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Abstract 

In previous papers we presented MOR (Model Order 
Reduction) methods based on the construction of a Gram 
matrix subsequent to a decomposition in Laguerre series. In 
this paper we propose an alternative solution using Kautz 
series, more adequate for modeling poorly damped systems. 

  

Introduction 
Efficient reduced order modeling techniques have become 

a valuable tool for system designers in recent years, 
particularly in the field of VLSI circuit interconnects. In 
previous papers [1,5,6] we presented a Laguerre-Gram 
reduction method and its applications to VLSI circuits. The 
Laguerre-Gram method is basically a two step algorithm. The 
first step supposes a decomposition of the original transfer 
function (or transfer functions in the MIMO case) in a 
Laguerre series. With the Laguerre spectrum (or spectra) 
made available an approximation basis is constructed by 
repeated application of an adequate operator and a stable 
rational model is readily calculated. Some difficulties may 
however appear if the original system displays a slowly 
attenuated oscillating behavior. The method described in this 
paper proves a viable alternative in such cases. It follows the 
same two-step scenario describe above but it is no longer 
based on single-pole Laguerre functions but on two-pole 
Kautz functions more appropriate for modeling resonant 
systems. 

 

On the computation of Kautz Spectra 
In this section we briefly present an efficient solution for 

computing Kautz spectra. The results provided by the 
remarkable theoretical works of Wahlberg and Makila [7,8] 
have proven vital to our research. 

 
Two parameter Kautz functions subsequently denoted as 

)(tmϕ , with , are defined by their Laplace 
transforms : 
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Note that the orthonormal set { } 0≥mmϕ  is complete in 

[ [∞,02L , thus any finite-energy real-causal signal ( )tg  can be 
approximated within any desired accuracy by truncating its 
infinite expansion  
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where  is the mc 1+m th Kautz-Fourier coefficient, given by 

the inner product ∫
∞

==
0

)()(, dtttggc mmm ϕϕ . 

As proven in [8] if ( )sĝ  denotes the Laplace transform of 
( )tg  it can be decomposed in two orthogonal partitions 

( )sg
s
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( ) ( ) ( )sgsg
s
csg oe ˆˆˆ +=    (3) 

where  and  

with and . 

( ) ( )∑
∞

=
+=

0
12ˆˆ

n
n

e
n

e scsg ϕ ( ) ( )∑
∞

=
+=

0
12ˆˆ

n
n

o
n

o scsg ϕ

n
e
n cc 2= 12 += n

o
n cc

Let us now consider the z-transforms 
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It can be shown that the second order all-pass 

transformation 
cbss
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2
 yields the following relations 

binding the Laplace transform and the z-transform of the 
Kautz spectrum. 
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are the two solutions of the transformation 
cbss
cbssz

+−

++
= 2

2
. 

Relations (4) can easily be used to numerically evaluate the 
Kautz spectrum of a given function from its Laplace transform 
by setting  in (4) with θjez −= [ [πθ 2,0∈ , keeping in mind 
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the definition of the z-transform, the Kautz coefficients   
can then be computed using a FFT or DCT algorithm. 

mc

 

Model order reduction  
Let  denote the irrational or high order transfer 

function of the original system we seek to model. As seen in 
the previous section it can be represented as a Kautz series 

.  
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We build an array of transfer functions  
obtained by successive applications of the operator denoted as 

 and defined by:  
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It should be noted that the operator  has been 

constructed in such a way that the Kautz spectrum of  
can be calculated iteratively, by simply shifting the spectrum 
of , in other words: 
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Let  denote the Gram matrix of inner products Ψ

jiij gg ,=ψ  for 1...,1,0, −= rji  and b
r

 the vector 
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The next step is to write as a linear combination of 

. The procedure yields a rational 

approximation 
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 vector represents the solution to 

the system of equations given by ba
rr

−=Ψ . 
 
 
 
 
 

Remarks 
1. The model is stable by construction. As for Laguerre-

Gram technique [1], this can be proved by a 
Lyapunov method. 

2. The order of the reduced model as given by (7) is 2r  
since the order of is 2. In fact if  is a pole of 
the reduced model, then  is also one. Therefore, 
in practice we only keep half of the poles (those 
corresponding to the largest residues) thus reducing 
the model given by (7) to an order 

)(sD p
pc /

r .   
3. Note that for a given reduced order denominator one 

can easily calculate an optimal numerator minimizing 

the error norm
2~̂ˆ gg − . 

4. The method can be extended to MIMO systems. For 
an original matrix of irrational or high order transfer 
functions a matrix of reduced order rational functions 
sharing a common denominator is in this case 
computed. 

5. The non-crucial choice of Kautz parameters  and 
can be made according to the procedure described 

in [3]. 

b
c

6. The method can also be adapted to model systems 
described by discrete data such as frequency 
measurements of S or Y parameters. In this case the 
computation of Kautz spectra need to be done 
differently, the rest of the algorithm remains 
unchanged. 

Example 
The original model chosen to illustrate this method is the 

admittance matrix Y  of a system of two 0.7 mm long coupled 
interconnect lines. The lines are supposed identical and 
symmetrical and therefore the matrix has four distinct terms 
denoted 4,3,2,1, =iyi  for simplicity. The aim is to provide 
rational approximations sharing a common denominator for 
the 4 distinct terms.  
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Figures 1-4 present the original frequency responses and 
their order 40 rational approximations (with a common 
denominator). The quality of the reduced model on a wide 
frequency band is visible and resonance peaks are well 
reproduced. Passivity could eventually be enforced [2,4] on 
this model to allow the determination of an equivalent circuit. 
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Fig1. y1 frequency response 
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Fig2. y2 frequency response 
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Fig3. y3 frequency response 
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Fig4. y4 frequency response 
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Conclusions 
A model order reduction method based using Kautz 

functions was presented. This new technique may present 
certain advantages when applied to resonant systems. Future 
research includes testing different operators and refining the 
algorithm for faster implementation.  
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