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Integral Formula for the Characteristic Cauchy Problem on a

curved Background

Jérémie Joudioux∗

Laboratoire de Mathématiques de Brest, U.M.R. CNRS 6205

6, avenue Victor Le Gorgeu, CS 93837, F-29238 BREST Cedex 3

Abstract: We give a local integral formula, valid on general curved space-times, for
the characteristic Cauchy problem for the Dirac equation with arbitrary spin using the
method developed by Friedlander in [6]. The results obtained by Penrose in the flat
case in [20] are recovered directly. It is expected that this method can be used to obtain
sharp estimates for the characteristic Cauchy problem for the Dirac equation.
Résumé: Nous donnons une formule intégrale pour le problème de Cauchy caractéris-
tique local pour l’équation de Dirac pour le spin arbitraire en utilisant la méthode
développée par Friedlander dans [6]. Nous retrouvons alors directement le résultat de
Penrose dans le cas plat ([20]).

——————————-
Penrose obtained in 1963 ([20]) an integral formula for the characteristic Cauchy problem for the

Dirac equations for arbitrary spin in the flat case. His derivation of the integral formula is based on
the construction of a Newman-Penrose tetrad (null tetrad) adapted to the null structure of the null
initial data hypersurface, and especially to the description of the behavior of the null generators
(bicharacteristics) of the cone. The use of the 2-spinor formalism allows him to write the solution
of the problem in function of a ”null datum”, contraction of the data on the cone with its spinor
generators. The formula is verified a posteriori through a splitting of the Dirac operator over the
spin basis in the compacted spin coefficient formalism. Penrose expected that this formula could
be extended to the analytic case. As far as the author knows, the general case remains open.

Friedlander gave in the mid 70’s ([6]) a method to obtain a parametrix for the wave equation
derived from the Leray constructions (see for instance [8]) and wrote an integral representation of the
solution of the characteristic Cauchy problem. His construction is based on a natural decomposition
of the fundamental solution on the cone. Another approach exists to the characteristic Cauchy
problem based on Fourier Integral operators. It must furthermore be noticed that there is no
general result about the characteristic Cauchy problem for hyperbolic operators. Hörmander gave
in [13] a general result of existence and uniqueness, together with energy estimates, for the wave
equation on a spatially compact Lorentzian manifold.

The purpose of this paper is to combine the method developed by Friedlander with the descrip-
tion of the null cone by Penrose to obtain an integral formula for the characteristic Cauchy problem
with initial data on the cone for arbitrary spin in general curved spacetimes. The choice of this
method implies that we face the same restrictions as in the book by Friedlander. There exists an
essential obstacle to the extension of the domain of validity of the representation formula: the exis-
tence of caustics which limit the domain where the formula can be written. We then have to restrict
ourselves to a geodesically convex domain Ω of a smooth Lorentzian manifold (M, g), that is to say
a domain where there exists a unique geodesic between any pair of distinct points. This restriction
is inherent to the method and the fact we work with arbitrary curved geometry. The advantage
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is however that we obtain an explicit integral formula without resorting to any microlocalization.
This in principle should allow an extension to metrics of low regularity in the spirit of [14].

More explicitly, let us consider (M, g) a smooth Lorentzian manifold and p0 a point in Ω; the
problem:

D/ u = 0

where u is a section of a given fiber bundle on Ω and D/ is the Dirac operator on this bundle, with
the initial conditions on the future null cone C+(p0):

u = θ on C+(p0) ∩ Ω

is known as a first order Goursat problem with initial data on the characteristic hypersurface
C+(p0) ∩ Ω.

It is known that several conditions must be satisfied to ensure that this problem admits a
solution. The first one comes from a geometric obstruction to the existence of a solution when
symmetry conditions on the field u are imposed; this implies that the manifold M must satisfy
some geometric assumptions, known as the consistency conditions, depending on the spin we are
working with. The second one comes from the fact that the initial data are given on a characteristic
hypersurface: θ must then satisfy the restriction of the Dirac equation to the cone from p0:

D/ |C+(p0)θ = 0.

These equations are called the compatibility equations for the initial data.
As already mentioned, there exists, as far as the author knows, no general result about the

characteristic Cauchy problem. Nonetheless, it is worth mentioning some results of existence and
uniqueness with some generality. In the analytical case, this problem is similar to the Cauchy-
Kowaleski problem (see for instance [8]). The problem is well posed in that case. This can be
extended, with energy estimates, to minimal regularity ([12]). The well-posedness of the character-
istic Cauchy problem is nonetheless not the point of this paper: assuming existence and uniqueness
of the solution in the neighborhood of the point p0, the goal consists in deriving a representation
formula for this solution.

The paper is organised as follows. The first part presents an adaptation of the Friedlander
method to the bundle of Dirac spinors. After a geometric and intrinsic presentation of the theory
of spinors, the analytic tools to write a fundamental solution of the Dirac equation are developed.
The second part is devoted to the derivation of the formula for Dirac spinors. Following Penrose’s
construction, a null tetrad adapted to the structure of the null cone is constructed and used to
describe the geometric tools. The integral formula can then be derived from the parametrix and the
result obtained by Penrose is recovered for Weyl (or two-) spinors. Finally, the third part deals with
the arbitrary spin n

2 . The presentation made in the first part is adapted to the bundle of spinors
with spin n

2 so that the construction can be applied directly. A representation formula is then given
for arbitrary spin and simplified in the case of the Maxwell equations. Penrose’s formula for the
characteristic Cauchy problem for arbitrary spin in the flat case is recovered in a flat spacetime.

The author would like to thank his supervisor, Jean-Philippe Nicolas, for his kind and patient
support, his advices and his culture.
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Notations and conventions.
We describe here for future reference the notations and conventions which will be used all along

the paper. Note that smooth means C∞ in this paper.

a. Geometric notations:

(i) General framework:

• (M, g): smooth Lorentzian oriented and time oriented manifold with a metric g
having signature signature (+,−,−,−);

• Ω: geodesically convex domain of M ;

• µ: volume form associated with the metric g on M ;

• p0: a given point in Ω;

• ∇: Levi-civita connection for g on the tangent bundle of M , TM .

(ii) Null structure on Ω: let p be a given point in Ω:

• C(p): null cone from p, that is to say the set of points of Ω which lie on a null
geodesic passing through p;

• C+(p) (resp. C−(p)): future (resp. past) null cone from p, that is to say the set of
points of Ω that lie on a future (resp. past) oriented null geodesic from p;

• I(p): chronological set from p, that is to say the points of Ω which lie on a timelike
or null geodesic passing through p;

• I+(p) (resp. I−(p)): future (resp. past) chronological set from p, that is to say the
set of points of Ω that lie on a future (resp. past) oriented timelike or null geodesic
from p;

• J(p) = I(p)\C(p): causal set from p and J±(p) = I±(p)\C±(p) are the future and
past causal sets from p.

(iii) Spin structure: Ω is endowed with a spin structure; the spinors will be denoted using the
Penrose conventions as well as the usual algebraic notations according to convenience:

• SDirac: fibre bundle of Dirac (or 4-) spinors;

• SA and S
A′

: bundles of Weyl (or 2-) spinors (resp. dual and anti-spinors);

• ”·”: Clifford multiplication;

• (·, ·): symplectic product on SDirac obtained by lifting the metric g;

• ǫAB and ǫA′B′ : restrictions of (·, ·) to SA and SA′

;

• C
∞
0 (SDirac) = D(SDirac): smooth sections with compact support in Ω endowed with

the usual Fréchet topology;

• D′(SDirac): its topological dual;

• C
∞(SDirac) = E(SDirac): smooth sections of SDirac on Ω,;

• E′(SDirac): its topological dual;

• the connection ∇ on TΩ is lifted on SDirac and is still denoted ∇;
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• the Dirac operator is defined, for a given section (ei)i∈{0,...,3} of the fibre bundle of
orthonormal frames, on C∞(SDirac) by:

∀Φ ∈ C∞(SDirac),D/Φ =
∑

i∈{0,...,3}
ei · ∇ei

Φ

1 Geometric and analytic preliminaries

The geometric and analytic tools are presented in this section. As already mentioned in the intro-
duction, due to geometric obstructions such as conjugates points or convergence of geodesics, the
whole paper restricts itself to a geodesically convex domain Ω:

Definition 1.1 A domain Ω is said to be geodesically convex if and only if it is an open set where,
for every pair of points (p, q) in Ω, there exists a unique geodesic between p and q.

1.1 Dirac spinors and Dirac equation

This section presents a construction of the spinor bundle so that it will be possible to apply the
method of Friedlander in the most direct way. This presentation also intends to be a small dictionary
between an abstract presentation of the theory of spinors and the Penrose conventions to represent
spinors in terms of indices. Finally it must be noticed that, though the presentation is made on Ω,
it can be generalized to a globally hyperbolic manifold (see remark 1.3 below).

1.1.1 Abstract construction

We begin by defining a spin bundle:

Definition 1.2 A manifold M is said to be spin if its tangent bundle admits a spin structure, that is
to say there exists a Spin(1,3) principal bundle PS, together with a twofold covering ξ : PS → PSOM ,
where PSOM is the SO(1, 3)-principle bundle of orthonormal frames on M , such that

∀p ∈ PS, ∀g ∈ Spin(1, 3), ξ(pg) = ξ(p)ξ0(g).

where ξ0 is the universal covering from Spin(1, 3) ≈ SL2(C) on SO(1, 3).

Remark 1.3 a. The existence of a spin structure on a manifold is usually ensured by the as-
sumption that its second Stiefel Whitney class vanishes.

b. In the case of a four dimensional Lorentzian manifold (M, g), Geroch showed in [9] that
a necessary and sufficient condition for M to carry a spin structure is that its bundle of
orthonormal frames admits a global section (this is referred to as parallelizability).

c. A common assumption in general relativity which ensures that a 4-dimensional Lorentzian
manifold is spin is the global hyperbolicity assumption: there exists in M a global Cauchy hy-
persurface, i.e. a spacelike hypersurface such that any inextendible timelike geodesic intersects
this surfaces exactly once([9, 10]).

The spinor bundle on Ω is defined through the action of an algebra over a vector space. This
construction requires the following tool, which consists in group action over a fibre bundle, replacing
its previous fibre by a given vector space:

Definition 1.4 Let (E,Ω, π) be a G-principal bundle. Let F be a vector space and
ρ : G→ Homeo(F ) a continuous map.
Consider the action

φ : G → Aut(E) ×Homeo(F )
g 7→

(
(x, y) ∈ E × F 7→ (xg−1, ρ(g)y)

) .
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The quotient space
E × F

/
ρ or E ×ρ F

with projection π̃ obtained by factorization of the diagram

E × F
π◦p

//

φ
%%JJJJJJJJJ

M

E ×ρ F

π̃

;;wwwwwwwww

where p : E × F → F is the projection on the first variable, is a G-principal bundle with fibre F .

The algebra, known as the Clifford algebra associated with a given quadratic form, which is
used to construct the spinor bundle is then defined:

Definition 1.5 Let E be a vector space (real or complex) with a quadratic form q. The Clifford
algebra (Cl(E),+, ·) is the quotient space:

Cl(E, q) =

(
+∞⊕

n=0

n⊗

E

)

/
I(E)

where I(E) is the ideal generated by the set {v ⊗ v − q(v)|v ∈ E}.

This algebra is known to have the following structure ([15]):

Proposition 1.6 There exist two sub-algebrae denoted Cl0(E, q) and Cl1(E, q) such that:

Cl(E, q) = Cl0(E, q) ⊕ Cl1(E, q)

wich satisfy:

Cl0(E, q) · Cl0(E, q) = Cl0(E, q), Cl1(E, q) · Cl1(E, q) = Cl0(E, q)
Cl0(E, q) · Cl1(E, q) = Cl1(E, q), Cl1(E, q) · Cl0(E, q) = Cl1(E, q)

(1.1)

Definition 1.7 The group Spin(E, q) is the subset of Cl0(E, q) defined by

{s ∈ Cl0(E, q)|q(s) = 1}

where q is the extension of the quadratic form q to Cl(E, q).

The formalism previously defined can of course be applied to the case of the Minkowski spacetime
(R4, η).

Definition 1.8 The bundle defined by:

SDirac = (PS ×M2(C)) /(Spin(1, 3))

is called the bundle of four dimensional spinors or bundle of Dirac spinors.

Remark 1.9 a. The representation of Spin(1, 3) = SL2(C) acting on M2(C) has two irreducible
components, which correspond to C2 with its two inequivalent complex structures; by conven-
tion, we write:

M2(C) = (C2)∗ ⊕ C2.
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b. The previous remark gives a decompositon of the fibre bundle SDirac into two bundles (known

as bundles of Weyl spinors), corresponding to the splitting of M2(C) into C
2

and
(
C2
)∗

; this
decomposition is written in terms of indices:

SDirac = SA ⊕ S
A′

.

A section u of the SDirac bundle will then be split into two smooth sections of the Weyl bundles:

u = φA ⊕ ψA′

.

c. To get back to the tangent bundle, a convention must be chosen to represent the Clifford algebra
Cl(R4, η). Its usual representation is M2(H), which is split in M2(C) ⊕M2(C). The vectors
are identified with the hermitian 2-forms or with C-antilinear homomorphisms from SA to
S

A′

. As such, a vector ua will be written by convention uAA′

.

d. For the chosen representation of the Clifford algebra which was made previously, the tangent
bundle is identified to the set of hermitian two forms over SA. As such, it endows the tangent
bundle with a structure of conformal Lorentzian manifold, i.e. a fibre bundle of cones over M
and a time orientation: the fibre bundle of cones over Ω is made of degenerate hermitian two-
forms, the spacelike vectors fields are the hermitian matrices of signature (2,0) or (0,2) and
the timelike vectors fields are the hermitian matrices of signature (1,1). The time orientation
is obtained by a choice of orientation on the fibre bundle of cones over Ω.

