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Correspondence

Online Optimization of the Time Scale in Adaptive wherey., (k, a) are the discrete Laguerre functions defined by the
Laguerre-Based Filters transform
N. Tanguy, R. Morvan, P. Vilbé, and L. C. Calvez i on(k, a,)z_k =i—a2 Z <1 - al)n )
' Z—a Z—a
k=0

Abstract—A new online method to optimize the free parameter in adap- and depending on the free parametéi| < 1). As the discrete La-
tive Laguerre-based filters is presented. It is based on the minimization of : o (1 (L _
a criterion that is equivalent to an upper bound for the quadratic approx- ghuerre l;fu.nlctlon‘s are .orthonormEkZDan (k, a)om(k, @) = bp m,
imation error. The proposed technique presents a fast convergence and a the coefficients:, (a) in (1) are given by
good robustness.

oo

Index Terms—Adaptive filtering, Laguerre filters, pole optimization. en(a) = Z F(k)en(k, a). (3)
k=0
I. INTRODUCTION Now, consider the truncated serigs " c,.(a)g, (k, a), which for

In recent years, there has been large interest in the use of discreted §lvene 1S t:e besty I—_ter(rjns a%pro_xmanor(; Off(}()j 'Q the sense of
guerre functions in approximation, modeling, filtering, identification’""Mizing the normalized quadratic error defined by

and control. These functions, which involve a free parameter closely oo

related to the time scale, form a complete orthogonal sét[ih o). - Z ci(a)

In adaptive filtering or in modeling, whensi-terms Laguerre model gn(a) = If - f|| = n=N__ 4)
is used, a design problem is to optimally select the free parameter to Il £112 Il £112

minimize the modeling error. In [1]-[4], offline methods of parameter 124 oo £2 o . .
optimization based on the minimization of the error energy were er—herﬂ'f” o Zk:go f (>k)VA ki}/ p0|2t n [t5] 3nd_ [6] s to use tt?e m('j
posed. These methods, which supply the optimal value of Laguerre p%’?é'a'yzno nen(a) 2 N30y ¢n(a) to derive an upper boun
position, require a relatively high computational cost. In another wa raw (a) as

Fu and Dumont [5] and Tanguy [6] have proposed a suboptimal offline

method for choosing the free parameter. The method is based on the E ne; (a)

minimization of an upper bound for the modeling error. It has received ) < Tn(a)=2=0 5
. . oo e s TR . an(a) < JIn(a) AT ®)

considerable interest owing to its simplicity, its low computational cost, NIA

and its relatively good effl_(:lency. From tk_us meth.od, we d‘?”"?’ in th sing the nice relationship for the discrete Laguerre functions (see, for
correspondence, a technique for suboptimal online optimization of t Qample [7] and [8])

Laguerre filters parameter. We show that the proposed algorithm is ef-

ficient and presents good stability and convergence and numerical ro- (k+ 1)a
bustness. non(k, a) = — T4 en(k+1, a)
This correspondence is organized as follows. In Section Il, we recall 2 (1 4 a?) +q2
the principles of the suboptimal method for adjusting the pole location T on(k, a)
of the Laguerre model. In Section I, we extend the method to model ka
reduction in case where the full model is given by its Laguerre spec- 1 a2 en(k =1, a) (6)
trum. In Section IV, we present a new method for online optimization
of the Laguerre free parameter, and we give some illustrative examplld§ & simple matter to show that
in Section V before concluding in Section VI. o 5
Z nci (u‘) _ (1+ mi)a” — 227n2a + mq ||f||2 %)
Il. BACKGROUND =0 l=a

We implicitly assume that all functions and sequences vanish foolds, where the “momentsf.; andm- are defined as
negative time or spectral indek & 0 orn < 0). Suppose thaf(k) is
a well-behaved real-valued discrete time signal that can be represented - VAR
by the infinite expansion
kf(k)f(k —1) / 1£1%. (8)

fk) = Z cn(a)pn(k, a) (@) o=

n=0

oo
k=1

IS oo
k=1

Therefore, the upper bound fgx («) can be written
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for which it has been shown [6], [8] thgte| > 1 is always true. The x®)_| f77_2 1-az 1-az 1-az
suboptimal value of the parameter minimizing/x (a) is a root of z-a z-a 222 z-a
equationa® — 2pga + 1 = 0 and is given by wka) |[uka) |wnka) uy., (k.0)

{(10 =po—+/p3—1, ifpo>1 (10) e o @
ap = po+ /2 —1, ifpo<—1.

