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Online Optimization of the Time Scale in Adaptive
Laguerre-Based Filters

N. Tanguy, R. Morvan, P. Vilbé, and L. C. Calvez

Abstract—A new online method to optimize the free parameter in adap-
tive Laguerre-based filters is presented. It is based on the minimization of
a criterion that is equivalent to an upper bound for the quadratic approx-
imation error. The proposed technique presents a fast convergence and a
good robustness.

Index Terms—Adaptive filtering, Laguerre filters, pole optimization.

I. INTRODUCTION

In recent years, there has been large interest in the use of discrete La-
guerre functions in approximation, modeling, filtering, identification,
and control. These functions, which involve a free parameter closely
related to the time scale, form a complete orthogonal set in`2[0; 1).
In adaptive filtering or in modeling, when aN -terms Laguerre model
is used, a design problem is to optimally select the free parameter to
minimize the modeling error. In [1]–[4], offline methods of parameter
optimization based on the minimization of the error energy were pro-
posed. These methods, which supply the optimal value of Laguerre pole
position, require a relatively high computational cost. In another way,
Fu and Dumont [5] and Tanguy [6] have proposed a suboptimal offline
method for choosing the free parameter. The method is based on the
minimization of an upper bound for the modeling error. It has received
considerable interest owing to its simplicity, its low computational cost,
and its relatively good efficiency. From this method, we derive, in this
correspondence, a technique for suboptimal online optimization of the
Laguerre filters parameter. We show that the proposed algorithm is ef-
ficient and presents good stability and convergence and numerical ro-
bustness.

This correspondence is organized as follows. In Section II, we recall
the principles of the suboptimal method for adjusting the pole location
of the Laguerre model. In Section III, we extend the method to model
reduction in case where the full model is given by its Laguerre spec-
trum. In Section IV, we present a new method for online optimization
of the Laguerre free parameter, and we give some illustrative examples
in Section V before concluding in Section VI.

II. BACKGROUND

We implicitly assume that all functions and sequences vanish for
negative time or spectral index (k < 0 orn < 0). Suppose thatf(k) is
a well-behaved real-valued discrete time signal that can be represented
by the infinite expansion

f(k) =

1

n=0

cn(a)'n(k; a) (1)
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where'n(k; a) are the discrete Laguerre functions defined by thez

transform
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z � a

n

(2)

and depending on the free parametera(jaj < 1). As the discrete La-
guerre functions are orthonormal1

k=0
'n(k; a)'m(k; a) = �n;m,

the coefficientscn(a) in (1) are given by

cn(a) =

1

k=0

f(k)'n(k; a): (3)

Now, consider the truncated seriesN�1
n=0

cn(a)'n(k; a), which for
a givena is the bestN -terms approximation off(k) in the sense of
minimizing the normalized quadratic error defined by

qN(a) =̂
kf � ~fk2
kfk2 =

1

n=N

c2n(a)

kfk2 (4)

wherekfk2=̂ 1

k=0
f2(k). A key point in [5] and [6] is to use the in-

equality 1

n=0
nc2n(a) � N

1

n=N
c2n(a) to derive an upper bound

for qN(a) as

qN(a) � JN(a)=̂

1

n=0

nc2n(a)

Nkfk2 : (5)

Using the nice relationship for the discrete Laguerre functions (see, for
example, [7] and [8])

n'n(k; a) = � (k + 1)a

1� a2
'n(k+ 1; a)

+
k 1 + a2 + a2

1� a2
'n(k; a)

� ka

1� a2
'n(k� 1; a) (6)

it is a simple matter to show that

1

n=0

nc
2

n(a) =
(1 +m1)a

2 � 2m2a+m1

1� a2
kfk2 (7)

holds, where the “moments”m1 andm2 are defined as

m1 =̂

1

k=1

kf
2(k) kfk2

m2=̂

1

k=1

kf(k)f(k � 1) kfk2: (8)

Therefore, the upper bound forqN(a) can be written

JN(a) =
(1 +m1)a

2 � 2m2a+m1

(1� a2)N
:

Let

�0=̂
2m1 + 1

2m2

(9)
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for which it has been shown [6], [8] thatj�0j � 1 is always true. The
suboptimal value of thea parameter minimizingJN(a) is a root of
equationa2 � 2�0a + 1 = 0 and is given by

a0 = �0 � �20 � 1; if �0 � 1

a0 = �0 + �20 � 1; if �0 � �1:
(10)

Remarks: �0 is a characteristic of the functionf(k) and is thus in-
dependent of thea parameter. The optimal valuea0 in (10) is indepen-
dent ofN and is guaranteed to lie in[�1; 1]. Furthermore, the bound
JN(a0) is the best that can be achieved when the specification off(k)
is limited to the knowledge ofm1 andm2 [6].