Proposition 1.10 The bundle Λ2SA′

of skew-symmetric two forms is trivial.

Proof This is a direct consequence of the fact that SA′

is a Spin(1, 3) = SL2(C) bundle. Let
(U × C2, φ) and (V × C2, ψ) be two local trivializations of the bundle SA′

with empty intersection
where φ and ψ satisfy

p ◦ φ = π and p ◦ ψ = π

where π : SA′ → M is the projection associated to the bundle SA′

and p is the projection on the
first variable. These two trivializations give rise to two trivializations of Λ2SA that are still denoted
by φ and ψ. Let us consider the transition map φ◦ψ−1 : Λ2C2 ×V → Λ2C2×U . It can be written:

φ ◦ ψ(x, y) = (x, ν(x)y)

where ν : U ∩ V → SL2(C) is a smooth map.
Let x be fixed in U ∩ V . Since ν(x) belongs to SL2(C) and y is a skew-symmetric 2-form, y is
invariant under the action of an element of SL2(C), i.e:

∀(u, v) ∈ C
2, y(ν(x)u, ν(x)v) = y(u, v).

The fibre bundle Λ2SA′

is thus trivial.©>

Remark 1.11 a. The canonical isomorphism, which will be denoted by κ, between SA′

and SA

induces an other isomorphism between Λ2SA′

and Λ2SA:

Λ2
S

A′ −→ Λ2
SA

ǫ 7−→ κ∗ǫ : (u, v) ∈ SA × SA 7→ ǫ(κ(u), κ(v)).

It allows the construction of a symplectic form on SDirac: let ǫ in Λ2SA′

, we obtain a symplectic
form on SDirac by taking:

ǫ⊕ κ∗ǫ.

A two-form ε on SA is denoted εAB and acts on Weyl spinors by:

∀(uA, vB) ∈ SA, ε(u, v) = εABuAvB.

The corresponding two-form on SA′

is denoted εA′B′ .
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b. Let ε be a fixed skew-symmetric two-form on SA. It is possible to construct a metric g̃ on TΩ
by, for xAA′

and yAA′

two vectors:

gabu
avb = εABεA′B′xAA′

yBB′

c. We denote by εAB a two form which gives rise to the metric g on M . The non-degeneracy of
ε induces an indentification between SA and its dual SA given by:

κA ∈ SA 7−→ κA = εABκB ∈ S
A

whose inverse mapping is
κB ∈ S

B 7−→ κB = κAεAB.

The equivalent transformation can be made for the complex conjugate spinors in SA′

if we
consider the image two-form εA′B′ .

d. The symplectic product on Dirac spinors can thus be written, by lowering and raising indices:

(u, v) = εABψAφB + εA′B′ξA′

ζB′

= −ψAφA + ξA′ζA′

where u = ψA + ξA′

and v = φA + ζA′

are two Dirac spinors.

e. The dual S⋆
Dirac

of SDirac is split in:

S
⋆
Dirac = SA′ ⊕ S

A.

The symplectic form (·, ·) realizes an identification between SDirac and S⋆
Dirac

, whereas its

restrictions to, respectively, SA and SA′

, denoted εAB and εA′B′ , realize an identification
between SA and SA and between SA′ and SA′

respectively.

Proposition 1.12 Let ε be a section of Λ2SA. Let g̃ be the metric associated with ε. Then, the
metric g̃ is conformal to the metric g.

Proof : Let p in M . Let X in TpM and u, v in SA. We assume that the vector X is a light-like
vector for the metric g, i.e.:

g(X,X) = gabX
aXb = 0.

A necessary and sufficient condition for g̃ab to be conformal to g is that g̃ and g have the same null
cone structure, i.e. it is sufficient to show:

g̃(X,X) = g̃abX
aXb = 0.

Since Xa is light-like vector, it can be written:

Xa = uAuA′

.

if it is future directed and
Xa = −uAuA′

if it is past directed. The calculation is performed for a future directed null vectors, but it is the
same for a past directed one. Because of the skew-symmetry of εAB, we have:

εABu
AuB = 0

and then
g̃abX

aXb = εABu
AuBεA′B′uA′

uB′

= 0.

X is thus still a null vector for g̃ and g̃ and g are conformal metrics. ©>
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Remark 1.13 The map:
Λ2

S
A −→ {φg|φ ∈ C∞(Ω,R∗

+)}
εAB 7−→ gab = εABεA′B′

is a two sheeted covering of the conformal class of g. In particular, it is surjective. We denote by
εAB a preimage of gab.

Proposition 1.14 The bundle SDirac is a Dirac bundle, i.e. a fibre bundle of left modules over
Cl(Ω, g) endowed with a symplectic form ǫ and a connection ∇S such that:

a. ∇S is the pull-back of the Levi-Civita connection on M : if π : SDirac → Ω, then ∇ can be
written:

π∗∇ = ∇S

b. the connection is compatible with the action of the Clifford algebra: let X be a smooth section
of Cl(TΩ, g) and u a smooth section of SDirac, then:

∇S(X · u) = ∇X · u+X · ∇Su.

Though different since they are acting on different objects, the connexion ∇ on Ω and ∇S on
SDirac are both denoted by ∇.

c. the action of the Clifford multiplication is an isometry for the symplectic product: let X be a
smooth section of Cl(TΩ, g) and u, v two smooth sections of SDirac, then:

ǫ(X · u,X · v) = q(X)ǫ(u, v).

In order to define the space on square integrable spinors on Ω, it is necessary to define the norm
of a spinor. This unfortunately cannot be done without choosing a time function t (see [18]) or, at
least, a timelike vector field.

Definition 1.15 A smooth function t on Ω is called a time function if, and only if its gradient is
a non-vanishing future-oriented timelike vector field on U .

Definition 1.16 Let t be a time function on Ω. Then the map defined by:

C∞
0 (Ω, SDirac) × C∞

0 (Ω, SDirac) −→ R

(Ψ,Φ) 7−→ ε(∇t · Ψ,Φ)

is a positive definitive hermitian product over the set of smooth sections of SDirac with compact
support in U . The norm associated to this scalar product is denoted by || ⋆ ||U .

Remark 1.17 • This norm will be used in the following on compact subsets of an open set of
Ω to define the Fréchet topology over smooth sections of the fiber bundle of Dirac spinors.

• A time function t is fixed on Ω. This time function will be used to compute all the norms.

This scalar product is used to define various norms over the spinor fields on Ω: let Φ in D(SDirac).
We define using the positive definite hermitian product:

• the L∞-norm over a compact K of Ω:

||Φ||∞,K =
√

sup
K

(ε(∇t · Φ,Φ));

8



• if ψ : Ω → R4 is a given chart over Ω, the norm over K, for any integer N :

||Φ||∞,N,K =

√
√
√
√

∑

α
|α|≤N

sup
K

(ε(∇t · ∇αΦ,∇αΦ)),

where ∇α = ∇∂α1
∇∂α2

. . .∇∂αl
, α = (α1, . . . , αl) being a multi-index of length

|α| =
∑

i=1...n αi; a chart of reference Ψ is fixed in the following in the computation of the
norms;

• the L2-norm over Ω:

||Φ||2 =

√
∫

Ω

ε(∇t · Φ,Φ)µ.

1.1.2 Newman-Penrose tetrad.

One way to describe the Lorenztian structure is to use a global section of the fiber bundle of
orthonormal frames over Ω and translate the result in terms of spinors. We construct a global
basis, named tetrad of Newman-Penrose which gives rise to a spinor basis of S

A.

Definition 1.18 A basis of TΩ ⊗ C (l, n,m,m) is called a normalized Newman Penrose basis if l
and n are real vectors fields and it satisfies the following relations:

g(l, l) = 0 , g(n, n) = 0 , g(m,m) = 0,
g(l, n) = 1 , g(m,m) = −1 , g(l,m) = 0 , g(n,m) = 0.

Remark 1.19 • The existence of a Newman-Penrose tetrad is insured by the existence of a
global section of the fibre bundle of orthonormal frames: if (ea

a) (a = 0, 1, 2, 3) is such a
section, the following family of vectors:

la = 1√
2
(ea

0 + ea
1)

na = 1√
2
(ea

0 − ea
1)

ma = 1√
2
(ea

2 + iea
3)

ma = 1√
2
(ea

2 − iea
3)

(1.2)

is a normalized Newman-Penrose tetrad. It is obvious that a given normalized Newman-
Penrose tetrad gives rise to an orthonormal basis of TΩ with the following reverse fomulae:

ea
0 = 1√

2
(la + na)

ea
1 = 1√

2
(la − na)

ea
2 = 1√

2
(ma +ma)

ea
3 = 1

i
√

2
(ma −ma)

• Because the structure of null cones will be considered later, we assume that a Newman-Penrose
tetrad (l, n,m,m) is given first and, in a second time, gives rise to an orthonormal basis (ea

a
)

(a = 0, 1, 2, 3).

• Up to an overall sign, there exist two unique spinor fields in E(SA), denoted by oA and ιA

such that:
la = oAoA′

, na = ιAιA
′

and ma = oAιA
′

.

These two spinors are chosen such that the following normalization is satisfied:

εABo
AιB = oAι

A = 1

• There exists an alternative notation for this spin basis, which is consistent with the duality
property used to describe spinors. We note, in SA:

εA
0 = oA and εA

1 = ιA.
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We also introduce their dual spinors in SA (ε0A, ε
1
A) which satisfy:

ε0Aε
A
0 = 1 , ε1Aε

A
1 = 1,

ε0Aε
A
1 = 0 , ε1Aε

A
0 = 0;

they are:
ε0A = −ιA and ε1A = oA.

• The vector ea
a

can be written in function of the metric as ga
a

for a = 0, . . . , 3. The components
of its spinor form gAA′

a
, called the Infeld-van der Waerden, defined as:

gAA
′

a
= ea

a
εAAε

A
′

A′ .

are the coefficients of the decomposition of ea
a in the basis (εA

0 , ε
A
1 ):

ea
a

= gAA
′

a
εA
A
εA′

A′ .

It is then known ([18], section 3.1) that the Clifford multiplication of a Dirac spinor by the basis
vectors can be written:

Lemma 1.20 The Clifford multiplication of a Dirac spinor φA + ψA′

by the vector ea
a is given by:

ea
a
· (φA ⊕ ψA′

) = i
√

2gaAA′ψA′ ⊕−i
√

2gaAA′

φA

Remark 1.21 : The Clifford multiplication can be interpreted as a contraction with the correspond-
ing vector of the basis (up to a factor ±i

√
2) by writing:

ea
a · (φA + ψA′

) = i
√

2gabgbAA′ψA′ − i
√

2gabgAA′

b φA

= i
√

2g(ea, ea)gaAA′ψA′ − i
√

2g(ea, ea)g
AA′

a
φA

As a consequence, the Clifford multiplication by the vector lAA′

is the contraction with nAA′

and
conversely the Clifford multiplication by nAA′

is the contraction by lAA′

(up to a factor ±i
√

2):

l · (φA + ψA′

) = i
√

2(nAA′ψA′ − nAA′

φA)

n · (φA + ψA′

) = i
√

2(lAA′ψA′ − lAA′

φA)
(1.3)

We conclude this section by giving the abstract index expression of the Dirac operator on 4-
spinors ([18], section 3.1):

Lemma 1.22 The Dirac operator is decomposed as follows:

D/ (φA + ψA′

) = i
√

2(∇AA′ψA′ −∇AA′

φA)

1.2 Analytic requirements

1.2.1 Distributions on spinors

The purpose is to write weak solutions for the Dirac equation. The theory of distributions must thus
be adapted to ensure properties of symmetry for the Dirac operator and the Clifford multiplication
so that the construction of Friedlander can be used with few adaptations.

10



Fundamental properties The basic elements needed in the next section are sketched here.
Spinor-valued distributions are defined in [3] to construct fundamental solutions for the Dirac equa-
tion. They were also developed in [22] to construct a Fourier integral operator for the propagator
of the Dirac equation.

Definition 1.23 A distribution u on the set D(SDirac) of smooth Dirac spinor fields with compact
support on Ω, endowed with its usual Fréchet topology, is a C-linear continuous mapping from
D(SDirac) to C, i.e. a mapping which satisfies for all compact K in Ω, there exists a positive
constant C and an integer m depending only on K such that:

∀φ ∈ D(S), |u(φ)| ≤ C||φ||∞,m,K

The set of distributions on M will be denoted by D′(SDirac) and the duality bracket by <,>.

Definition 1.24 The support of a distribution u is the complement of the largest open subset O of
Ω such that any smooth function φ with support in O satisfies:

< u, φ >= 0.

The set of compactly supported distributions is denoted E′(SDirac) and is the topological dual of
E(SDirac), set of smooth sections of SDirac on Ω.

If u is a locally integrable section of S∗
Dirac = SA ⊕ SA′ , which can be written u = ξA + ηA′ , it

defines a distribution by:

∀Φ ∈ D(SDirac), < u,Φ >=

∫

Ω

−ξAφA + ηA′ψA′

µ.

where the smooth section Φ is split as: Φ = φA + ψA′

.
We define now the action of the covariant derivative in a direction V and of the Dirac operator

on distributions by:

Proposition 1.25 Let u be an element of D′(SDirac) and V be a smooth section nowhere vanishing
of TΩ. The distributions ∇V u and D/ u are defined by:

∀φ ∈ D(SDirac), < ∇V u, φ >D′(S⋆
Dirac

),D(SDirac) = − < u,∇V φ >D′(S⋆
Dirac

),D(SDirac)

∀φ ∈ D(SDirac), < D/ u, φ >D′(S⋆
Dirac

),D(SDirac) = − < u,D/φ >D′(S⋆
Dirac

),D(SDirac)

These definitions agree with the Leibniz rule and the fact that the connexion is compatible with
the symplectic product on spinors.

