5. Diatom preservation 
Imaging of topographic samples (BSEI mode) 

shows that only the fragmentation of T. antarctica 
correlates with sediment fabric in MIS 12/11: well 
preserved, 700–1000 microns long fragments occur 
in the Thalassiothrix antarctica mat dominated  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LDO deposits, and highly fragmented frustules in 
the MDO horizons. In contrast, MIS 29 contains 
consistently shorter T. antarctica  fragments (200–  
400 microns), but again there are fewer signs of 
dissolution and pitting in the near-monospecific mat 
deposits. The centric diatoms tend to be generally 
more fragmented, with Thalassiosira elliptipora 
showing most extreme cases of etching and pitting. 

In order to attempt to quantify the preservation 
of the buried diatom assemblage in these sediments 
and compare it to both Recent sediment and modern 
sea-water assemblages, a preservation index (PI) 
defined by Shemesh et al. (1989) was used. The PI 
is based on the relative abundance of Fragilariopsis 
kerguelensis, which as previously mentioned does 
not play a role in determining sedimentary fabric 
from thin section analysis, and hence does not 
allow comparison of LDO and MDO preservation 
in MIS 12/11 sediments. The PI does, show 
however, that the well-laminated MIS 29 material 
contains statistically betterpreserved diatom 
assemblage (PIMIS29 mean=0.945; standard 
deviation s2= 0.04; n=23) than the intermittently 
laminated MIS 12/11 sediments (PIMIS12/11 

mean=0.891; s2=0.035; n=27; ANOVA  PIMIS29 vs. 
PIMIS12/11 p=0.0001; 99.99%  confidence level). 

 
4. Discussion 
4.1. Thalassiothrix laminae 
South of the PF, in the permanently open-

ocean zone, low light and a wind-mixed layer 
deeper than the euphotic zone are thought to offset 
the effect of high nutrient concentrations, thereby 
preventing blooms (Nelson and Smith, 1991; 
Qu!eguiner et al., 1997). To the north of the PF, 
vertical stability is suitable, but low silica 
concentrations may limit diatom productivity 
(Laubscher et al. 1993; Smetacek, 1998; Read et al., 
2000). In the Polar frontal region, however, diatom 
blooms  have been commonly observed (Laubscher 
et al.,1993; Klaas et al., 1997; Quéguiner et al.,  
1997). Thalassiothrix antarctica has been recorded 
as dominant in net phytoplankton from the PF and 
in the northern, warmer part of the PF (Laubscher et  
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Figure 4 Topographic images (BSE mode) of untreated sediment samples, showing the depositional fabric and 
dominant flora in the main laminae types identified in Fig. 3: (A) T. antarctica mats. Both T. antarctica-rich 
deposits are shown in black on the BSE map; (B) Type I mixed assemblage of T. antarctica  and F. kerguelensis; 
(C) Type II mixed deposits, comprising a mass of pennate fragments and centric diatoms; (D) centric diatom 
deposits, shown in white in Fig. 3. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 5  Lamina succession types A–E, as shown in Fig. 3. The occurrence of each succession type 
is expressed as a percentage of the total number of couplets/triplets identified. MIS 12/11 shows very 
low lamina sequence variability, with 80.5% of all  successions identified as type A (n=41). In 
contrast, three different succession types in MIS 29 amount to 80.4% of all successins counted 
(n=189). 
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al.,1993; Klaas et al., 1997; Bracher et al., 1999). 
This association with the PF is  broadly consistent 
with core top studies showing that T. antarctica 
horizontal distribution coincides with the extent of 
the diatom ooze belt (Pichon et al., 1987; Burckle, 
1984), and Zielinski and Gersonde (1997) 
suggested a direct link between Thalassiothrix 
distribution and high productivity at frontal 
systems. Elsewhere in the Southern Ocean, T. 
antarctica has been observed to aggregate along 
density discontinuities near the base of the euphotic 
layer, above the continental shelf edge in Prydz Bay 
(Quilty et al., 1985). Samples of this deep 
chlorophyll maximum also show that T. antarctica 
occurs in tangled masses or mats (Hallegraeff, 
1986). Across the PF net tows down to 600m 
consistently recovered abundant T. antarctica  that 
appeared ungrazed and essentially pure (L. Burckle, 
pers. comm.). Studies of sediments of Neogene age 
in the eastern Equatorial Pacific (Kemp et al., 1995) 
and late Quaternary North Atlantic sequences 
(Bod!en and Backman, 1996) report Thalassiothrix 
spp. mat deposits very similar to those observed in 
this study. By analogy with modern studies of 
Yoder et al. (1994), physical accumulation along 
the frontal boundary is the main mechanism 
suggested for the concentration and consequent 
deposition of the equatorial Pacific and Atlantic 
Thalassiothrix mat deposits. There are very few 
studies on the spatial distribution of Thalassiothrix 
antarctica in the proximity of the PF, but there is 
evidence to suggest that when observed in high 
concentrations, T. antarctica in the northern part of 
the PF is in a healthy, growing phase (Hense et al., 
1998). This  may suggest that both physical 
accumulation and enhanced productivity at the front 
may be equally important contributors to the high 
densities of Thalassiothrix spp. observed both in net 
phytoplankton and the underlying sediments. 
Whatever the mechanism, however, the resulting 
export from the surface layer and deposit ion of such 
Thalassiothrix patches would account for the mats 
observed in the sediment, and their spatial and 
stratigraphic distribution may be employed as a 
proxy for the location of the PF. 