. - . . . 03
Remarks: po is a characteristic of the functiof( %) and is thus in- p —{( )
dependent of the parameter. The optimal valug in (10) is indepen-
dent of ¥V and is guaranteed to lie [r-1, 1]. Furthermore, the bound Fig. 1. Laguerre filter of ordeN.

Jn(ao) is the best that can be achieved when the specificatigii/of

is limited to the knowledge af:, ands [6] Remark: Using (12) and (14), the derivative g (a) (5) with re-

spect toa is written as

Ill. POLE OPTIMIZATION BASED ON THELAGUERRE SPECTRUM P Sa(a)
— T2\

Before dealing with the problem of the online optimization of the %J‘\'(a) T (1=a2)N|fl]?”
a parameter_ in adaptive Laguerre-based filtering, we are in'[ere_s’[ed]—'p“S implies thatS. (a) is zero when the upper bound for the quadratic
the expression of the moments,, m-, andpo. Indeed, a key point g is minimal. Because the minimum.bf («) is unique forla| < 1,
of the proposgd technique is tq v_vrlte the characteristic congtaimt o reciprocal is true; whesh (a) or Sz2(a)/S:(a) are nearly zero, this
(9) as a function of the,, coefficients of the Laguerre spectrum of,aans that: is near its optimal value. When the optimal valugis

f(k), e.g., the impulse response of a filter. In this way, we will degpained, the new coefficients can then be determined by the exchange
termine the optimal value of the parameter directly from the Laguerfgiation 8]

spectrum,, (a) of f(k). This important problem happens in most prac- oo

tical cases: when the spectral model is obtained via adaptive filtering or cnlag) = Z ci(a)pn < o= a ) (16)
from its Laplace ot transform. Thus, an-parameter optimization for j=0 1 —aao

model order reduction can be done directly using the coefficients of tigich holds for alle andag in ] — 1, 1[. If the series is, in practice,
Laguerre spectrum without calculating the samples of the impulse fgincated, the approximation would be relatively good if the number
sponsef (k). Owing to the properties of the Laguerre transform, it Willy of terms is great enough.

be shown that the momenis; , m2, andp, can be written in terms of

the coefficients of the Laguerre-spectrum assumed to be known for a IV. ONLINE OPTIMIZATION OF THE @ PARAMETER

given value of the:- parameter

Su(a) + pSi(a) We consider the filter of an adaptive Laguerre-based scheme (see
2 1 H

=== TP 11) Fig. 1). At the output, we have

po pS2(a) + Si(a) () o P N1

with p=(1 + a?)/2a and y(k) = Z cntty (ky a). a7)

n=0

Si(a)= Z (2n + 1)cZ(a) The instantaneous performance of the system is measured by the error
n=0 E, which is defined as
oo N 2 ~ 2
Sa(a)=2 Z nen(a)en—1(a). 12) E= %e(k) = % (y(k) = g(k)) (18)
n=1 wherey (k) is the output of the unknown system. In the examples of
Proof: Using the well-known property for discrete LaguerreSection V, the normalized least mean squares (NLMS) algorithm will
functions (see [8], for example) be chosen. The update rule for thg coefficients is then given by

9 1 en(k + 1) = en(k) — pe(k)un(k). The convergence is ensured if
5.9 = Tz [+ Dpnri(@) —npu—i(a)] - (13) [9], [10]