We also need to define the Clifford multiplication with a vector:

Proposition 1.26 Let u be an element of D′(SDirac) and V a smooth section of TΩ. We define
the distribution V · u in D′(SDirac) by:

∀φ ∈ D(SDirac), < V · u, φ >D′(S⋆
Dirac

),D(SDirac)=< u, V · φ >D′(S⋆
Dirac

),D(SDirac) .

Proof
The representation of the Clifford multiplication is the same for the dual S∗

Dirac. Consequently,

if u = φA′

+ χA is in SDirac and v = ρA′ + θA is in S∗
Dirac, then:

< v, ea · u >S⋆
Dirac

,SDirac
= −i

√
2gaAA′χA′

θA − i
√

2gaAA′

φAρA′ .

We notice that this expression is symmetric in A and A′ so that we can conclude:

< ea · v, u >S⋆
Dirac

,SDirac
=< v, ea · u >S⋆

Dirac
,SDirac

.©>
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Remark 1.27 When a distribution on SDirac is represented by a function from Ω into SDirac, the
symplectic product (·, ·) on SDirac is used to apply the distribution on a section of SDirac. The
duality bracket will be in that case written (·, ·)D′(SDirac),D(SDirac).

The previous results need to be checked since the definitions given in (1.25) do not work when the
symplectic product (or the ε spinor) is used. We first need the following lemmata on the action of
Clifford multiplication and the Dirac operator:

Lemma 1.28 For any Φ and Ψ Dirac spinor fields on Ω and V a vector field on Ω, we have:

(V · Φ,Ψ) = −(Φ, V · Ψ)

Proof : It is sufficient to verify the result for an element ea of the frame. We calculate (ea · Φ,Ψ)
in components.

(ea · Φ,Ψ) = −i
√

2εA′B′gaAA′

ξAθ
B′

+ i
√

2εABgaAA′χA′

ρB

with Φ = ξA + χA′

and Ψ = ρA + θA′

. Noticing that:

εABgaAA′ = −gaB
A′ = −εB′A′gaBB′

= εA′B′gaBB′

we obtain:

(ea · Φ,Ψ) = −i
√

2εABgaBB′ξAθ
B′

+ i
√

2εA′B′gaBB′

χA′

ρB = −(Φ, ea · Ψ).©>

In order to verify the symmetry of the Dirac operator for the symplectic product, we will establish
the following lemma:

Lemma 1.29 Let Φ and Ψ two spinor fields on Ω. Then we have:

(D/Φ,Ψ) = (Φ,D/Ψ) − div(V ).

where V is a complex vector field.

Proof : The formula is proved at each point of Ω; let then p be a point in Ω. Let (fi) be a
orthonormal basis on Ω such that, for all i in {0, 1, 2, 3}:

∇fi
fi = 0 at p.

For this choice of basis, we have, at the point p:

(D/Φ,Ψ) =
∑

i∈{0,1,2,3}
(fi · ∇fi

Φ,Ψ)

= −
∑

i∈{0,1,2,3}
(∇fi

Φ, fi · Ψ)

= −
∑

i∈{0,1,2,3}

{
∇fi

(Φ, fi · Ψ) − (Φ,∇fi
(fi · Ψ))

}
(, ) being compatible with the connection.

= −
∑

i∈{0,1,2,3}

{
∇fi

(Φ, fi · Ψ) − (Φ, fi · ∇fi
Ψ)
}

since at p ∇fi
fi = 0

= (Φ,D/Ψ) −
∑

i∈{0,1,2,3}
∇fi

(Φ, fi · Ψ).

Introducing the complex vector field v defined, at p, by:

V =

3∑

i=0

fi(Φ, fi · Ψ)fi

12



with fi =< fi, fi >, we notice that
∑

i∈{0,1,2,3}
∇fi

(Φ, fi · Ψ)

is the divergence of V .
We present an alternative way to perform this calculation with abstract indices; the Dirac spinors
Φ and Ψ are split on SDirac:

Φ = φA ⊕ ρA′

Ψ = ψA ⊕ χA′

.

We now lead the calculation in the usual way:

1√
2
(D/Φ,Ψ) = εAB(i∇AA′ρA′

)ψB + εA′B′(−i)(∇AA′

φA)χB′

= εABi∇AA′(ρA′

ψB) + εA′B′(−i∇AA′

(φAχ
B′

))

−εABρA′

i∇AA′ψB − εA′B′φA(−i∇AA′

χB′

)

= i∇AA′(εABρA′

ψB) + (−i)∇AA′

(εA′B′φAχ
B′

)

+ρA′

i∇B
A′ψB − φA(−i)∇A

B′(χB′

)

= i∇AA′(ρA′

ψA) + i∇AA′

(φAχA′)

+ρA′

i∇BB′

εB′A′ψB + iφAε
AB∇BB′χB′

= i∇AA′(ρA′

ψA) + i∇AA′

(φAχA′)

−εA′B′ρA′

i∇BB′

ψB + iεABφA∇BB′χB′

= i∇AA′(ρA′

ψA) + i∇AA′

(φAχA′) +
1√
2
(Φ,D/Ψ).

It must be noticed that, in this new calculation, the remaining term can obviously be identified as
a divergence.©>
Remark 1.30 The vector field

V =

3∑

i=0

fi(Φ, fi · Ψ)ei (1.4)

is encountered several times in the following. Though it is used to perform the calculation, it does
not seem to be intrinsic. It is nonetheless easy to give a more intrinsic sense to this computation.
Let us consider the complex 1-form ω on Ω:

TΩ⊗ C −→ C

h 7−→ (Ψ, h · Φ)

The dual vector of this 1-form is the vector (1.4). The calculation can then be easily reinterpreted
when noticing:

d ⋆ ω =




∑

i∈{0,1,2,3}
∇fi

(Φ, fi · Ψ)



µ,

⋆ being the Hodge dual and µ the volume form associated with the metric g.

Definition 1.31 Let u be in D′(SDirac), and X in C∞TΩ. The applications defined by

Φ ∈ D(SDirac) 7−→ −(u,X · Φ)D′(SDirac),D(SDirac)

and
Φ ∈ D(SDirac) 7−→ (u,D/Φ)D′(SDirac),D(SDirac)

are distributions, denoted respectively by X · u and D/ u.

13



Proof : This is a straightforward consequence of the previous lemma and the Stokes theorem.©>
Remark 1.32 : These definitions agree with the previous lemmata when u is in D(SDirac).

From this point, all the distributions will be assumed to be represented via the symplectic
product.

If f is in D′(R) and U is a smooth spinor field on Ω, we define the distribution fU by:

∀φ ∈ D(SDirac), (fU, φ)D′(SDirac),D(SDirac) =< f, (U, φ) >D′(R),D(R) .

Composition of a function with a distribution In the following, the construction of distri-
butions with support on a light cone will be required. One way to achieve this is to adapt the
contruction of Friedlander in [6] in the case of spinor valued distribution.

Definition 1.33 Let S be a smooth function on Ω, with non vanishing gradient on Ω.
Let f be a distribution with compact support on R.
Then, the application

φ ∈ D(Ω) −→
(

f(t),

∫

S(p)=t

φ(p)∇S(p)yµ(p)

)

where ∇S(p)yµ(p) is the contraction of the measure on M with the gradient ∇S (or the Leray
measure on the hypersurface S(p) = t), defines a real distribution denoted f(S). This distribution
coincides with the composition of functions when f is represented by a function.

We need to apply this definition to calculate the action of the Dirac operator to a distribution on
SDirac of the form f(S)U :

Proposition 1.34 Let f be an element of E′(R), S a smooth function chosen as in definition 1.33
and U a smooth spinor field on M .
Then, in the sense of distributions,

D/ (f(S)U) = f ′(S)∇̂(S) · U + f(S)D/U,

where ∇̂S is the raised gradient, i.e.

∇̂(S) :=
∑

i

(∇ei
u) ei.

.

Proof : Let Φ ∈ D(SDirac) and (fi) an orthonormal frame. Φ is chosen with support in domain Ω
where∇fi

fi are all zero. We calculate (D/ (f(S)U) ,Φ)D′(SDirac),D(SDirac) using the previous definitions
and lemma 1.29:

(D/ (f(S)U) ,Φ)D′(SDirac),D(SDirac) = (f(S)U,D/Φ)D′(SDirac),D(SDirac)

= < f,

∫

S(p)=t

(U,D/Φ)µSt
>E′(R),E(R)

= < f,

∫

S(p)=t

(D/U,Φ)µSt
>E′(R),E(R) (1.5)

+ < f,

∫

S(p)=t

∇fi
(U, fi · Φ)µSt

>E′(R),E(R) (1.6)

where µSt
is the Leray measure ∇Syµ on the hypersurface St = {S(p) = t}. We calculate the two

terms independently; by definition, (1.5) is:

< f,

∫

S(p)=t

(D/U,Φ)µSt
>E′(R),E(R)= (f(S)D/U,Φ)D′(SDirac),D(SDirac).
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and (1.6) is calculated using the same idea as in lemma (1.29):

< f,

∫

S(p)=t

∇fi
(U, fi · Φ)µSt

>E′(R),E(R)=< f,

∫

S(p)=t

div(v)µSt
>E′(R),E(R)

where v is the vector field on Ω defined by:

v =
3∑

i=0

fi(U, fi · Φ)fi

with fi =< fi, fi >. Noticing that:

d

dt

∫

S(p)≤t

div(v)µ =

∫

St

div(v)µSt

and using the Stokes theorem

∫

S(p)≤t

div(v)µ =

∫

St

< ∇S(p), v > µSt

=

∫

St

∑

i

∇fi
S(U, fi · Φ)µSt

=

∫

St

(U, ∇̂S · Φ)µSt

= −
∫

St

(∇̂S · U,Φ)µSt
,

we obtain, accordingly with definition 1.31:

< f,

∫

St

(∇fi
(U, fi · Φ)µSt

>E′(R),E(R)= (f ′(S)∇̂S · U,Φ)D′(SDirac),D(SDirac)

so that:
D/ (f(S)U) = f ′(S)∇̂(S) · U + f(S)D/U ©>

Spinors and bidistributions Keeping in sight that the purpose is to write an integral formula
(or representation formula) for a Cauchy problem, we must be able to apply twice a distribution to
spinor fields. This is what bidistributions are made for.

We define the product ⊠ of two smooth sections of SDirac with compact support by:

D(SDirac) × D(SDirac) −→ D(SDirac) ⊠ D(SDirac)
(Φ,Ψ) 7−→ ((p, q) ∈ Ω × Ω 7→ Ψ(p) ⊗ Φ(q))

where ⊗ must be understood as tensor product of spinors in different variables. The vector space
generated by these products is denoted by D(SDirac) ⊠ D(SDirac).

Definition 1.35 Let u and v be two distributions in D′(SDirac). The bidistribution u ⊠ v is an
application from D(SDirac) ⊠ D(SDirac) defined by, for every (φ, ψ) ∈ D(SDirac) × D(SDirac):

(u⊠ v, φ⊠ ψ) = (u, φ)D(SDirac),D′(SDirac)(v, ψ)D′(SDirac),D(SDirac).

The vector space D′(SDirac) ⊠ D′(SDirac) generated by these products is called the space of spinor-
valued bidistributions on SDirac.
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If φ is in D(SDirac) and u is a spinor bidistribution, then u(φ) is still in D′(SDirac). It can conse-
quently be still applied to a function in D(SDirac).

A special type of spinor valued distribution that will be encountered in the following is the Dirac
distribution.

Definition 1.36 We define the Dirac distribution (or Dirac mass) in p′, denoted by δp′ by:

∀φ ∈ D(S), (δp′ , φ)D′(SDirac),D(SDirac) = φ(p′).

It must be noted that this distribution can be written in the form τ(p′, p)δp′ ([6], chapter 6) where τ
is a linear transformation from D(SDirac) in the variable p to D(SDirac) in the variable q satisfying
τ(p′, p′) = ISDirac

and can consequently be written as:

∀φ ∈ D(S), (τ(p′, p)δp′ , φ)p,{D′(SDirac),D(SDirac)} = φ(p′),

the duality bracket being computed in the variable p. Since

εABε 0
Aε

1
B = 1 and εA′B′εA′

0′ εB′

1′ = −1

and τ(p, p) satisfies:
(τ(p, p), φ(p)) = φ(p)

it can be explicitly calculated at p = p′:

τ(p, p) = −εA′

1′ ⊠ εA′

0′ + εA′

0′ ⊠ εA′

1′ + ε 0
A ⊠ ε 1

A − ε 1
A ⊠ ε 0

A

= −ιB′

⊠ oA′

+ oB′

⊠ ιA
′ − oB ⊠ ιA + ιB ⊠ oA. (1.7)

Such a function τ is chosen explicitly later (see equation (1.9)).

1.2.2 Fundamental solutions of the wave equation

We now apply to the spinorial wave equation the analytical tools used by Friedlander in [6] for
the tensor wave equation. An alternative method has been used by Klainerman and Rodnianski
to construct an approximate fundamental solution in [14]. Though their method is more flexible
and well-suited to obtain estimates, it is not appropriate here since, as we will see, the regular part
(the tail of the fundamental solution) is needed to write down a fundamental solution. V. Moncrief
used Friedlander’s method in a paper with D. Eardley ([4]) for the Yang-Mills equations in the
Minkowski space and for the Maxwell wave equation in [16] on a curved space-time.