 
4.2. Centric diatom laminae 
While Thalassiosira lentiginosa  is a common 

open-ocean species both north and south of the PF, 
Azpeitia tabularis is better defined as a subantarctic 
species (DeFelice and Wise, 1981; Pichon et al., 
1987; Fryxell et al., 1986), reaching highest 
concentrations at temperatures between 10oC and 
20o C (Zielinski and Gersonde, 1997). Due to their 
thickness (Table 1), pure centric diatom deposits 
are very difficult to subsample. Although thin-
section BSEI analysis reveals a high abundance of 
paired valves frequently with girdle bands, 
topographic SEM imaging of untreated samples 
show signs of dissolution around the valve margins, 

suggesting that centric diatom assemblages may 
have been exposed to corrosive waters for longer 
time periods than the relatively wellpreserved T. 
antarctica mats. This suggests that diatom mats 
sink from the surface layer more  efficiently than the 
centric diatoms. There are, however, no 
oceanographic data on the seasonality of blooms 
and the settling velocities of Thalassiosira 
lentiginosa  or Azpeitia tabularis. 

 
4.3. Lamina couplets—an annual record of 

surface export? 
Over the last 800 kyr, highest sedimentation 

rates are found in Site 1093, declining in other Leg 
177 sites away from the PF (Shipboard Scientific  
Party, 1999). The average sedimentation rate for the 
last six glacial cycles is 25 cm kyr-1 (Shipboard 
Scientific Party, 1999). During the extended 
sequence representing the MIS 12/11 transition, 
sedimentation rates are estimated at 40 cm kyr-1 
(Shipboard Scientific Party, 1999). The average 
thickness of a lamina cycle in the LDO intervals  of 
Termination V, is on average 570 microns (s2=94; 
n=41). If these lamina cycles are truly annual, this 
converts to 57 cm kyr-1. The aggregate thickness of 
the LDO intervals amounts to 1.45m (R. Pearce, 
unpubl. data), i.e., all LDO intervals would 
represent <3000 yr. The remaining 3.18m of MIS 
12/11 transition is MDO intervals. Taking into 
account that Termination V lasted approx. 29 kyr 
(Hodell et al., 2000), the average sedimentation rate 
for the MDO intervals must be  approx. 12 cm kyr-
1. The different sedimentation rates for the LDO 
and MDO deposits is consistent with SEM 
observations of diatom valve corrosion, but 
independent oxygen stratigraphy is needed to verify 
these preliminary estimates.  In MIS 29 sediments, 
lamina cycles are on average 808 microns (standard 
deviation=437; n=189), converting to exceptionally 
high local sedimentation rates of 70–80 cm kyr-1. 
A longer  sequence of sediment now needs to be 
analysed, to test not only the robustness of the 
annual couplets, but also to compare the sediment 
signal with Holocene and modern studies of annual 
surface productivity as well as diatom mat forming 
and deposition. In addition, the uninterrupted 
sequence of lamina cycles in MIS 29 may be 
analysed for decadal or longer climatic cyclicities, 
which are known to affect high-latitude 
surfacewater parameters (Ware, 1995; Yuan et al., 
1996; Shapiro and Huang, 1997). 

 
4.4. Biogenic Si burial in the sediments: F. 

kerguelensis vs. T. antarctica 
Fragilariopsis kerguelensis is regarded as the 

most numerous species in surface waters of the 
Southern Ocean (Fenner et al., 1976; Kopczynska 
et al., 1998), and considered to be the main opal 
contributor of the diatom ooze belt (Kozlova, 1964;  
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Figure 6 Down core relative abundance of major species in MIS 12/11 (a) and MIS 29 (b). A 
preservation index based on Thalassiosira lentiginosa  enrichment (PI—Shemesh et al., 1989) is also 
calculated. (Note: LDOs (MIS 12/11) are indicated in grey; bar thickness is  not representative of 
sampled interval). 
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Table 2. T. antarctica and F. kerguelensis  dimensions 

 Valve 
length µm 

Valve width µm 

T. antarctica   
Hallegraef 1986 960 - 5680 1.5 - 4.7 
Hasle 
&Semina1987 

420 - 2970 1.5 - 6 

Tomas,  1997 420 - 5680 1.5 - 6 
Quilty, 1985 up to 4000  
   
this study    

mean  2-6.8 
SD  4.22 

n  305 
   
F. kerguelensis    
this study  34.6-43 9.6-12 

mean 38.4 10.1 
SD 1.9 0.47 

n 1200 1200 

 
 

DeFelice and Wise, 1981; Burckle and Cirrilli, 
1987; Zielinski and Gersonde, 1997). 