— az
and (3), we deduce 0 < u(k) < _
— N-—1
0 =2 w2 (k
5251(1) = 75 5x(a) ;Oun( )
9 Sy(a) = —2_Si(a 14
a_a 2(a) = 12 1(a). (14)

A. Gradient Method to Optimize theParameter
Now, using (7), Parseval theorem, and (18)(a) and.S2(a) in (12)

are expressed as Itis possible to determine theparameter variation gradient in a way

that is similar to the gradient method that is used for the optimization of

Si(a) = 1£11” [2 (1 + az) my — dams + 1+ az] thec,, coefficients. In [11] a similar gradient descent algorithm to opti-

1 —a? mize the free parameter of gamma filters had been proposed. The least
o AP 9 3 mean square (LMS) algorithm corrects thparameter proportionally
Sala) = 21 —a? [ Zamy + (1 ta ) e a'] ) (15) to the negative of the local gradient, i.e., th@arameter update equa-
Therefore, solving (15) fom; andm, we obtain tion is in the direction of the negative gradief\t = —n(9E/da),
9 ) 9 9 wherey, is a positive step size parameter. From (13), (17), and (18), it
o _ (L4 a®) Si+2a8 — (1 —a)|If] follows that
mi = b b
2(1_a2)||f||2 7]6(]\') N-1
2081 + (1+a?) S5 Aa = 1= g2 Z cn(B)[(n+ Dupga (ky a) — nun—1(k, a)].
mo = - v n=—
’ 2(1 = a?)||fI1? 0 (19)

and then, in view of definition (9), (11) follows. OO This method has the following drawbacks.
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1 T T T v -

» The convergence is very slow and is only ensured for valugs of
that are very small. sub—optimal method
» Thea-parameter convergence to its optimal value is not guara
teed, especially when is small. The convergence can lead to ¢
local minimum.
» The necessity of one supplementary filter because the compL s
tion of (§/8a)un—1(k, a) requires the knowledge afy (%, a)
in (19). 5
As observed in numerous simulations, this method is very sensitig 0.7
to the choice of;. Although good results and especially optimal valu@
can be obtained, it remains, nevertheless, very difficult to use.

09F

gradient method

ra

0.6
B. Suboptimal Method

The original idea for the optimization of theparameter is to sub- o5
jectitto a small variation in the direction of its optimal value compute
from thec,, -coefficient spectrum. In fact, to reduce somewhat the ce
culus and ap = (1 + a*)/2a is a monotonic function of the pa-  94; 200 200 500 300 7000 1200
rameter, we would rather work with whose optimal value is given by number of iterations
(11). The proposed algorithm initialized with = 0.5, for example,
andp; = (1 4 a?)/2a, is as follows.

1) Compute the estimated “moment$;(ay) andS:(ay) using

N—1

Si(ar) = Z (2n + 1) (k)
n=0

N N—1

So(ar)=2 Z nen (k)en—1(k).

n=1

Fig. 2. Comparison ofi-parameter adaptive curve.

2) Evaluate

_ SZ(N(’IC) + ﬂk5:1 (ﬂk)
peS2(ar) + S1(ak)

Po, k

quadratic error

3) Calculate the new valuy@.+1 = pr + 1(po. & — pi)-
4) Determine the corresponding value of thparameter

Ak+1 = Pk+1 + H[)ZJFI — 1.

The adaptation algorithm first adjusts the weights in order to matc
the desired output data of the unknown system in a least square se 0 . , . . , .
and then corrects theparameter in order to minimize the upperbounc 05 055 06 065 07 075 08 08 09 095 1
Jn(a). The error surface relative to the weights adjust is quadratic fur parameter a
any givena-parameter ij—1, 1[. On the other hand, the upper boundiy 3. variation of the normalized quadratic error as a function of the
Jn (a)is an unimodal function of the parameter if—1, 1[. Toensure -parameter.
the convergence; must be chosen relatively small. It must be all the
more smaller thatV is great and than the signal-to noise-ratio is high (

good value experimentally deducediganging from 0.001-0.05). The efficients. Note that our method supplies a relatively stable value of the

compu_ta_tlon_ of the new yalue ofrequires2 V' + 3 additions, 4\ + ._a parameter after only 500 iterations. After 1200 iterations, our method
3 multiplications or divisions, and one square root (for the gradient