We first consider the spinorial wave operator D/
2
. The Schrödinger - Lichnerowicz - Böchner

formula gives that for any φ in D(SDirac):

D/ 2φ = �φ+
1

4
Scalφ (1.8)

where � = −∇j∇j . Since the index notations are used from the beginning, a index version of the
formula with its proof is given:

Proposition 1.37 (Schrödinger-Lichnerowicz formula in index version for spin 1
2)

Let φA be a smooth section of SA. Then we have the following relation:

∇BA′∇AA′

φA =
1

2

(

∇CC′∇CC′

φB +
1

4
ScalgφB

)

.
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Proof : The reader should refer for intermediate results to [21](4.9.2 and 4.9.17).

∇BA′∇AA′

φA = εAC∇BA′∇A′

C φA

= εAC
(

∇[B|A′∇A′

|C]φA + ∇(B|A′∇A′

|C)φA

)

=
1

2
εAC∇HH′∇HH′

εBCφA +
1

8
ScalgφB (formula 4.9.17 in [21])

=
1

2
∇CC′∇CC′

φB +
1

8
ScalgφB©>

Remark 1.38 • This version agrees with the previous one when noticing that the operator
∇BA′∇AA′

is in fact, due to the renormalization induced by the Clifford multiplication, the
projection on SB of 1/2D/

2
.

• A generalization of this formula to arbitrary spin is given later in subsection 3.1.

Since Ω is a geodesically convex domain, it is possible to define globally on Ω the squared-distance
function:

Γp(q) =

∫ t

0

g

(
dγ(s)

ds
,
dγ(s)

ds

)

ds

where γ : [0, t] → Ω is the unique geodesic from p to q.
To write the fundamental solutions of the wave equation, it is necessary to construct distributions

with support on a cone: using definition 1.33, let us consider the distributions

δ±(Γp(q)) and H±(Γp(q))

where δ is the Dirac mass and H the Heaviside function. These distributions have support respec-
tively, for p fixed in Ω, in C±(p) and J±(p).

Remark 1.39 It is important to notice that these distributions do not satisfy definition 1.33 since
the gradient of Γp(q) vanishes at the vertex of the cone. Nonetheless, considering the distributions

δ±(Γp(q) − ε) and H±(Γp(q) − ε)

with ε positive avoids the problem. The results can then be obtained using a limiting process when
ε tends to zero. This method will be used later to expand equation (2.8).

It is known that the operator D/
2

admits fundamental solutions ([6],[3]):

Theorem 1.40 There exists two bidistributions on Ω, G̃±
q (p) that satisfy:

∀(p, q) ∈ Ω2,D/
2
pG̃

±
q (p) = δq(p)

in the distribution sense. These two bidistributions can be written:

G̃±
q (p) = Ũq(p)δ

±(Γq(p)) + Ṽq(p)H
±(Γq(p)).

where Ũ and Ṽ ± are smooth functions of the variable (p, q). q being fixed in Ω, the support of G̃±
q (p)

is then in C±(q).

The structure of the fundamental solution obtained by Friedlander is the following (the reader
should refer to [6] for more details.)

a. The function Ũ in the singular part can be decomposed into two parts, Ũq(p) = kq(p)τ̃q(p)
where:
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(i) the bispinor τ̃q(p) satisfies:

∇iΓq(p)∇iτ̃q(p) = 0 and τ̃p(p) = τp(p). (1.9)

This equation can easily be reinterpreted as parallel transport in the variable q of the
bispinor identity along the geodesic from p to q.

(ii) the function kq(p) satisfies the transport equation:

2 < ∇Γq(p),∇kq(p) > +(�Γq(p) − 8)kq(p) = 0 and kp(p) =
1

2π
. (1.10)

kq(p) measures the difference between the measure induced on C+(p) ∩ C−(q) and the
measure on the standard sphere S2 in the sense that, if p is in the future of q:

µC+(q)∩C−(p) = kq(p)r
2µS2

where µC+(q)∩C−(qp) is the Riemannian volume form induced by the metric g on C+(q)∩
C−(p) and µS2 the standard volume form on the two dimensional sphere.

b. The regular part Ṽ ± of the fundamental solution can be obtained by solving the characteristic
Cauchy problem:

{
�Ṽq(p) = 0 for p ∈ J+(q)

Ṽq(p) = Ṽ 0
q (p) for p ∈ C+(q)

where Ṽ 0
q (p) satisfies the transport equation:

2 < ∇Γq(p),∇Ṽ 0
q (p) > +(�Γq(p) − 4)Ṽ 0

q (p) = −D2Ũ .

For later convenience, the fundamental solution must be split over the decomposition of the
Dirac spinors:

G̃±
q (p) = 1G̃

±
q
A

(p)
B

+ 2G̃
±
A′

q

B′

(p)

The notation
q

A means that the part of the bidistribution in the variable q acts on spinor fields in

SA. Their fundamental part is denoted by, respectively, 1Ũ
±
q
A

(p)
B

and 2Ũ
±
A′

q

B′

(p).

Two backward and forward fundamental solutions for the wave equation can then be constructed.
For Dirac spinors, these fundamental solutions are the distributions:

DpG̃±
q (p)

In terms of indices, these fundamental solutions are written:

∇BB′

p
1G̃

±
q
A

(p)
B

on SA ⊠ S
B′

and ∇p
BB′

2G̃
±
A′

q

B′

(p) on S
A′

⊠ SB.

Finally, we state the following theorem concerning the existence and the structure of the funda-
mental solution for the Dirac equation for Dirac spinors.

Theorem 1.41 There exist two fundamental solutions for the Dirac operator D/ , G±
q (p), with sup-

port in C±(q), for q fixed in Ω, such that:

∀(p, q) ∈ Ω2,D/ pG±
q (p) = δq(p)

in the distribution sense. These two fundamental solutions are obtained by applying the Dirac
operator to the two fundamental solutions of the wave equation:

G±
q (p) = D/ pG̃±

q (p).
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2 Derivation of the integral formula for Dirac spinors

This section is devoted to the derivation of an integral formula for Dirac spinors for the characteristic
Cauchy problem with data on a future null cone. In this context, we will work with the forward
fundamental solution G+

q (p) which will be denoted with no ambiguity Gq(p). The singular and

smooth parts of the forward fundamental solution for the wave equation will be denoted Ũq(p) and

Ṽq(p).
The point p0 being fixed, let p be a point in the future of p0 in Ω. We define, for these two

points:

• σ(p) = C+(p0) ∩ C−(p)

• D(p) = C+(p0) ∩ J−(p)

• S(p) = J+(p0) ∩ C−(p).

• V(p) = J+(p0) ∩ J−(p)

Since Ω is geodesically convex, these instersections are well-defined (in fact, the hypothesis of global
hyperbolicity suffices).

2.1 Representation formula

The first step to obtain a representation formula is to solve the problem with source:

D/ u = f.

The following lemma is a direct transcription of lemma 5.5.1 in [6]:

Lemma 2.1 Let f in E(SDirac).
Then the distributions defined by:

∀φ ∈ D(SDirac), (u, φ)p := (f, (G±
p , φ)q)p

are solutions of the problem:
D/ u = f.

Proof : The calculation is made first formally. The justication of each step will be carried out later;
it will be sufficient to check that each duality bracket is well-defined and that all the operations
involved (symmetry on Dirac operator, . . . ) are legitimate.
Let φ be in D(SDirac).

(D/ pu, φ)p = (u,D/ pφ)p (2.1)

= (f, (G±
p ,D/

q
φ)q)p by definition of u (2.2)

= (f, φ) by definition of G±
p . (2.3)

It must be checked to insure that (2.2) exists that the function:

p 7−→ (G±
p ,D/

qφ)q

is smooth; we have:

(D/
q
G̃±

p ,D/
q
φ)q = (G̃±

p , (D/
q
)2φ)q =

∫

C+(p)

(Ũ±
p (q), (D/

q
)2φ)µΓp(q)(q) +

∫

J+(p)

(Ṽ ±
p (q), (D/

q
)2φ)µ(q),

(2.4)
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where µΓp(q) is the Leray form associated with the function Γp(q), i.e:

µΓp(q) = ∇qΓp(q)yµ.

Let π : Ω → R4 be a chart recovering Ω (which exists since Ω is geodesically convex). The image
by π of p and q are respectively denoted by y and x. There exists a diffeomophism ξ → x = h(y, ξ)
from π(Ω) into R4, where ξ = (ξ0, ξ1, ξ2, ξ3) is a coordinate system centered at y, Minkowskian in
q and such that the vector (1, 0, 0, 0) is timelike and future oriented. In this coordinate system, the
measures µ and µΓq(p) are expressed as:

µ(q) = k(y, ξ)dξ and µΓq(p) = k(y, ξ)
dξ1 ∧ dξ2 ∧ dξ3

2
√

(ξ1)2 + (ξ2)2 + (ξ3)

with dξ = dξ0 ∧ dξ1 ∧ dξ2 ∧ dξ3 and

C+(q) =
{
ξ|ξ0 =

√

(ξ1)2 + (ξ2)2 + (ξ3)2
}

and J+(q) =
{
ξ|ξ0 ≥

√

(ξ1)2 + (ξ2)2 + (ξ3)2
}
.

The integral (2.4) can then be rewritten:

(D/ qG̃±
p ,D/

qφ)q =

∫

ξ0=
√

(ξ1)2+(ξ2)2+(ξ3)2
(Ũ±

h(y,ξ)(y),
(
(D/ q)2φ

)
(h(y, ξ)))k(y, ξ)

dξ1 ∧ dξ2 ∧ dξ3

2
√

(ξ1)2 + (ξ2)2 + (ξ3)

(2.5)

+

∫

ξ0≥
√

(ξ1)2+(ξ2)2+(ξ3)2
(Ṽ ±

h(y,ξ)(y),
(
(D/

q
)2φ
)
(h(y, ξ))k(y, ξ)dξ. (2.6)

which is clearly a smooth function of y = π(p).
Since f is a distribution with compact support, there exists K ′, an integer N and a positive constant
C such that, for any smooth function ψ, the following estimate holds:

|(f, ψ)| ≤ C
∑

|α|<N

sup
y∈π(K′)

||∂α
y ψ ◦ π−1(y)||.

Let K be a compact of Ω. Assume that φ has its support in K. Then the previous inequality gives
for ψ = (Gp,D/ φ)q

|(f, ψ)| ≤ C′
∑

|α|<N

sup
y∈π(K′)

||∂α
y (Gπ−1(y)(π

−1(x)), φ)x||.

Using the expression of (Gπ−1(y)(π
−1(x)), φ)x, its derivatives ∂α

y (Gπ−1(y)(π
−1(x)), φ)x are bounded

by the derivatives of φ on K:

sup
K

||∂α
y (Gπ−1(y)(π

−1(x)), φ)x|| ≤ CK,K′,α

∑

|β≤|α|+1

sup
y∈π(K)

||∂β
y φ ◦ π−1(y)||

where the constant CK,K′,α is determined only by the derivatives of Ũ , Ṽ , h of order up to k + 1
on the compact K ×K ′ and its image by π. Finally, we obtain:

|(f, ψ)| ≤
∑

|α|<N+1

sup
y∈π(K′)

||∂α
y (φ ◦ π−1)||,

which means that equation (2.2) is well-defined.©>
Let u be in E(SDirac). The following proposition gives a representation of u in term of its data

on a null cone:
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Theorem 2.2 Let u be a function with future bounded support. Let p0 in Ω. Then, we have in the
distributional sense:

uH+(Γ0) = D/
q

((
∫

S(q)

(
D/

p
u, Ũp(q)

)
µΓq

(p) +

∫

V(q)

(
D/

p
u, Ṽp(q)

)
µΓq

(p)

+

∫

σ(q)

(
∇pΓ0 · u, Ũp(q)

)
µΓ0,Γq

(p) +

∫

D(q)

(
∇pΓ0 · u, Ṽp(q)

)
µΓ0

(p)

)

H+(Γ0)

)

,

where the two-form µΓ0,Γq
(p) is obtained via the factorization:

∀φ ∈ C∞
0 (Ω × Ω),

∫

A

φµΓ0
(p) ∧ µΓ(q) =

∫

J+(p0)

∫

σ(q)

φµΓ0,Γq
(p) ∧ µ(q),

where A is the set {(p, q)|p ∈ C+(p0) and q ∈ C+(p)}.

Proof Let u be a function with future bounded support, that is to say that the intersection of
supp(u) with any future null cone is compact . We use here the property of the fundamental
solution with lemma 2.1 with f = D/ p(uH±(Γ0)):

(uH+(Γ0), φ)p =
(

D/
p (
uH+(Γ0)

)
, (Gp, φ)

q

)

p
(2.7)

=

(

D/
p (
uH+(Γ0)

)
,
(

D/
q
G̃p, φ

)

q

)

p

=

(

D/
p (
uH+(Γ0)

)
,
(

G̃p,D/
q
φ
)

q

)

p

(2.8)

The duality bracket (2.8) is properly defined since the function p 7→ (G̃p,D/
q
φ)q is a smooth function

with support in the future of Supp(φ), that is to say ∪q∈Supp(φ)I
+(q), and since u has future bounded

support.
The duality bracket (2.8) is then developed. The first step consists in differentiating the dis-

tributions uH+(Γ0). As already noticed in remark 1.39, the distribution uH+(Γ0) is not of the
type given in proposition 1.34 since ∇Γ0 vanishes at p0. To avoid this difficulty, we consider the
distributions uH+(Γ0 − ε), where ε is a positive number. This derivation gives, since proposition
1.34 can be applied:

D/
(
uH+(Γ0 − ε)

)
= (D/ u)H+(Γ0 − ε) + ∇̂Γ0 · uδ+(Γ0 − ε)

which becomes, when ε tends to zero:

D/
(
uH+(Γ0)

)
= (D/ u)H+(Γ0) + ∇̂Γ0 · uδ+(Γ0).