Despite being the numerically dominant 
species in diatom counts, it is difficult to 
distinguish from other pennate diatoms in thin 
section. In comparison, T. antarctica is less 
abundant in diatom counts. Despite being half as 
wide, T. antarctica valves are over 100 times longer 
than the average F. kerguelensis (Table 2). 
Although T. antarctica  is less silicified than F. 
kerguelensis, T. antarctica  mats in the sediment are 
interpreted as rapid flux events, and this elevates T. 
antarctica importance as an opal export and burial 
species despite its  apparently low relative 
abundance. 

 
4.5. C/T and K/T ratios 
The C/T and K/T ratios were used to compare 

the BSEI and optical diatom count data sets. The 
C/T ratio is based on the relative abundance counts 
of the species most readily observed in BSEI. 
While BSEI logging of the sediment is  qualitative 
in terms of diatom assemblage, it is of taphonomic 
utility. It is not, however, representative of the 
presence of certain species (e.g., Fragilariopsis 
kerguelensis). In MIS 12/11, the strong relationship 
between K/T ratio and fabric agrees with the fact 
that T. antarctica  mats dominate LDO deposits, 
while changes of relative abundance of the diatom 
up-core seem complex. It would be impossible to 
prepare diatom slides reliably on the same spatial 
scale as BSEI logging, but the results of the C/T 
and K/T ratios show that the two methods broadly 
agree and compliment each other. In addition, 
where possible, using the two methods on a similar 

spatial scale will allow for more robust definition of 
lamina types. 

 
4.6. Implications for export production 
There are no specific data on the settling rates 

of T. antarctica, but bloom diatoms are reported to 
sink at rates of 100–150m d-1 in the North Atlantic 
(Billet et al., 1983), and 175 m d-1 in the North 
Pacific (Takahashi, 1986). These estimates are 
obtained in situations where transport within pellets 
can be ruled out and are not dependent on diatom 
size or morphology. Aggregation at the end of 
diatom blooms may explain these high settling 
velocities (Alldredge and Gotschalk, 1989; Engel, 
2000; Smetacek, 1985). Diatom aggregates  not only 
sink faster out of the silica-corrosive surface layer, 
but may also be resistant to dissolution in deep 
waters (Takahashi, 1986). Previous studies show 
that late Quaternary, as  well as modern core-top 
samples from the Atlantic sector of the Southern 
Ocean, are representative of the surface assemblage 
and sea-surface parameters, and even more so in the 
vicinity of the diatom ooze belt where preservation 
is good (Charles et al., 1991; Pichon et al., 1987, 
1992; Zielinski and Gersonde, 1997). In fact, on 
glacialinterglacial time scales, the very high 
biogenic flux in the proximity of the PF has been 
linked to high burial efficiencies and preservation 
(Schluter et al., 1998). The well-preserved fabric in 
the material from ODP Site 1093 also supports 
evidence for rapid export, but on much shorter time 
scales. The relatively low fragmentation points to 
minimal zooplankton grazing and the consequent 
effects of dissolution (Gersonde and Wefer, 1987). 
The preservation index (PI), largely dictated by 
productivity of the overlying waters (Shemesh et 
al., 1989), shows that well-laminated sediments 
(MIS 29) contain a better-preserved assemblage. 
Comparison based on PI values also shows that 
MIS 12/11 and 29 samples are better preserved than 
Holocene and Last Glacial Maximum (LGM ) 
sediments form the Indian, Pacific and Atlantic 
sectors (Shemesh et al., 1989). Both intervals have 
mean PI values very close to that of the average PI 
range of modern sea-water samples, and the 
dissolution estimate is low, < 7% (Fig. 7).  

 
5. Conclusions 
 
1. Compared to laminated sediments from 

marginal marine basins, the examined intervals lack 
significant terrigenous input and are entirely  
biogenic in origin. Variations in diatom species and 
the degree of fragmentation seem to be the main 
causes of persistent submillimetre laminations. 

 
2. The excellent preservation of T. antarctica 

suggests rapid deposition and burial of diatom mats, 
with minimal dissolution and grazing. Compared to 
LGM and Holocene sediment assemblages, the  
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assemblages examined in this  study have a higher 
preservation index values.  