PR o S S . givesa = 0.9220 with a normalized quadratic errgx, = 0.0018 with
method 2N — 2 additions and N + 4 multiplications are required). av=l1F = FIP/ILFI? and wheref and; are, respectively, the impulse

responses of the unknown system and its Laguerre model. The gradient
method with the well-chosen value= 1.0 * 10~° yieldsa = 0.8412
Example 1: The first system we consider has the transfer functiowvith g~ = 0.0120. In Fig. 3, we present the variation of the normal-

2 _11--02 ized quadratic errogx as a function of the parameter. It shows the
W quality improvement obtainable by a good choice of dtparameter.

Example 2: In the second example, the unknown system is given by
The input signale(k) is obtained by passing a Gaussian white noise 3 2 .
of unit variance through a first-order lowpass filtdf(z) = (z — F(z) = c = 0.82" — 1"22 +0.9 )
0.6)/(z — 0.7). A fourth-order Laguerre model filter is used with an z=0.1)(z = 0.8)(* = 1.82 4 0.9)
initial « parameter equal to 0.5. The system is simulated using 1208e input signal is a Gaussian white noise of unit variance. A 15th-
samples. The algorithm is started after the second sample. The vaoigler Laguerre model filter is used with an initiaparameter equal to
tion of thea parameter during the simulation is presented in Fig. 2. With.5. The system is simulated using 4000 samples. Fig. 4 presents the
n = 1/50, we observe a rapid convergence of the proposed algorithrriation of thex parameter during the simulation. In this example, the
to a relatively good value of the parameter. The gradient algorithmgradient algorithm presents a very slow convergence with 1.0 *
presents a troubled variation of theparameter that has a perniciousl0~°, which was well chosen after different tests. After 4000 iterations,

L Il 5

a
influence on the convergence of thparameter as well as of tlag co-

V. SIMULATION RESULTS

F(z)=
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08 i ' j j j j ) the proposed algorithm has been efficiently implemented on a digital
signal processor and can be efficiently used by itself or as a preliminary
078y sub-optimal method 1  approach for an optimal method.
0.7
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quadratic error

A Two-Stage Algorithm for MIMO Blind Deconvolution of
Nonstationary Colored Signals

107 ) L L L t L X L )

) 01 02 03 04 05 06 07 08 09 1 Chor Tin Ma, Zhi Ding, and Sze Fong Yau
parameter a

Fig. 5. \Variation of the normalized quadratic error as a function of the

Abstract—A new two-stage algorithm is proposed for the deconvolu-
a-parameter.

tion of multi-input multi-output (MIMO) systems with colored input sig-
nals. While many blind deconvolution algorithms in the literature utilize

. . L . . e . high order statistics of the output signal for white input signals, the addi-
our suboptimal algorithm withy = 1/200 givesa = 0.7311 with 511 information contained in colored input signals allows the design of

g~ = 0.0283. Note that our technique converges rapidly, and after onlécond-order statistical algorithms. In fact, practical signal sources such
800 samples, a good value for thh@arameter is obtained. In Fig. 5, weas speech signals do have distinct, nonstationary, colored power spectral

present the variation of the normalized quadratic eyroversus the: densities. We present a two-stage signal separation approach in which the
parameter first step utilizes a matrix pencil between output auto-correlation matrices

at different delays, whereas the second stage adopts a subspace method to
identify and deconvolve MIMO systems.

V1. CoNCLUSION Index Terms—Blind deconvolution, multiuser systems, signal separation.

In this correspondence, we have developed a new online parameter

optimization algorithm in adaptive Laguerre-based models. The pro- ) ) . .
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