The bracket (2.8) is written as the sum of four integrals:

(

D/ p (uH+(Γ0)
)
,
(

G̃p,D/
qφ
)

q

)

p

=

∫

J+(p0)

∫

C+(p)

(D/ pu, (Ũp(q),D/
qφ))µΓp

(q) ∧ µ(p)

+

∫

J+(p0)

∫

J+(p)

(D/
p
u, (Ṽp(q),D/

q
φ))µ(q) ∧ µ(p)

+

∫

C+(p0)

∫

C+(p)

(∇pΓ0 · u, (Ũp(q),D/
q
φ))µΓp

(q) ∧ µΓ0
(p)

+

∫

C+(p0)

∫

J+(p)

(∇pΓ0 · u, (Ṽp(q),D/
q
φ))µ(q) ∧ µΓ0

(p),
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where µΓ0
and µΓp

are the Leray measures associated with Γ0 and Γp respectively.
Switching the order of integration of the variables, we get:

(

D/
p (
uH+(Γ0)

)
,
(

G̃p,D/
q
φ
)

q

)

p

=

∫

J+(p0)

∫

C−(q)∩J+(p0)

(
(D/

p
u, Ũp(q)),D/

q
φ
)
µΓq

(p) ∧ µ(q)

+

∫

J+(p0)

∫

J−(q)∩J+(p0)

(
(D/ pu, Ṽp(q)),D/

qφ
)
µ(p) ∧ µ(q)

+

∫

J+(p0)

∫

C−(q)∩C+(p0)

(
∇pΓ0 · u, Ũp(q)),D/

q
φ
)
µΓ0,Γq

(p) ∧ µ(q)

+

∫

J+(p0)

∫

J−(q)∩C+(p0)

(
(∇pΓ0 · u, Ṽp(q)),D/

q
φ
)
µΓ0

(p) ∧ µ(q).

Finally, the duality bracket (2.7) is:

(uH+(Γ0), φ) =

((
∫

S(q)

(
D/ pu, Ũp(q)

)
µΓq

(p) +

∫

V(q)

(
D/ pu, Ṽp(q)

)
µΓq

(p)

+

∫

σ(q)

(
∇pΓ0 · u, Ũp(q)

)
µΓ0,Γq

(p) +

∫

D(q)

(
∇pΓ0 · u, Ṽp(q)

)
µΓ0

(p)

)

H+(Γ0),D/
q
φ

)

q

which means that, in the sense of distributions, u satisfies, using the symmetry of the operator D/
q
:

uH+(Γ0) = D/ q

((
∫

S(q)

(
D/ pu, Ũp(q)

)
µΓq

(p) +

∫

V(q)

(
D/ pu, Ṽp(q)

)
µΓq

(p)

+

∫

σ(q)

(
∇pΓ0 · u, Ũp(q)

)
µΓ0,Γq

(p) +

∫

D(q)

(
∇pΓ0 · u, Ṽp(q)

)
µΓ0

(p)

)

H+(Γ0)

)

.©>

A direct application of the previous theorem is the first integral formula for the characterictic
Cauchy problem:

Proposition 2.3 Let u be a smooth solution of:

D/ u = 0

Then u can be expressed in J+(p0) in function of its restriction to the cone C+(p0) by:

u|J+(p0) = D/
q

((
∫

σ(q)

(
∇pΓ0 · u, Ũp(q)

)
µΓ0,Γq

(p) +

∫

D(q)

(
∇pΓ0 · u, Ṽp(q)

)
µΓ0

(p)

)

H+(Γ0)

)

.

Remark 2.4 a. This formula is not the final stage of our calculation; the fact that it only
depends on initial conditions will be stated later. This is the purpose of the next subsection.

b. The vector ∇Γ0 being null along the cone C+(p0), Clifford multiplying with ∇̂Γ0 means in fact
contracting with the spinor form of ∇Γ0; a direct consequence of this is the fact the Clifford
product of the 4-components Dirac spinors with ∇Γ0 does only involve the two components,
u0 and u1′

. The two remaining components are recovered using the constraints equations (cf.
lemma 3.7 below).

2.2 Integral formula

The integral formula is derived in three steps:
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• construction of the appropriate geometric tools (derivation of measures, spin basis);

• interversion of the integral and the Dirac operator;

• and finally obtention of an expression of the singular part in terms of geometric quantities
and initial data.

2.2.1 Geometric data on the cone

This section is devoted to the calculation of the relevent geometric quantities for the intersection
of C+(p0) ∩ C−(q) = σ(q) for a given point q in the future of p0. This is widely inspired by section
4.14 of [21]. There are also some calculations of interest in the work of Frittelli, Newman and al
([7], for instance) and Nurowski – Robinson([19]). This kind of calculation is also very common in
the study of Ricci flows.

We first choose a parallely transported vector field l along the null cone C+(p0):

∇ll = 0.

We then consider, for a given point q in J+(p0), a point p in σ(q). We construct at p a Newman-
Penrose tetrad:

a. the first null vector is the vector l(p) at p;

b. n(p) is chosen on the future oriented null geodesic from p to q such that g(l, n) = 1;

c. we complete the basis by taking a pair of complex null vectorsm(p) andm(p) in the orthogonal
of the vector space generated by (l, n) such that g(m,m) = −1.

A Newman-Penrose tetrad is then obtained at each point q′ on the cone C−(q): let p′ be the point
in σ(q) lying on the unique null geodesic from q′ to q; the Newman-Penrose tetrad is obtained in q′

by parallely transporting the one at p′ along the unique null geodesic from p′ to q′.

Remark 2.5 This construction cannot be realized globally on the intersection C+(p0)∩C−(q) = σ(q)
which has the topology of S2. It will be necessary to make this construction on two different open
sets and then glue these constructions together to obtain the result which only depends on l and n.
We assume then that the construction is done on one open set.

This choice of Newman Penrose tetrad gives us:

• a basis of TΩ⊗ C and, consequently, up to a sign, a spin basis of SA that will be denoted by
(oA, ιA);

• if q is fixed first and p is chosen on σ(q), the vectors m and m span the tangent plane to σ(q)
at p:

Tpσ(q) = {λm+ λm|λ ∈ C};
due to obvious topological obstructions (see remark 2.5), this construction cannot be extended
globally to all σ(q).

• the choice of l, which is parallely transported along the generators of C+(p0), and n, which
is parallely transported along the generators of C−(q), gives rise to two affine parameters r0
and r along the null geodesics on these two cones.

• these two affine parameters give rise to two parametrizations by the sphere S2 of σ(q) using
the exponential map at p0 and p respectively:

expp0
: S2 −→ Ω

ω 7−→ expp0
(r0(ω)ω)
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and
expp : S2 −→ Ω

ω 7−→ expp(r(ω)ω)

Let q be a point fixed in J+(p0). We consider a point p on σ(q). In a neighborhood of p, on
σ(q), is defined a Newman-Penrose tetrad (l, n,m,m). The dual basis in TΩ∗ ⊗ C is denoted by
(L,N,M,M) for which the following lemmata are true:

Lemma 2.6 The induced metric on σ(p) is −2MM , the volume form 1
2i
M ∧M and the mean

curvature vector:
H = 2(ρ′l + ρn)

where ρ and ρ′ are the real spin coefficients:

ρ = −(l,∇mm) and ρ′ = −(n,∇mm)

Proof : These results are straightforward consequences of the presentation concerning two-surfaces
in [21] (section 4.14, proposition 4.14.2 sqq.)
The reality of the spin coefficients is stated in proposition (4.14.2) of [21], whenever l and n are
orthogonal to a spacelike 2-surface (here σ(q)).
Since (m,m) span Tσ(q), the second fundamental form is:

∀(X,Y ) ∈ Tσ(q), II(X,Y ) = (∇XY, n)l + (∇XY, l)n

so that the mean curvature vector is:

H = −(II(m,m) + II(m,m))

= − (((δ′m,n) + (δm, n))l + ((δ′m, l) + (δm, l))n)

Since (see [21] (4.5.28) together with (4.5.29)):

δ′m = (β − α)m− ρ′l − ρn

δm = (α− β)m− ρ′l − ρn

and since ρ and ρ′ are real, we obtain:

H = 2(ρ′l + ρn).©>

In order to compute the Leray forms associated with the distance function, we use the expressions
of the gradients of the distance functions Γ0 and Γq:

∇pΓ0(p) = 2r0l(p) and ∇pΓq(p) = 2rn(p) (2.9)

The Leray forms can then be expressed using the dual basis of the chosen Newman-Penrose basis.

Proposition 2.7 The Leray forms µΓ0
, µΓq

and µΓ0,Γ are:

µΓ0
=

1

2ir0
N ∧M ∧M

µΓq
=

1

2ir
L ∧M ∧M

µΓ0,Γ =
1

4ir0r
M ∧M =

1

4r0r
µσ(p)

where ∇pΓ0(p) = 2r0l(p) and ∇pΓq(p) = 2rn(p)
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Proof : The volume form on Ω can be expressed in terms of the Newman-Penrose tetrad as:

µ =
1

i
L ∧N ∧M ∧M

so that, since dΓ0 = 2r0L and dΓq = 2rN , we obtain immediately:

µΓ0
=

1

2ir0
N ∧M ∧M and µΓq

=
1

2ir
L ∧M ∧M.

The calculation of µΓ0,Γ is obtained through the factorization given by Fubini’s theorem:

∀φ ∈ C∞
0 (Ω × Ω),

∫

A

φµΓ0
(p) ∧ µΓ(q) =

∫

J+(p0)

∫

σ(q)

φµΓ0,Γq
(p) ∧ µ(q),

where A is the set {(p, q)|p ∈ C+(p0) and q ∈ C+(p)}. We get the desired expression of µΓ0,Γq
:

µΓ0,Γq
=

1

4ir0r
M ∧M =

1

4r0r
µσ(q).©>

The next step consists in determining the variation of the metric µσ(q) when q is in I+(p0). We
first establish the technical lemma:

Lemma 2.8 Let (N, h) be a smooth semi-riemanian manifold with metric h and Levi-Cevita con-
nexion D; let X be a smooth vector field on N. Let (Mp, g) be a submanifold of N such that the g
metric induced by h is non degenerate and depending smoothly on a parameter p in N in the sense
that there exists a smooth manifold Σ and a smooth map f : N×Σ −→ N which satisfies: f(p, ⋆) is
an immersion and f(p,Σ) = Mp.
We denote by µp the induced volume form on Mp.
Then:

Dp
Xµp = −h(H,X)µp

where H is the mean curvature vector field on Mp.

Proof : The Levi-Cevita connection induced by g on Mp is denoted ∇.
Let p be a point in N and q a point in Mp. We choose around q a map
(V, (x1, x2, . . . , xn), (xn+1, . . . , xn+k)) normal at q and Mp ∩ V = {xn+1 = · · · = xn+k = 0} such
that, at q:

∇∂
xi
∂xi = 0. (2.10)

The volume form on Mp around q can be expressed:

µp = |det(gij)|
1
2 dx1 ∧ dx2 ∧ · · · ∧ dxn.

We calculate the derivative:

DXµp = Sign(det(gij))
gijDXgij

2 det(gij)
|det(gij)|

1
2 dx1 ∧ dx2 ∧ · · · ∧ dxn

and then evaluate at q, where the coordinate system is normal:

DXµp =

n∑

i=1

1

2
εiDXg(∂xi , ∂xi)µp
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with εi = g(∂xi , ∂xi). Since the connection D on N is metric, we get:

DXµp =
n∑

i=1

εih(DX∂xi , ∂xi)µp

=

n∑

i=1

εih(D∂
xi
X + [X, ∂xi ], ∂xi)µp

=

n∑

i=1

εi(D∂
xi
h(X, ∂xi) − h(X,D∂

xi
∂xi) + h([X, ∂xi ], ∂xi))µp

Since D∂
xi
∂xi = ∇∂

xi
∂xi + II(∂xi , ∂xi), we finally obtain:

∇Xµp = −h(X,H)µp +

n∑

i=1

εi(D∂
xi
h(X, ∂xi) − h(X,∇∂

xi
∂xi) + h([X, ∂xi ], ∂xi)µp.

We then notice that, for i in {t1, n}:

h([X, ∂xi ], ∂xi) = −εi

∂X i

∂xi
and D∂

xi
h(X, ∂xi) = εi

∂X i

∂xi
.

Since ∇∂
xi
∂xi is vanishing at q, the only remaining term is:

∇Xµp = −h(X,H)µp.©>

A straightforward application of this lemma is the proposition:

Proposition 2.9 Let f : Ω2 → SDirac be a smooth mapping.
Then the following formula holds:

D/ q

∫

σ(q)

f(q, p)µσ(q)(p) =

∫

σ(q)

D/ qf(q, p) + ∇pr0 · ∇̂p
l f(q, p) − 2ρ∇̂qr0 · f(q, p)µσ(q)(p)

where r0, being a function of both p and q, satisfies ∇Γ0 = 2r0l.

Proof : Let V a vector field on Ω. We work with the exponential map centered at p0. σ(q) can
then be parametrized by S2:

ω 7→ expp0
(r0(q, ω)ω).

Let us consider the variation of σ(q) defined by, for some positive ε:

] − ε, ε[×S2 → Ω
(t, ω) 7→ expp0

(r0(q + tV, ω)ω)
.