 
3. Estimated bulk sedimentation for MIS 12/11 

is approx. 40 cm kyr-1 (Shipboard Scientific Party, 
1999). Assuming an annual deposition of lamina 
couplets, the laminated diatom ooze deposits 
(LDO) record even higher pelagic sedimentation 
rates of 57 cm kyr-1. For MIS 29, the estimate is 
even higher at 80 cm kyr-1. As a result, local 
surface export and burial rates of both biogenic 
silica and organic carbon are likely to be much 
higher than long-term estimates for the Late 
Quaternary. 

 
4. The identification of a probable annual 

lamination in the sediments means that long-term 
climatic change in the Southern Ocean, expressed 
in the changes of flux to the sediments, can be 
studied at an inter-annual through decadal temporal 
resolution. The good preservation of sedimentary 
fabric beyond 0.8 Mya also means that more light 
can be shed on the Southern Ocean hydrography 
prior to the onset of the 100-kyr glacial cycles. 

 
Acknowledgements 
The authors thank Kurt Grimm, Lloyd Burckle  

and an anonymous reviewer for improving the 
manuscript. 

 
Appendix 
Relative diatom abundance % MIS 12/11 and 

29 are shown in Tables 3 and 4. 
 
 

References 
Alldredge, A.L., Gotschalk, C.G., 1989. Direct observations of 

the mass flocculation of diatom blooms: characteristics, 
settling velocities and formation of diatom aggregates. Deep-
Sea Research II 36, 156–171. 

Boden, P., Backman, .J., 1996. A laminated sediment sequence 
from northern North Atlantic Ocean and its climatic record. 
Geology 24, 507–510. 

Billet, D.S.M., Lampitt, R.S., Rice, A.L., Mantoura, R.F.C., 
1983. Seasonal sedimentation of phytoplankton to the deepsea 
benthos. Nature 302, 520–522. 

Bracher, A.U., Kroon, B.M.A., Lucas, M.I., 1999. Primary 
production, physiological state and compositio n of 
phytoplankton in the Atlantic Sector of the Southern Ocean. 
Marine Ecology Progress Series 190, 1–16. 

Brodie, I., Kemp, A.E.S., 1994. Pelletal structures in Peruvian 
upwelling sediments. Journal of the Geological Society 15 
(1), 141–150. 

Bull, D., Kemp, A.E.S., Weedon, G.P., 2000. A 160-k.y.-old 
record of El Nino-Southern Oscillation in marine production 
and coastal runoff from Santa Barbara Vasin, California, 
USA. Geology 28 (11), 1007–1011. 

Burckle, L.H., 1984. Diatom distribution and paleoceanographic 
reconstruction in the Southern Ocean—present and last 
glacial maximum. Marine Micropaleontology 9, 241–261. 

Burckle, L.H., Cirilli, J., 1987. Origin of diatom ooze belt in the 
Southern Ocean: implications for late quaternary 
paleoceanography. Micropaleontology 33 (1), 82–86. 

Figure 7 K–L diagram as used by Shemesh et al. (1989) to show that dissolution can be responsible 
for most of the variation in the thanacoenosis. The K–L plot using results from this study, shows 
that MIS 29 assemblage is very similar to the average modern sea water assemblage, and that 
experimentally derived dissolution estimate (F) is lower than 7% for both intervals. 

K/(K+L+A)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

L
/(K

+L
+A

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

observed range for 
seawater assemblages
in the Southern Ocean
(Shemesh et al., 1989)

F > 7%

F < 7%

MIS 12/11
y = -0.868x + 0.866
R2 = 0.923

MIS 29 
y = -0.944x + 0.943
R2 = 0.986



I. Grigorov et al. / Deep-Sea Research II 49 (2002) 3391–3407, DOI: 10.1016/S0967-0645(02)00089-9 

Channell, J.E.T., Stoner, J.S., 2002. Plio -Pleistocene magnetic 
polarity stratigraphies and diagenetic magnetite dissolution at 
ODP Leg 177 Sites (1089, 1091, 1093 and 1094). Marine 
Micropaleontology, submitted for publication. 

Charles, C.D., Froelich, P.N., Zibello, M.A., Mortlock, R.A., 
Morley, J.J., 1991. Biogenic opal in Southern Ocean 
sediments over the last 450 000 years: Implications for 
surface water chemistry and circulation. Paleoceanography 6, 
697–728. 

DeFelice, D.R., Wise, S.W., 1981. Surface lithofacies, biofacies 
and diatom diversity patterns as models for delineation of 
climatic change in the Southeast Atlantic Ocean. Marine 
Micropaleontology 6, 29–70. 

El-Sayed, S.Z., 1978. Primary productivity and estimates of 
potential yields of the Southern Ocean. In: McWhinnie, M.A. 
(Ed.), Polar Research: To the Present and the Future. 
Westview, Boulder, CO, pp. 141–160. 