III. POLE OPTIMIZATION BASED ON THELAGUERRESPECTRUM

Before dealing with the problem of the online optimization of the
a parameter in adaptive Laguerre-based filtering, we are interested in
the expression of the momentsm1; m2; and�0. Indeed, a key point
of the proposed technique is to write the characteristic constant�0 in
(9) as a function of thecn coefficients of the Laguerre spectrum of
f(k), e.g., the impulse response of a filter. In this way, we will de-
termine the optimal value of the parameter directly from the Laguerre
spectrumcn(a) of f(k). This important problem happens in most prac-
tical cases: when the spectral model is obtained via adaptive filtering or
from its Laplace orz transform. Thus, ana-parameter optimization for
model order reduction can be done directly using the coefficients of the
Laguerre spectrum without calculating the samples of the impulse re-
sponsef(k). Owing to the properties of the Laguerre transform, it will
be shown that the momentsm1,m2, and�0 can be written in terms of
the coefficients of the Laguerre-spectrum assumed to be known for a
given value of thea- parameter

�0 =
S2(a) + �S1(a)

�S2(a) + S1(a)
(11)

with �=̂(1 + a2)=2a and

S1(a) =̂

1

n=0

(2n+ 1)c2n(a)

S2(a) =̂ 2

1

n=1

ncn(a)cn�1(a): (12)

Proof: Using the well-known property for discrete Laguerre
functions (see [8], for example)

@

@a
'n(a) =

1

1� a2
[(n+ 1)'n+1(a)� n'n�1(a)] (13)

and (3), we deduce

@

@a
S1(a) =

�2

1� a2
S2(a)

@

@a
S2(a) =

�2

1� a2
S1(a): (14)

Now, using (7), Parseval theorem, and (14),S1(a) andS2(a) in (12)
are expressed as

S1(a) =
kfk2

1� a2
2 1 + a2 m1 � 4am2 + 1 + a2

S2(a) = 2
kfk2

1� a2
�2am1 + 1 + a2 m2 � a : (15)

Therefore, solving (15) form1 andm2, we obtain

m1 =
1 + a2 S1 + 2aS2 � (1� a2)kfk2

2(1� a2)kfk2

m2 =
2aS1 + 1 + a2 S2

2(1� a2)kfk2

and then, in view of definition (9), (11) follows.

Fig. 1. Laguerre filter of orderN .

Remark: Using (12) and (14), the derivative ofJN(a) (5) with re-
spect toa is written as

@

@a
JN(a) =

�S2(a)

(1� a2)Nkfk2
:

This implies thatS2(a) is zero when the upper bound for the quadratic
error is minimal. Because the minimum ofJN(a) is unique forjaj < 1,
the reciprocal is true; whenS2(a) orS2(a)=S1(a) are nearly zero, this
means thata is near its optimal value. When the optimal valuea0 is
obtained, the new coefficients can then be determined by the exchange
relation [8]

cn(a0) =

1

j=0

cj(a)'n j;
a0 � a

1� aa0
(16)

which holds for alla anda0 in ] � 1; 1[. If the series is, in practice,
truncated, the approximation would be relatively good if the number
N of terms is great enough.

IV. ONLINE OPTIMIZATION OF THE a PARAMETER

We consider the filter of an adaptive Laguerre-based scheme (see
Fig. 1). At the output, we have

~y(k) =

N�1

n=0

cnun(k; a): (17)

The instantaneous performance of the system is measured by the error
E, which is defined as

E =̂ 1

2
e(k)2 = 1

2
(y(k)� ~y(k))2 (18)

wherey(k) is the output of the unknown system. In the examples of
Section V, the normalized least mean squares (NLMS) algorithm will
be chosen. The update rule for thecn coefficients is then given by
cn(k + 1) = cn(k) � �e(k)un(k). The convergence is ensured if
[9], [10]

0 < �(k) �
1

N�1

n=0

u2n(k):

A. Gradient Method to Optimize thea-Parameter

It is possible to determine thea-parameter variation gradient in a way
that is similar to the gradient method that is used for the optimization of
thecn coefficients. In [11] a similar gradient descent algorithm to opti-
mize the free parameter of gamma filters had been proposed. The least
mean square (LMS) algorithm corrects thea parameter proportionally
to the negative of the local gradient, i.e., thea-parameter update equa-
tion is in the direction of the negative gradient4a = ��(@E=@a),
where� is a positive step size parameter. From (13), (17), and (18), it
follows that

4a =
�e(k)

1� a2

N�1

n=0

cn(k) [(n+ 1)un+1(k; a)� nun�1(k; a)] :

(19)
This method has the following drawbacks.
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• The convergence is very slow and is only ensured for values of�
that are very small.