Since

∇q
V

(
f(q, p)

)
= ∇q

V

(
f(q, expp0

(r0(q, ω)ω)
)

= ∇q
V f(q, p) +

(
d

dt
f(q, expp0

(r0(q + tV, ω)ω)

)
∣
∣
t=0

and (
d

dt
f(q, expp0

(r0(q + tV, ω)ω)

)
∣
∣
t=0

= ∇q
V r0∇

p
l f(q, p),

this gives, using lemma 2.6:

∇q
V

∫

σ(q)

f(q, p)µσ(q)(p) =

∫

σ(q)

∇q
V f(q, p) + ∇q

V r0∇
p
l f(q, p) − 2ρ∇q

V r0f(q, p)µσ(q)
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so that, when choosing an orthonormal basis (ei) on Ω, we obtain:

D/ q

∫

σ(q)

f(q, p)µσ(q)(p) =

∫

σ(q)

D/ qf(q, p) + ∇̂qr0 · ∇p
l f(q, p) − 2ρ∇̂qr0 · f(q, p)µσ(q)(p).©>

We finally establish the following proposition:

Proposition 2.10 Let f : Ω2 → SDirac be a smooth mapping.
Then the following formula holds:

D/ q

∫

D(q)

f(q, p)µΓ0
(p) =

∫

D(q)

D/ qf(q, p)µΓ0
(p) +

∫

σ(q)

∇̂qr0 · f(q, p)
µσ(q)(p)

2r
,

where r0 and r, being functions of both p and q, satisfy ∇pΓ0 = 2r0l and ∇pΓq = 2rn.

Proof : We use exactly the same method as in the proof of proposition 2.9. Using the parametriza-
tion of the exponential map centered at p0, we have:

D/ q

∫

D(q)

f(q, p)µΓ0
(p) = D/ q

∫

S2

∫ r0(q,ω)

0

f(q, rω)
dr

2r
k(ω, r)dωS2

=

∫

D(q)

D/
q
f(q, p)µΓ0

(p) +

∫

S2

∇̂qr0 · f(q, rω)
k(ω, r)dωS2

2r

=

∫

D(q)

D/
q
f(q, rω)µΓ0

(p) +

∫

σ(q)

∇̂qr0 · f(q, p)
µσ(q)(p)

2r
.©>

2.2.2 Derivation of the integral formula

We now consider the characteristic Cauchy problem on Ω:

{
D/ u = 0 on J+(p0)
u = θ on C+(p0)

(2.11)

where θ is a smooth spinor field on C+(p0), whose support does not encounter the vertex of the
cone and satisfies the constraint equations given by lemma 3.7.

Remark 2.11 The term ”spinor field on the cone” must be understood as ”trace on the cone” of a
Dirac spinor field on Ω and not as a spinor field constructed as spinors on the manifold C+(p0).

The basis constructed in the previous section is used to split the spinors:

θ = ξI
′

εA′

I′
+ ζIε

I

A = ξ0
′

oA′

+ ξ1
′

ιA
′

+ ζ0(−ιA) + ζ1oA. (2.12)

u will be split on SA ⊗ S
A′

:

u = φA + ψA′

u = φ0(−ιA) + φ1oA + ψ0′

oA′

+ ψ1′

ιA
′

.

The solution of (2.11) can be written in function of its data on the cone and the basis (oA, ιA):
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Theorem 2.12 Let u be a solution of (2.11). Then, for any q in J+(p0):

u(q) =

∫

σ(q)

(
kp(q)

r

)

(∇p
l ξ

1′

(p) − ρξ1
′

(p))
(

∇AA′

q r0

)

oA(q)µσ(q)(p)

+

∫

σ(q)

ξ1
′

(p)∇AA′ (
kp(q)oA(q)

)
µσ(q)(p)

+

∫

σ(q)

(
kp(q)

r

)

(∇p
l ζ0(p) − ρζ0(p)) (∇q

AA′r0) o
A′

(q)µσ(q)(p)

+

∫

σ(q)

ζ0(p)∇AA′

(

kp(q)o
A′

(q)
)

µσ(q)(p) +

∫

σ(q)

∇̂qr0 ·
(
∇pΓ0 · u, Ṽp(q)

)µσ(q)(p)

2r

+

∫

D(q)

(D/
p
Ṽq, ∇̂pΓ0 · u)µΓ0

(p)

Remark 2.13 It is possible to obtain a representation formula for the Goursat problem for the
Weyl equation:

∇AA′

φA = 0

by projecting the solution obtained in theorem 2.12 on the subspace of Dirac spinors SA.

Proof : Let q be a point in J+(p0). Using proposition 2.3, proposition 2.7 and proposition 2.10,
we have:

u(q) = D/
q

(
∫

σ(q)

(

∇̂pΓ0 · u, Ũp

)

p

1

4r0r
µσ(q)

)

+

∫

σ(q)

∇̂qr0 ·
(
∇pΓ0 · u, Ṽp(q)

)µσ(q)(p)

2r

+

∫

D(q)

(∇̂pΓ0 · u,D/ q
Ṽq)µΓ0

(p).

The bracket in the first integral can be calculated as follows:

(

Ũp,
∇̂pΓ0 · u

2rr0

)

p

= kp(q)

(

τp(q),
1

2r
n · u

)

p

= i
√

2kp(q)

(

τp(q),
1

2r

(

−lAA′

φA + lAA′ψA′

))

p

= i
√

2kp(q)

(

τp(q),
1

2r

(

−oAoA′

φA + oAoA′ψA′

))

p

= i
√

2kp(q)

(

τp(q),
1

2r

(

−φ0o
A′

+ ψ1′

oA

))

p

= i
√

2kp(q)
1

2r

(

−φ0(p)o
A′

(q) + ψ1′

(p)oA(q)
)
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We then use proposition 2.9 to calculate the first integral:

D/ q

(
∫

σ(q)

(

Ũp, ∇̂pΓ0 · u
)

p

1

4r0r
µσ(q)

)

= i
√

2D/
q

(
∫

σ(q)

kp(q)
(

−φ0(p)o
A′

(q) + ψ1′

(p)oA(q)
) 1

2r
µσ(q)

)

= i
√

2

∫

σ(q)

D/
q
kp(q)

(

−φ0(p)o
A′

(q)

2r
+
ψ1′

(p)oA(q)

2r

)

+∇̂qr0 · ∇p
l kp(q)

(

−φ0(p)o
A′

(q)

2r
+
ψ1′

(p)oA(q)

2r

)

−1

r
ρ∇̂qr0 ·

(

−φ0(p)o
A′

(q) + ψ1′

(p)oA(q)
)

µσ(q)(p).

In order to simplify the calculation, the previous formula is projected on SA. The singular part on
this subspace is written, after expansion:

A = i
√

2

∫

σ(q)

i
√

2∇q
AA′

(

kp(q)

(

−φ0(p)o
A′

(q)

2r

))

+i
√

2∇q
AA′r0∇p

l

(

kp(q)

(

−φ0(p)o
A′

(q)

2r

))

−(i
√

2)kp(q)ρ∇q
AA′r0

(

−φ0(p)o
A′

(q)

r

)

µσ(q)(p).

= −
∫

σ(q)

∇q
AA′

(

kp(q)

(

φ0(p)o
A′

(q)

r

))

+ ∇q
AA′r0∇p

l

(

kp(q)

(

φ0(p)o
A′

(q)

r

))

−2kp(q)ρ∇q
AA′r0

(

−φ0(p)o
A′

(q)

r

)

µσ(q)(p).

= −
∫

σ(q)

φ0(p)∇q
AA′

(

kp(q)

(

oA′

(q)

r

))

+ ∇q
AA′r0∇p

l

(

kp(q)

(

φ0(p)o
A′

(q)

r

))

−2kp(q)ρ∇q
AA′r0

(

−φ0(p)o
A′

(q)

r

)

µσ(q)(p).

Expanding all the products:

A = −
∫

σ(q)

(

φ0(p)

(

oA′

(q)∇q
AA′

(
kp(q)

r

)

+

(
kp(q)

r

)

∇q
AA′o

A′

(q)

)

+

((
kp(q)

r

)

∇p
l φ0 + ∇p

l

(
kp(q)

r

)

φ0

)

(∇q
AA′r0) o

A′

(q)

−2

(
kq(p)

r

)

ρ(∇q
AA′r0)φ0(p)o

A′

(q)

)

µσ(q)(p)

= −
∫

σ(q)

(
kp(q)

r

)

(∇p
l φ0(p) − 2ρφ0(p)) (∇q

AA′r0) o
A′

(q)µσ(q)(p)

−
∫

σ(q)

φ0(p)∇AA′

((
kp(q)

r

)

oA′

(q)

)

µσ(q)(p).
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Since the quantities which appear in the integral are the restriction of u and its tangential derivative
along the null cone C+(p0), φ can be replaced in the integral by the data of the Goursat problem
ζ0:

∫

σ(q)

(
kp(q)

r

)

(∇p
l ζ0(p) − 2ρζ0(p)) (∇q

AA′r0) o
A′

(q)µσ(q)(p)

+

∫

σ(q)

ζ0(p)∇AA′

((
kp(q)

r

)

oA′

(q)

)

µσ(q)(p).

We obtain the complete formula for Dirac spinors by adding the corresponding quantity on SA′

,
meaning:

∫

σ(q)

(
kp(q)

r

)

(∇p
l ξ

1′

0(p) − 2ρξ1
′

(p))
(

∇AA′

q r0

)

oA(q)µσ(q)(p)

+

∫

σ(q)

φ0(p)∇AA′

((
kp(q)

r

)

oA(q)

)

µσ(q)(p).

Noticing that the calculation has been done for (Ũp(q), ∇̂Γ0 · u) in order to use the definition of
τ(p, q), we obtain the complete formula using the antisymmetry of the symplectic product.©>

It is now possible to obtain the formula established by Penrose in [20] in the Minkowski case:

Theorem 2.14 (Penrose) Let u be a solution of (2.11).
Then, for all q in J+(p0), u can be written:

u(q) =

∫

σ(q)

1

2πr
(∇p

l ξ
1′

0(p) − 2ρξ1
′

(p))
(

∇AA′

q r0

)

oA(q)µσ(q)(p)

+

∫

σ(q)

1

2πr
(∇p

l ζ0(p) − 2ρζ0(p)) (∇q
AA′r0) o

A′

(q)µσ(q)(p)

Remark 2.15 First of all, the meaning in the context of a flat space of the choice of the basis
constructed in the previous section should be made precise:

• the spinor oA is chosen to be constant on the null generators of the cone; the affine parameter
r0 is measured with respect to the vector la = oAoA′

;

• a direction on the cone C+(p0) being given together with a point q in J+(p0), let p be the
intersection of C−(q) with this direction on the null cone from p0; the spinor ιA is chosen so

that na = ιAιA
′

is colinear to the vector ~pq and satisfies: oAι
A = 1; the affine parameter r is

measured with respect to the vector na = ιAιA
′

;

• the basis is completed by the two vectors ma = oAιA
′

and ma = ιAoA′

.

This construction is the ”flat” version of the one made using parallel transport.

Proof : As done in [20], it is sufficient to remark, for a direction ω on the cone C+(p0):

q = p0 + r0l
a(ω) + rna(q, ω),

which implies:
∇qr = la,∇qr0 = na

and kp(q) = 1
2π

.©>
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Remark 2.16 It is interesting to note that the term that carries the curvature information in the
singular part is:

∇q

((
kp(q)

r

)

oA

)

. (2.13)

It is somehow difficult to give a precise geometric interpretation to equation (2.13). Nevertheless,

clues can be found in theorem 4.2.2 in [6] that states that (k/r)2 measures the growth rate of the
measure µσ(q).

3 Generalization to higher spin

In this section, we obtain an integral formula for solutions of the Goursat problem for the Dirac
equation with arbitrary spin. The derivation of the formula is based on the representation formula
for the Weyl equation which can be extracted from theorem 2.12.

Let us consider the characteristic Cauchy problem for spin n
2 = s ≥ 1 (n being the number of

indices of a spinor):
{

∇AA′

uAB...F = 0 on J+(p0)
u00...0 = θ00...0 on C+(p0)

, (3.1)

where uAB...F satisfies the symmetry conditions:

uAB...F = u(AB...F ).

First of all, it must be noted that, on an arbitrary curved space, the problem (3.1) cannot be
set if a consistency condition on the conformal curvature is not satisfied ([1], [5] and [17] for the
Rarita-Schwinger case for a treatment of the Cauchy problem). It is known that for the Dirac
massless equation for low spin (n ≤ 1, i.e. scalar wave, Dirac-Weyl and Maxwell equations) this
condition is always satisfied. For higher spin, it is satisfied whenever the space-time is conformally
flat. Nonetheless, it is expected that the method could be adapted to the Rarita-Schwinger case
which requires the space-time to be Ricci flat.

3.1 Generalization of Dirac equation to higher spin.

The construction that was made before for Dirac spinors is adapted here to spinors of higher valence
so that the symmetry conditions of the Clifford multiplication and Dirac operator still hold.

Let us consider E the fibre bundle defined by:

E = SAB...F ⊕ S
A′

G...I
.

This fibre bundle is equipped with the symplectic product obtained from ε:

εAAεBB . . . εFF ⊕ ε
A′A

′εGG . . . εII

and a Clifford multiplication by vectors: if u = φAB...F + ψA′

G...I
belongs to E, we define ea · u,

where (ea)a=0,...,3 is the basis constructed in subsection 1.1:

ea · u = −i
√

2gaAA′

φAB...F + i
√

2gaAA′ψA′

G...I
.

We finally define on smooth sections u = φAB...F + ψA′

B...F
of E the following operator (that

will be denoted by D/ as the Dirac operator for Dirac spinors):

D/ u = i
√

2
(
−∇AA′

φAB...F + ∇AA′ψA′

G...I

)
. (3.2)

The distributions on smooth sections of E are defined using the (non degenerate) symplec-
tic product ε in the same way as in section 1.2. The duality bracket will still be denoted by
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(, )D′(E),D(E)). Let u = φAB...F + ψA′

G...I
and v = ξAB...F + ζA′

G...I
be two smooth sections of E.