Engel, A., 2000. The role of transparent exopolymer particles 
(TEP) in the increase in apparent particle stickiness (a) during 
the decline of a diatom bloom. Journal of Plankton Research 
22, 483–497. 

Fenner, J.M., 1991. Late Pliocene-Quaternary quantitative 
diatom stratigraphy in the Atlantic sector of the Southern 
Ocean. Proceedings of ODP Scientific Results, Vol. 114, pp. 
97–122. 

Fenner, J., Schrader, H.-J., Weinigk, H., 1976. Diatom 
phytoplankton studies in the South Pacific Ocean, 
composition and correlation to the Antarctic Convergence and 
its paleoecological significance. Initial Reports of the Deep 
Sea Drilling Project 35, pp. 757–814. 

Fryxell, G.A., Sims, P.A., Watkins, T.P., 1986. Azpeitia 
(Bacillariophyceae) related genera and promorphology. 
Systematic Botany Monographs 13, 1–73. 

Gersonde, R., Wefer, G., 1987. Sedimentation of biogenic 
siliceous particles in Antarctic waters from the Atlantic 
Sector. Marine Micropaleontology 11, 311–332. 

Grimm, K.A., Lange, C.B, Gill, A.S., 1997. Self-sedimentation 
of phytoplankton blooms in the geologic record. Sedimentary 
Geology 110, 151–161. 

Hasle, G.R., Semina, H.J., 1987. The marine planktonic diatoms 
Thalassiothrix longissima and Thalassiothrix antarctica with 
comments on Thalassionema spp and Synedra reinboldii. 
Diatom Research 2, 175–192. 

Hallegraeff, G.M., 1986. Taxonomy and morphology of the 
marine planktonic diatoms Thalassionema and Thalassiothrix. 
Diatom Research 1, 57–80. 

Hense, I.M., Bathmann, U.V., Hartmann, C., 1998. Spiny 
phytoplankton—slowing down the Carbon Pump in the 
Southern Ocean? EOS (Transaction of the Geophysical 
Union) 79, 89. 

Hodell, D.A., Venz, K., 1992. Toward a high-resolution stable 
isotopic record of the Southern Ocean during the Pliocene– 
Pleistocene (4.8 to 0.8 MA). In: The Antarctic 
Paleoenvironment: A Perspective on Global Change, 
Antarctic Research Series 56, pp. 265–310. 

Hodell, D.A., Charles, C.D., Ninnemann, U.S., 2000. 
Comparison of interglacial stages in the South Atlantic sector 
of the southern ocean for the past 450 kyr: Implications for 
Marine Isotope Stage 11. Global and Planetary Change 24, 7–
26. 

Kanfoush, S.L., Hodell, D.A., 2002. Late Pleistocene (MIS 1-8) 
Ice-Rafting in the South Atlantic: ODP Leg 177, Site 1094. 
Palaeogeography, Palaeoclimatology, Palaeoecology, 
submitted for publication. 

Kemp, A.E.S., Baldauf, J.G., 1993. Vast Neogene laminated 
diatom mat deposits from the eastern Equatorial Pacific. 
Nature 362, 141–144. 

Kemp, A.E.S., Baldauf, J.G., Pearce, R.B., 1995. Origins and 
paleoceanographic significance of laminated diatom ooze 
from the eastern equatorial Pacific Ocean. Proceedings of the 
Ocean Drilling Program. Scientific Results, Vol. 138, pp. 
641-645. 

Kemp, A.E.S., Pike, J., Pearce, R.B., Lange, C.B., 2000. The 
‘‘fall dump’’—a new perspective on the role of a ‘‘shade 
flora’’ in the annual cycle of diatom production and export  
flux. Deep-Sea Research II 47, 2129–2154. King, S.C., Kemp, 

A.E.S., Murray, J.W., 1995. Benthic foraminifera 
assemblages in Neogene laminated diatom ooze deposits in 
the east equatorial Pacific Ocean (Site 844). Proceedings of 
the Ocean Drilling Program, Scientific Results Leg 138, pp. 
665. 

Klaas, C. , Kuhn, S., Menden-Deuer, S., Reynarson, T., 
Smetacek, V., 1997. Phytoplankton and heterotrophic protist 
counts. In: Bathmann, U., Lucas, M., Smetacek, V. (Eds.), 
The Expeditions ANTARKTIS XIII/1-2 of the Research 
Vessel ‘‘POLARSTERN’’ in 1995/96, Ber. Polarforschung. 
221. 

Kleiven, H.F., Jansen, E., 2002. Rapid climate changes in the 
sub-polar south Atlantic Ocean during the mid-Pleistocene 
(1.0–0.7 Ma). Geology, submitted for publication. 

Kopczynska, E., Fiala, M., Jeandel, C., 1998. Annual and 
interannual variability in phytoplankton at a permanent station 
off Kerguelen Islands, Southern Ocean. Polar Biology 20, 
342–351.  

Kozlova, O.G., 1964. Diatoms of the Indian and Pacific sectors 
of the Anatrctic. Published for the NSF, Washington DC. by 
the Israel Program for Scientific Translations, Jerusalem 
(1966), 191pp.Laubscher, R.K., Perissinotto, R., McQuaid, 
C.D., 1993. Phytoplankton production and biomass at frontal 
zones in  the Atlantic Sector of the Southern Ocean. Polar 
Biology  13, 471–481. 

Nelson, D.M., Smith, W.O., 1987. Spring distributions of 
density, nutrients and phytoplankton biomass in the iceedge 
zone of the Weddell Sea/Scotia Sea. J. Geophys. Res. 92, 
7181–7190. 

Nelson, D.M., Smith, W.O., 1991. Sverdrup revisited: critical 
depths, maximum chlorophyll levels, and the control of 
Southern Ocean productivity by the irradiance-mixing regime. 
Limnology and Oceanography 36, 1650–1661. 

Pearce, R.B., Kemp, A.E.S., Baldauf, J.G., King, S.C., 1995. 
High-resolution sedimentology and micropaleontology of 
laminated diatomaceous sediments from the eastern equatorial 
Pacific Ocean. Proceedings of the Ocean Drilling Program. 
Scientific Results, Vol. 138, pp. 647-663. 

Pichon, J.-J., Labracherie, M., Labeyrie, L., Duprat, J., 1987. 
Transfer functions between diatom assemblages and surface 
hydrology in the Southern Ocean sediments. 
Palaeogeography, Palaeoclimatology, Palaeoecology 61, 79–
95. 

Pichon, J.-J., Labeyrie, L., Bareille, G., Labracherie, M., Duprat, 
J., Jouzel, J., 1992. Surface water temperature changes in the 
high latitudes of the southern hemisphere over the last glacial-
interglacial cycle. Paleoceanography 7, 289–318. 

Pike, J., Kemp, A.E.S., 1996. Preparation and analysis 
techniques for studies of laminated sediments. In: Kemp, 
A.E.S. (Ed.), Palaeoclimatology and Palaeoceanography from 
Laminated Sediments, Special Publication, Vol. 116, 
Geological Society of London, pp. 37–48. 

Pollard, R.T., Lucas, M.I., Read, J.F., 2002. Physical controls on 
biogeochemical zonation in the Southern Ocean. Deep- Sea 
Research II 49, 3289–3305. 

Quéguiner, B., Tr!eguer, P., Peeken, I., Scharek, R., 1997. 
Biogeochemical dynamics and the silicon cycle in the Atlantic 
sector of the Southern Ocean during austral spring 1992. 
Deep-Sea Research II 44, 69–89. 

Quilty, P., Kerry, K.R., Marchant, H.J., 1985. A seasonally 
recurrent patch of Antarctic planktonic diatoms. Search 
(ANZAAS) 16, 48. 

Read, J.F., Lucas, M.I., Holley, S.E., Pollard, R.T., 2000. 
Phytoplankton, nutrients and hydrography in the frontal zone 
between the Southwest Indian subtropical gyre and the 
Southern Ocean. Deep-Sea Research II 47, 2341–2367. 

Sakshaug, E., Holm -Hansen, O., 1984. Factors governing 
pelagic production. In: Holm-Hansen, O., et al. (Ed.), Marine 
phytoplankton and productivity. Springer, Berlin, pp. 1–18. 

Schluter, M., et al., 1998. Si cycling in the sediments of the 
Atlantic sector of the Southern Ocean. Deep-Sea Research II 
45, 1085–1109. 

Schrader, H.-J., 1973. Proposal for a standardized method of 
cleaning diatom-bearing deep -sea and land-exposed marine 
sediments. Nova Hedwigia, Beiheft 45, 403–409. Shapiro, T., 



I. Grigorov et al. / Deep-Sea Research II 49 (2002) 3391–3407, DOI: 10.1016/S0967-0645(02)00089-9 

Huang, Z., 1997. A possible ENSO signal in the Ross Sea. 
Geophysical Research Letters 24, 3253–3256. 

Shemesh, A., Burckle, L.H., Froelich, P.N., 1989. Dissolution 
and preservation of antarctic diatoms and the effect on 
sediment thanatocoenoses. Quaternary Research 31, 288–308. 

Shipboard Scientific Party, 1999. Leg 177 summary: Southern 
Ocean Palaeoceanography. In: Gersonde, R., Hodell, D.A., 
Blum, P., et al. (Eds.), 1999. Proceedings of the Ocean 
Drilling Program, Initial Reports, Vol. 177. College Station, 
TX (Ocean Drilling Program). pp. 1–67. 
doi:10.2973/odp.proc.ir.177.101.1999 

Smetacek, V., 1985. Role of sinking in diatom life-history 
cycles: ecological, evolutionary and geological significance. 
Marine Biology 84, 239–251. 