We have:

(v, u)D′(E),D(E)) =

∫

Ω

(

εAAεBB . . . εFF ξAB...FφAB...F + ε
A′A

′εGG . . . εIIζA′

G...I
ψA

′

G...I

)

µ

=

∫

Ω

ξA...Fφ
A...F + ζA′

G...I
ψ G...I

A′ µ

We finally extend the Schrödinger-Lichnerowicz formula to arbitrary spin:

Proposition 3.1 (Schrödinger-Lichnerowicz formula for arbitrary spin)
Let be ψF...I a smooth section of SF...I (n indices).
Then the following formula holds:

∇BA′∇FA′

ψF...I =
1

2
∇HH′∇HH′

ψBG...I

− X F
B

D
F ψDG...I −X F

B
D

G ψFD...I − · · · −X F
B

D
I ψFG...D

where XABCD is the curvature spinor:

XABCD =
1

4
RAX′B

X′

CY ′D
Y ′

,

R = Rabcd being the Riemann curvature tensor of Ω.

Remark 3.2 It must be noted that the potential of the operator D/ 2, though linear, is no longer
scalar and not even symmetric.

Proof : the proof is almost the same as the proof of proposition 1.37:

∇BA′∇FA′

ψF...I = εFC∇BA′∇A′

C ψF...I

= εFC
(

∇[B|A′∇A′

|C]ψF...I + ∇(B|A′∇A′

|C)ψF...I

)

=
1

2
εFC∇HH′∇HH′

εBCψF...I + εFC∇[B|A′∇A′

|C]ψF...I

=
1

2
∇HH′∇HH′

ψBG...I + εFC∇[B|A′∇A′

|C]ψF...I

The spinor ψF...I is then split as the sum of tensor products of spinors of valence 1
2 , and, then as

explained in [21] (vol. 1 p. 245, together with formula (4.9.4), (4.9.5) and (4.9.8)), using the fact:

∇[B|A′∇A′

|C]uD = −X E
BC DuE

for any smooth section of SD (formula (4.9.8) in [21]), we obtain:

∇[B|A′∇A′

|C]ψF...I = −X D
BCF ψDG...I −X D

BCG ψFD...I −X D
BCI ψFG...D

and finally:

∇BA′∇FA′

ψF...I = −1

2
∇HH′∇HH′

ψF...I

− εFC
(
X D

BCF ψDG...I −X D
BCG ψFD...I −X D

BCI ψFG...D

)

= −1

2
∇HH′∇HH′

ψF...I

− X F
B

D
F ψDG...I −X F

B
D

G ψFD...I − · · · −X F
B

D
I ψFG...D©>

As an obvious consequence of the definitions chosen for the Clifford multiplication and the Dirac
operator on E, the following proposition holds:
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Proposition 3.3 The Dirac operator D/ on E and the Clifford multiplication by a vector field v on
Ω are respectively symmetric and skew symmetric with respect to the duality bracket (, )D′(E),D(E)

that is to say, for any φ and ψ smooth sections of E with compact support :

(φ,D/ ψ)D′(E),D(E)) = (D/ φ, ψ)D′(E),D(E)) and (φ, v · ψ)D′(E),D(E)) = −(v · φ, ψ)D′(E),D(E)).

All the methods that were developed for Dirac spinors can be used here, provided that we assume
that we are working with E-valued distributions. The structure of the fundamental solutions for
the wave equation are the same:

G̃±
q (p) = κ±q (p)τp(q)δ(Γq(p)) + Vq(p)H

±
q (p).

where G̃± is a bidistribution in E(E) ⊠ D′(E) which satisfies the wave equation:

(D/
p
)2G±

q (p) = δp(q),

δp(q) being the Dirac mass in p. The application τp(q) satisfies the equation:

(τp(p), φ) = φ and ∇q
i Γp(q)∇iτp(q) = 0. (3.3)

Remark 3.4 The functions τ and V are more complex to write and we do not even try to do so,
since the properties given by the equations (3.3) are sufficient to conclude.

A direct consequence of the previous remark is the following proposition:

Proposition 3.5 The Dirac operator D/ acting on sections of the fibre bundle E admits two funda-
mental solutions G±

p (q) = D/
q
G̃±

p (q), in D′(E)⊠D′(E), with, respectively, support in C±(p), for any
given p, which satisfy, in the sense of distributions:

D/
q
G±

p (q) = δp(q).

Finally, we present the compacted spin coefficient formalism introduced by Penrose and Rindler
in [21]. Let oA, ιA be a given normalized spinor basis and consider the rescaling, for λ in C:

oA 7−→ λoA, ιA 7−→ ιA

λ
. (3.4)

Definition 3.6 A spinor φ is said to be of weight (p, q) if and only if, under the transformation
(3.4), φ is rescaled as:

φ 7−→ λpλ
q
φ

The integer 1
2 (p− q) is the spin-weight of φ and 1

2 (p+ q) is its boost-weight.

We consider the Newman-Penrose tetrad (l, n,m,m) associated with oA, ιA. We define the differ-
ential operators with regard to these weights: let φ be a (p, q) spinor. We define:

pφ = ∇lφ− pǫφ− qǫφ
ð′φ = ∇mφ− pαφ+ qαφ

where ǫ = ιA∇loA and α = ιA∇moA.
Though the formalism of the Newman-Penrose tetrad will still be used, the usual notations

oA, ιA for the basis spin basis are replaced by εA
0 , ε

A
1 . All the calculations will be performed using

these notations. We must recall what is the link between these two notations: the spinor basis
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(oA, ιA) is rewritten (εA
0 , ε

A
1 ), so that the dual basis is (ε0A, ε

1
A) with ε0A = −ιA et ε1A = oA. In this

formalism, the spinors εIA satisfy:
εJAε

A
I = δJI .

Let now consider the field equation for spin n
2 :

∇AA′

φAB...F = 0

for a symmetric field φAB...F = φ(AB...F ) with n indices; for j in {0, 1, . . . , n}, we define:

φj = εA
0 . . . ε

C
0

︸ ︷︷ ︸

n-j times

εD
1 . . . ε

F
1

︸ ︷︷ ︸

j times

φAB...F

= oA . . . oC

︸ ︷︷ ︸

n-j times

ιD . . . ιF
︸ ︷︷ ︸

j times

φAB...F

which are the only relevant components to calculate the field φAB...F wich can be written, because
of its symmetry:

φA...F =

n∑

j=0

(
n

j

)

φj ε
0
(A . . . ε

0
C

︸ ︷︷ ︸

n-j times

ε1D . . . ε1F )
︸ ︷︷ ︸

j times

=

n∑

j=0

(−1)n−j

(
n

j

)

φj ι(A . . . ιC
︸ ︷︷ ︸

n-j times

oD . . . oF )
︸ ︷︷ ︸

j times

The quantity φj is a (n − 2r, 0) scalar field. It is known to satisfy the following lemma (see [21],
4.12.42):

Lemma 3.7 Let j be an integer in {2, . . . , n− 1}.
Then φj+1, φj , φj−1 and φj−2 satisfy the following relation:

pφj − ð
′φj−1 = (j − 1)σ′φj−2 − jτ ′φj−1 + (n− j − 1)ρφj − (n− j)κφj+1.

Remark 3.8 This is the more accurate way to write down the constraints equations on the cone,
since the restriction to the tangential derivatives is obvious.

We conclude this section by giving the following relation between weighted scalars and differential
forms (see [21], 4.14.70):

Proposition 3.9 Let Σ be a two dimensional spacelike closed surface with volume form µΣ and α
a (1,−1) weighted spinor.
Then the integral of ð′α over Σ vanishes:

∫

Σ

ð
′αµΣ = 0

3.2 Integral formula for spin n

2

Let us consider the future characteristic Cauchy problem for the Dirac operator on E:

{
D/ u = 0 on J+(p0)
u = θ on C+(p0)

, (3.5)

where θ is a smooth compactly supported function on the cone C
+(p0). It must be noted that the

problem (3.5), contrary to the problem stated in (3.1), does not contain symmetry assumption.
This assumption will be made afterwards to obtain the integral formula for (3.1).

By doing the same calculation as for proposition (2.2), a direct consequence of proposition (3.5)
is the following integral formula:
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Proposition 3.10 Let u be a solution of (3.5) in E. Then u can be written:

u(q) = D/
q

(
∫

σ(q)

(

∇̂pΓ0 · u, Ũp

)

p

1

4r0r
µσ(q)

)

+

∫

σ(q)

∇̂qr0 ·
(
∇pΓ0 · u, Ṽp(q)

)
2rµσ(q)(p)

+

∫

D(q)

(∇̂pΓ0 · u,D/ q
Ṽq)µΓ0

(p).

The formula must now be simplified using the previous methods and a decomposition of the
spinor u on the same basis as in subsection 2.2.1: u can be written:

u = φA...Fε
A

A . . . εFF + ψA
′

F...F
εA′

A′εBB . . . ε
F

F .

The solution of {

∇AA′

uAB...F = 0 on J+(p0)
uAB...F = θAB...F on C+(p0)

, (3.6)

obtained by projecting on SA...F the integral formula given in proposition 3.10:

Proposition 3.11 Let uA...F be a solution of:

{

∇AA′

uAB...F = 0 on J+(p0)
uAB...F = θAB...F on C+(p0)

,

Then, uA...F can be written:

uA...F =

∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0B...F(p) − 2ρφ0B...F(p)
)(
∇q

AA′r0
)
εA′

0 (q)εBB(q) . . . εFF (q)µσ(q)

+

∫

σ(q)

φ0B...F(p)∇AA′

((
kp(q)

r

)

εA′

0 (q)εBB(q) . . . εFF (q)

)

µσ(q)

+

∫

σ(q)

∇̂qr0 ·
(
∇pΓ0 · u, Ṽp(q)

)µσ(q)(p)

2r
+

∫

Vp

(∇̂pΓ0 · u,D/ p
Ṽq)µΓ0

(p)

Remark 3.12 Since our interest is in the singular part of the integral representation of the solution,
we do not give a more explicit expression of the smooth part of the integral formula.

Proof The first step is to calculate the contraction ∇̂pΓ0 · u:

∇̂pΓ0 · u = −2i
√

2r0ε
A
0 ε

A′

0 (φA...Fε
a
A . . . ε

F

F ) + 2i
√

2r0ε
0
Aε

0
A′(ψA

′

B...F
εA′

A′εBB . . . ε
F

F )

= 2i
√

2r0(−εA
0 ε

A′

0 φA...Fε
a
A + ε1Aε

1
A′ψA

′

B...F
εA′

A′)εBB . . . ε
F

F

= 2i
√

2r0(φ0B...Fε
A′

0 − ψ1′

B...F
ε1A)εBB . . . ε

F

F .

Since τp(q) is obtained by doing a tensor product between an element of the spin basis at a point
p with the spinor obtained by parallely transporting this spinor along the geodesic from p to q,
which is an element of the spin basis at q, the symplectic product (τp(q), ∇̂pΓ0 · u) realizes a switch
between the variables p and q:

(τp(q), ∇̂pΓ0 · u) = i
√

2r0
(
φ0B...F(p)εA′

0 (q) − ψ1′

B...F
(p)ε1A(q)

)
εBB(q) . . . εFF (q).
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The interversion of the symbols
∫

and D/ gives (we only make the calculation on SA...F ):

i
√

2∇q
AA′

(
∫

σ(q)

2i
√

2r0φ0B...F(p)εA′

0 (q)εBB(q) . . . εFF (q)µΓ0,Γq

)

(3.7)

= −
∫

σ(q)

φ0B...F(p)∇q
AA′

(
kq(p)

r
εA′

0 (q)εBB(q) . . . εFF (q)

)

µσ(q) (3.8)

−
∫

σ(q)

kq(p)

r
(∇p

l φ0B...F(p))
(
∇q

AA′r0
)
εA′

0 (q)εBB(q) . . . εFF (q)µσ(q) (3.9)

−
∫

σ(q)

∇p
l

(
kq(p)

r

)

(φ0B...F(p))
(
∇q

AA′r0
)
εA′

0 (q)εBB(q) . . . εFF (q)µσ(q) (3.10)

+

∫

σ(q)

2ρ
kq(p)

r
(φ0B...F(p))

(
∇q

AA′r0
)
εA′

0 (q)εBB(q) . . . εFF (q)µσ(q) (3.11)

which can be simplified in:

i
√

2∇q
AA′

(
∫

σ(q)

2i
√

2r0φ0B...F(p)εA′

0 (q)εBB(q) . . . εFF (q)µΓ0,Γq

)

(3.12)

= −
∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0B...F(p) − 2ρφ0B...F(p)
)(
∇q

AA′r0
)
εA′

0 (q)εBB(q) . . . εFF (q)µσ(q) (3.13)

−
∫

σ(q)

φ0B...F(p)∇AA′

((
kq(p)

r

)

εA′

0 (q)εBB(q) . . . εFF (q)

)

µσ(q) (3.14)

The next part of the integral formula is exactly the same as in the case of the Weyl-Dirac spinors
and is obtained in a similar way.©>

Finally, to obtain a solution of the full problem with symmetry, it is sufficient to symmetrize
the unprimed indices in the formula; we then give a representation, when the problem (3.1) makes
sense (i.e with adequat restrictions on the curvature for spin greater than 3

2 ):

Theorem 3.13 Let uA...F be a solution of the symmetrized characterictic Cauchy problem
{

∇AA′

uAB...F = 0 on J+(p0)
u0 = θAB...F on C+(p0)

, (3.15)

where uAB...F satisfies the symmetry conditions: uAB...F = u(AB...F ).
Then the singular part of the integral representation of uA...F , that is to say the part supported on
the intersection of the cone is given by the formula:

∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0B...F(p) − 2ρφ0B...F(p)
)(
∇q

AA′r0
)
εA′

0 (q)εBB(q) . . . εFF (q)µσ(q)

∫

σ(q)

φ0B...F(p)∇AA′

((
kp(q)

r

)

εA′

0 (q)εBB(q) . . . εFF (q)

)

µσ(q)

3.3 Integral formula for spin n

2
in the flat case

This subsection is devoted to the recovery of the Penrose formula; with the same notations as before,
the following proposition holds:

Proposition 3.14 (Integral formula for the flat case for spin n
2 ) Let φA...F be a solution of

(3.15) on the Minkowski space time.
Then φ can be written:

φA...F = (−1)n

∫

σ(q)

(∇lφ0 − (n+ 1)ρφ0)ιA . . . ιF
µσ(q)

2πr
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Remark 3.15 The formula which is given here agrees with the one obtained by Penrose in [20]
(formula 4.9). The (−1)n comes from the fact that Penrose chooses the convention:

ιA 7−→ −ιA

because of the different choice of normalization (formula (4.7), op. cit.):

ιAo
A = 1

whereas our convention is:
oAι

A = 1.