Smetacek, V., 1998. Diatoms and the silicate factor. Nature 391, 
224–225. 

Takahashi, K., 1986. Seasonal fluxes of pelagic diatoms in the 
subantarctic Pacific, 1982–1983. Deep-Sea Research 33, 
1225–1251. 

Tomas, C.R., 1997. Identifying marine phytoplankton. Academic 
Press, New York, 858pp. 

Ware, D.M., 1995. A century and a half of change in the climate 
of the NE Pacific. Fisheries Oceanography 4, 267–277. 

Yoder, J.A., Ackleson, S., Barber, R.T., Flamant, P., Balch, 
W.A., 1994. A line in the sea. Nature 371, 689–692. 

Yuan, X., Cane, M.A., Martinson, D.G., 1996. Climate 
variations: cycling around the South Pole. Nature 380, 673–
674. 

Zielinski, U., Gersonde, R., 1997. Diatom distribution in  
Southern Ocean surface sediments (Atlantic Sector): 
implications for paleoenvironmental reconstructions. 
Palaeogeography Palaeoclimatology Palaeoecology 129, 213–
250. 

Zielinski, U., Gersonde, R., 2002. Plio -Pleistocene diatom 
biostratigraphy from ODP Leg 177, Atlantic sector of the 
Southern Ocean. Marine Micropaleontology, submitted for 
publication. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A - Relative diatom abundance %  MIS 12/11 

1093A-13H-4, 0-18 cm MIS 12/11
interval sampled       from 0.4 0.6 1.2 2.5 2.9 3.5 3.7 4.2 4.4 4.9 5.9 7.5 7.7 9.7 9.9 10.2 10.5 10.8 12.5 13.1 13.4 14.5 15.2 16.4 16.8 17.3 17.4
                                  to (cm) 0.6 0.8 1.5 2.6 3.1 3.6 3.9 4.4 4.6 5.1 6.1 7.7 8 9.9 10.2 10.5 10.8 11.3 13 13.4 13.8 15.2 16.4 16.8 17.3 17.4 18.1
mean depth (cm) 0.5 0.7 1.35 2.55 3 3.55 3.8 4.3 4.5 5 6 7.6 7.85 9.8 10.1 10.4 10.7 11.1 12.8 13.3 13.6 14.9 15.8 16.6 17.1 17.4 17.8

Diatoms
Actinocyclus actinochilus * *
Actinocyclus ingens * * * * * * * * * * * * * * * * * * * * * * * *
Asteriomphalus spp 5 * * * * *
Asteriomphalus spp 6 *
Asteriomphalus spp. 7 *
Asteriomphalus hookeri *
Azpeitia endoi * * * * 1.23 * 1.45 * * 1.08 * * 1.62 *
Azpetia tabularis 3.9 3 4.762 2.643 3 1.96 2.04 2.77 3.63 4.18 6.36 2.58 2.86 6.17 1.72 14.7 12.8 7.51 5.25 8.15 16.2 8.68 10.9 4.09 4.85 4.37 2.6
Cheatoceros spores * * * * * * *
Eucampia antarctica 1.6 1.6 2.494 3.084 2.1 1.09 2.86 * 2.04 * 3.78 2.03 * * * 1.55 1.19 * 1.09 1.25 2.54 1.63 1.73 1.02 1.62 * *
F. curta * * *
F. rhombica * *
F.kerguelensis 77 80 71.43 77.97 73 73.6 75.7 76.2 76.4 78.7 72.2 77 79.6 70.2 83.3 61.8 66.1 78 76.8 67.4 58.4 71.6 73.7 80.6 73.9 74 81.2
F.separanda * * * 1.4 * * * * * * * * *
Navicula spp. * * *
Pleurosigma spp. * * * * * * * * * * * * *
Rhizosolenia styliformis * * * * * * * * * *
Rouxia spp. * 1 1.134 1.542 1.9 3.27 1.64 * * * * 1.29 * * * * * * * * 1.81 1.04 * 1.15 1.38 *
Thalassionema nitzschiodes * * 1.134 * 1.2 * 1.09 * * * 2.33 6.25 1.94 * * * * * 2.08 1.3
Thalassionema spp. * * * * * * * * *
Thalassiosira gracilis * 1.134 1.101 * * * * * * * * * * * * * 1.53 * 1.38 2.16
Thalassiosira lentiginosa 11 11 5.896 6.388 7.9 8.71 9 8.55 8.16 9.82 12.1 11 9.39 11.1 12.7 12.9 8.93 6.54 10.7 11 14.2 8.86 5.55 3.32 8.78 5.52 4.33
Thalassiosira leptopus * * *
Thalassiosira lineata *
Thalassiosira oestrupii * * 1.361 * 1.2 2.4 * * 1.09 * * * * * * * * * * * * * * *
Thalassiosira spp. * * * * * * * * * * * * * *
Thalassiothrix antarctica 2.2 1.7 8.617 4.626 7 6.97 5.11 6.7 6.35 2.18 2.58 2.95 4.29 6.38 * 4.39 2.68 3.87 2.19 8.15 5.08 1.99 2.6 5.63 2.77 9.89 4.98
Trichotoxon ? spp. * * * * * * *

F- fragments common * <1%



Appendix B - Relative diatom abundance  % MIS 29
1093A-23H-4, 0-22 cm MIS 29
interval sampled from 16 16.2 16.4 16.6 16.8 17 17.4 17.6 17.8 17.9 18 18.1 18.2 18.3 18.4 18.5 18.8 19 19.2 19.4 19.6 19.8 20
                            to (cm) 16.2 16.4 16.6 16.8 17 17.2 17.6 17.8 17.9 18 18.1 18.2 18.3 18.4 18.5 18.6 19 19.2 19.4 19.6 19.8 20 20.2
mean depth (cm) 16.1 16.3 16.5 16.7 16.9 17.1 17.5 17.7 17.85 17.95 18.05 18.15 18.25 18.35 18.45 18.55 18.9 19.1 19.3 19.5 19.7 19.9 20.1
slide No 26 25 24 23 22 21 19 18 17 16 15 14 13 12 11 10 7 2 5 4 3 1 6

Actinocyclus actinochilus * * * * * * * * 2.994 2.334 * * *
Actinocyclus ehrenberg * * 1.068 1.323 * * 1.53 * * * * 1.17 1.124 * 2.041 2.495 4.802 *
Actinocyclus endoi * *
Actinocyclus ingens 1.351 2.381 1.068 2.651 * * * * * * * * 1.949 2.306 1.798 2.268 3.14 4.591 2.154 1.919 5.068 2.088 9.213
Actinocyclus oculatus * * * * * * * 1.198 * * * * 1.536
Asteriomphalus hookeri * * * * *
Asteriomphalus spp. A * * *
Asteriomphalus spp. B * * * * *
Azpeitia tabularis * * * * * *
Chaetoceros spores * * * * * * * * *
Chaetoceros veg cells * * *
Coscinodiscus spp. * * * * * * 1.541 1.256 1.198 * * 2.339 * 2.495
Eucampia antarctica * * * * * * * * * * * * * *
F. curta * *
F. rhombica * * * * * * * * * * * 1.258 1.124 1.237 * * * * 1.559 * *
F.kerguelensis 74.32 85.32 81.32 75.9 77.5 83.96 79.72 67.11 65.51 63.58 60.35 63.24 49.71 33.75 41.12 43.71 47.41 45.91 42.01 47.98 44.05 48.23 51.82
F.separanda * * * * 1.701 1.679 0.693 4.971 2.697 * * * 1.048 1.124 * * * * 1.152 1.949 * *
Navicula spp. * 1.887 * *
Pleurosigma spp. F F F F F F F F F
Rhizosolenia spp. * * * * *
Rhizosolenia styliformis * * * * * * * * *
Rouxia spp. 9.459 3.373 2.847 4.578 6.427 6.157 5.026 10.71 10.02 15.37 18.57 14.61 19.69 36.69 25.84 23.51 8.634 7.984 10.95 12.67 15.4 10.02 6.142
Thalassionema nitzchiodes *
Thalassiosira elliptipora 2.124 * 1.957 2.651 1.701 1.119 2.426 * * * 1.547 1.142 2.144 * 2.247 1.031 3.768 8.782 4.309 3.071 3.899 5.219 4.798
Thalassiosira gracilis * *
Thalassiosira lentiginosa 2.317 1.786 2.135 2.169 1.323 * 1.56 3.059 * * 2.901 2.74 3.314 3.354 3.596 1.649 5.181 8.184 7.54 4.415 3.509 3.34 3.647
Thalassiosira oestrupii * * * * * * * * * * *
Thalassiosira spp. A * * * 1.17
Thalassiosira spp. B * * * * *
Thalassiosira spp. C 1.158 * * 1.687 * * 1.386 1.147 1.895 2.321 * 1.754 1.048 0.674 2.062 2.669 1.397 1.257 * 2.534 3.967 2.303
Thalassiothrix antarctica 5.792 2.579 7.117 7.952 6.805 3.358 6.239 6.692 16.76 14.53 11.41 14.84 14.04 16.14 17.08 19.79 22.61 15.57 26.75 22.65 16.76 18.58 15.36
Trichotoxon spp. * *

F- fragments common
* <1%