Proof : We summarize the geometric elements required to perform the calculation:

Remark 3.16 We recall the main properties of the spinor basis which was constructed in section
2.2.1:

a. the spinors oA and ιA are constant along a generator of the cone J+(p0), so that the spin
coefficients corresponding to the derivatives of oA, ιA along the vector la = oAoA, κ, ε, τ ′ are
zero;

b. furthermore, for q in J+(p0), the basis (oA, ιA) is parallely transported along the integral curves

of ιAιA
′

and so, in the flat case, is constant along the null generators of the cone J−(q);

c. the derivatives along m of oA and ιA are calculated explicitly (see [21], 4.12.28):

ð
′oA = −ριA and ð

′ιA = −σ′oA;

d. the derivatives of ιA and r can be explicitly calculated by differentiating the relation:

~p0p
a = r0l

a + rιAιA
′

for any p in J+(p0). Their derivatives are:

∇BB′ιA = −1

r
ιBoB′oA and ∇AA′r = oAoA′ (3.16)

and, consequently, the only non-vanishing derivative of ιA is

∇mι
A =

1

r
oA

and the spin coefficients

τ ′ = −ιA∇lιA, σ
′ = −ιA∇mιA, β

′ = −α = −ιA∇mιA and β = −α′ = −ιA∇mιA

vanish.

e. Using equations (3.16) and since ιA is a (−1, 0)-spinor and r is a (1, 1) scalar, the following
derivatives vanish:

ð
′ιA = 0 and ð

′r = 0.

For the sake of clarity, the calculation is first performed for the Maxwell equations and then for
the arbitrary spin. The first step is to write the Maxwell equations

∇AA′

φAB = 0
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as
∇lφ1 −∇mφ0 = (π − 2α)φ0 + 2ρφ1 − κφ2

∇lφ2 −∇mφ1 = −λφ0 + 2πφ1 + (ρ− 2ε)φ2

∇mφ1 −∇nφ0 = (µ− 2γ)φ0 + 2τφ1 − σφ2

∇mφ2 −∇nφ1 = −νφ0 + 2µφ1 + (τ − 2β)φ2

(3.17)

with the convention φ00 = φ0, φ10 = φ1 and φ11 = φ2. We then consider the singular part:

∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0b(p) − 2ρφ0b(p)
)(
∇q

AA′r0
)
εA′

0 εbBµσ(q)

=

∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0b(p) − 2ρφ0b(p)
)(
ιAιA′

)
εA′

0 εbBµσ(q)

= −
∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0b(p) − 2ρφ0b(p)
)
ιAε

b

Bµσ(q)

= −
∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ00(p) − 2ρφ00(p)
)
ιAιBµσ(q)

−
∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ01(p) − 2ρφ01(p)
)
ιAoBµσ(q)

︸ ︷︷ ︸

=B

with κ = 1
2πr

. Using the first Maxwell equation (3.17), and since, for the choice of basis which was
previously done, the spin coefficients κ = oA∇loA and π = −ιA∇lιA vanish, we obtain:

B =

∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ01(p) − 2ρφ01(p)
)
ιAoBµσ(q) =

∫

σ(q)

1

2πr

(
∇p

mφ00 − 2αφ00

)
ιAoBµσ(q)

=

∫

σ(q)

∇m

(
φ00ιAoB

2πr

)

− 2α
φ00ιAoB

2πr
+ ∇mr

φ00ιAoB

2πr2
− φ00ιA∇m(oB)

2πr
− φ00∇m(ιA)oB

2πr
µσ(q)

Since
∇p

mr = ιBoB′

, ∇p
BB′r = ιBoB′

oBoB′ and ∇p
moB = −ριB,

and ∫

σ(q)

∇p
m

(
φ00ιAoB

2πr

)

− 2α
φ00ιAoB

2πr
µσ(q) = 0,

by Stoke’s theorem (cf. (4.14.70) in [21]; it is possible to reinterpret this expression using the
compacted spin coefficient formalism), we obtain:

B =

∫

σ(q)

ρ
φ00

2πr
ιAιBµσ(q).

We finally have the expected integral formula for the Maxwell equation:
∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0b(p) − 2ρφ0b(p)
)(
∇q

AA′r0
)
εA′

0 (q)εbB(q)µσ(q)

=

∫

σ(q)

(∇lφ00 − 2ρ)ιAιB
µσ(q)

2πr
−B

=

∫

σ(q)

(∇p
l φ00 − 3ρ)ιAιB

µσ(q)

2πr
.

The first step of the general proof is to notice that, as in the Maxwell case, the only remaining
term in the flat case is the equation (3.13) since the term (3.14) vanishes. So the simplification of
the equation (3.13) can be done using the same methods.
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A direct consequence of remark 3.16 is that the relation given in lemma 3.7 is considerably
simplified:

∀j ∈ {1, n− 1}, pφj − 2ρφj = ð
′φj−1 + (n− j − 1)ρφj . (3.18)

In the Minkowski case, the only non-vanishing term in the integral formula is the following:

∫

σ(q)

(
kq(p)

r

)
(
∇p

l φ0b...f(p) − 2ρφ0b...f(p)
)(
∇q

(AA′r0
)
εA′

0 (q)εbB(q) . . . εfF )(q)µσ(q)

which can be simplified in a flat space as:

−
∫

σ(q)

1

2πr

(
∇p

l φ0B...F(p) − 2ρφ0F...F(p)
)
ι(A(q)εBB(q) . . . εFF )(q)µσ(q)

Consider the generic term in this sum: let j be an integer in {1, . . . , n− 1}:
∫

σ(q)

1

2πr
(∇lφj − 2ρ)ι(A(q)εBB(q) . . . εFF )(q)µσ(q)

Since φj is obtained by contracting j times φA...F with ιA and n− j times with oA, it means that
there is exactly j times oA and n − j − 1 times −ιA in the list εBB(q) . . . εFF (q); since the sum is
symmetric, it can be written:

∫

σ(q)

1

2πr
(∇lφj − 2ρφj) ι(A(−ιB) . . . (−ιC)

︸ ︷︷ ︸

n−j terms

oD . . . oF )
︸ ︷︷ ︸

j terms

µσ(q).

Using equation (3.18), it becomes:

∫

σ(q)

1

2πr
(∇lφj − 2ρφj)ι(A . . . ιCoD . . . oF )µσ(q)

=

∫

σ(q)

1

2πr
(n− j − 1)ρφjι(A . . . ιCoD . . . oF )µσ(q) +

∫

σ(q)

1

2πr
ð
′(φr−1)ιA . . . ιCoD . . . oF )µσ(q).

Using remarks 3.16, the last integral is written as a difference:

∫

σ(q)

1

2πr
ð
′(φj−1)ι(A . . . ιCoD . . . oF )µσ(q) =

∫

σ(q)

ð
′
(
φj−1ι(A . . . ιCoD . . . oF )

2πr

)

µσ(q) (3.19)

+j

∫

σ(q)

ρφj−1 ι(A . . . ιD
︸ ︷︷ ︸

n−j−1

oE . . . ιF )
︸ ︷︷ ︸

j−1

µσ(q)

2πr
. (3.20)

It has already been noted that:

a. r is (1, 1) scalar;

b. φj−1 is a (n− 2j + 2, 0) scalar;

c. ι(A . . . ιCoD . . . oF ) is a (2j − n, 0) spinor.

As a consequence, the term integrated in the left-hand side of equation (3.19) and under the deriva-
tion ð′ is (1,−1) spinor. In order to apply lemma 3.9, this spinor is contracted with n constant
arbitrary spinors; this gives:

∫

σ(q)

ð
′





φj−1

2πr
ι(A . . . ιC
︸ ︷︷ ︸

n−j terms

oD . . . oF )
︸ ︷︷ ︸

j terms




µσ(q) = 0.
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Finally, we obtain:

∫

σ(q)

(∇lφj − 2ρφr) ι(A . . . ιC
︸ ︷︷ ︸

n−j terms

oD . . . oF )
︸ ︷︷ ︸

j terms

µσ(q)

2πr
= (3.21)

(n− j − 1)

∫

σ(q)

ρφj ι(A . . . ιC
︸ ︷︷ ︸

n−j

oD . . . oF )
︸ ︷︷ ︸

j

µσ(q)

2πr
+ j

∫

σ(q)

ρφj−1 ι(A . . . ιD
︸ ︷︷ ︸

n−j+1

oE . . . ιF )
︸ ︷︷ ︸

j−1

µσ(q)

2πr
(3.22)

Theses terms are added to obtain the complete expression of the integral formula:

∫

σ(q)

(∇lφ0b. . . f − 2ρ)ι(A(q)εbB(q) . . . εfF )(q)
µσ(q)

2πr

=

n−1∑

j=0

(−1)n−j−1

(
n− 1

j

)∫

σ(q)

(∇lφj − 2ρφj) ι(A . . . ιC
︸ ︷︷ ︸

n−j terms

oD . . . oF )
︸ ︷︷ ︸

j terms

µσ(q)

2πr

=

∫

σ(q)

(∇lφ0 − 2ρφ0)ιA . . . ιF
µσ(q)

2πr
+

n−1∑

j=1

(−1)n−j−1(n− j − 1)

(
n− 1

j

)∫

σ(q)

ρφj ι(A . . . ιC
︸ ︷︷ ︸

n−j

oD . . . oF )
︸ ︷︷ ︸

j

µσ(q)

2πr

+

n−1∑

j=1

(−1)n−j−1j

(
n− 1

j

)∫

σ(q)

φj−1 ι(A . . . ιD
︸ ︷︷ ︸

n−j−1

oE . . . ιF )
︸ ︷︷ ︸

j−1

µσ(q)

2πr
.

The sum is split in two and reindexed:

n−1∑

j=1

(−1)n−j−1(n− j − 1)

(
n− 1

j

)∫

σ(q)

ρφj ι(A . . . ιC
︸ ︷︷ ︸

n−j

oD . . . oF )
︸ ︷︷ ︸

j

µσ(q)

2πr

+

n−1∑

j=1

(−1)n−j−1j

(
n− 1

j

)∫

σ(q)

φj−1 ι(A . . . ιD
︸ ︷︷ ︸

n−j−1

oE . . . ιF )
︸ ︷︷ ︸

j−1

µσ(q)

2πr
=

n−2∑

j=1

(−1)n−j−1

(

(n− j − 1)

(
n− 1

j

)

− (j + 1)

(
n− 1

j + 1

))

︸ ︷︷ ︸

=0

∫

σ(q)

ρφj ι(A . . . ιC
︸ ︷︷ ︸

n−j

oD . . . oF )
︸ ︷︷ ︸

j

µσ(q)

2πr

The remaining terms are then:

(−1)n−1

∫

σ(q)

(∇lφ0 − 2ρφ0)ιA . . . ιF
µσ(q)

2πr
− (−1)n−1

(
n− 1

1

)∫

σ(q)

ρφ0ιA . . . ιF
µσ(q)

2πr

and the integral formula is, because of the antisymmetry of the symplectic product:

φA...F = (−1)n

∫

σ(q)

(∇lφ0 − (n+ 1)ρφ0)ιA . . . ιF
µσ(q)

2πr
(3.23)

is proved.©>
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Concluding remarks

a. Klainerman-Rodnianski state in [14] that a C2 metric (or a square-integrable Riemann curva-
ture) is sufficient to write the singular part of the Kirchoff-Sobolev parametrix for the Einstein
equations. It is expected that such a regularity will not prevent the use of this method for
the arbitrary spin Dirac equation.

b. The construction of the representation formula is flexible enough to be used with other fiber
bundles. Provided that the correct geometric hypotheses are stated for the manifold, such a
representation can thus be obtained for the Rarita-Schwinger (or gravitino) equations.

c. Chrusciel-Shatah obtained in [2] L2-estimates for the Yang-Mills equations. We hope that
such estimates can be obtained using the Friedlander construction of an integral formula.
Nonetheless, it must be noted that they intensively used the gauge freedom which exists for
the Yang-Mills equation: they used both the Cronström gauge (to obtain pointwise estimates)
and the temporal gauge (to obtain estimates on spacelike slices). Similar estimates for the
Dirac equations could help to explain, for instance, the loss of regularity observed in the
characteristic Cauchy problem in [11] (section 6).

This work was partially supported by the ANR project JC0546063 “Equations hyperboliques
dans les espaces-temps de la relativité générale : Diffusion et résonances.”
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