• Thea-parameter convergence to its optimal value is not guaran-
teed, especially when� is small. The convergence can lead to a
local minimum.

• The necessity of one supplementary filter because the computa-
tion of (@=@a)uN�1(k; a) requires the knowledge ofuN(k; a)
in (19).

As observed in numerous simulations, this method is very sensitive
to the choice of�. Although good results and especially optimal value
can be obtained, it remains, nevertheless, very difficult to use.

B. Suboptimal Method

The original idea for the optimization of thea parameter is to sub-
ject it to a small variation in the direction of its optimal value computed
from thecn-coefficient spectrum. In fact, to reduce somewhat the cal-
culus and as� = (1 + a2)=2a is a monotonic function of thea pa-
rameter, we would rather work with�, whose optimal value is given by
(11). The proposed algorithm initialized witha1 = 0:5, for example,
and�1 = (1 + a21)=2a1 is as follows.

1) Compute the estimated “moments”~S1(ak) and ~S2(ak) using

~S1(ak) =̂

N�1

n=0

(2n+ 1)c2n(k)

~S2(ak) =̂ 2

N�1

n=1

ncn(k)cn�1(k):

2) Evaluate

�0; k =
~S2(ak) + �k ~S1(ak)

�k ~S2(ak) + ~S1(ak)
:

3) Calculate the new value�k+1 = �k + �(�0; k � �k).
4) Determine the corresponding value of thea parameter

ak+1 = �k+1 � �2k+1 � 1:

The adaptation algorithm first adjusts the weights in order to match
the desired output data of the unknown system in a least square sense
and then corrects thea parameter in order to minimize the upper bound
JN(a). The error surface relative to the weights adjust is quadratic for
any givena-parameter in]�1; 1[. On the other hand, the upper bound
JN(a) is an unimodal function of thea parameter in]�1; 1[. To ensure
the convergence,� must be chosen relatively small. It must be all the
more smaller thanN is great and than the signal-to noise-ratio is high (a
good value experimentally deduced is� ranging from 0.001–0.05). The
computation of the new value ofa requires2N + 3 additions,4N +
3 multiplications or divisions, and one square root (for the gradient
method,2N � 2 additions and3N + 4 multiplications are required).

V. SIMULATION RESULTS

Example 1: The first system we consider has the transfer function

F (z) =
z2 � 1:1z � 0:2

(z � 0:9)2
:

The input signalx(k) is obtained by passing a Gaussian white noise
of unit variance through a first-order lowpass filterN(z) = (z �
0:6)=(z � 0:7). A fourth-order Laguerre model filter is used with an
initial a parameter equal to 0.5. The system is simulated using 1200
samples. The algorithm is started after the second sample. The varia-
tion of thea parameter during the simulation is presented in Fig. 2. With
� = 1=50, we observe a rapid convergence of the proposed algorithm
to a relatively good value of thea parameter. The gradient algorithm
presents a troubled variation of thea parameter that has a pernicious

Fig. 2. Comparison ofa-parameter adaptive curve.

Fig. 3. Variation of the normalized quadratic error as a function of the
a-parameter.

influence on the convergence of thea parameter as well as of thecn co-
efficients. Note that our method supplies a relatively stable value of the
a parameter after only 500 iterations. After 1200 iterations, our method
givesa = 0:9220with a normalized quadratic errorqN = 0:0018with
qN=̂kf � ~fk2=kfk2 and wheref and ~f are, respectively, the impulse
responses of the unknown system and its Laguerre model. The gradient
method with the well-chosen value� = 1:0 � 10�5 yieldsa = 0:8412
with qN = 0:0120. In Fig. 3, we present the variation of the normal-
ized quadratic errorqN as a function of thea parameter. It shows the
quality improvement obtainable by a good choice of thea parameter.

Example 2: In the second example, the unknown system is given by

F (z) =
z3 � 0:8z2 � 1:2z + 0:9

(z � 0:7)(z � 0:8)(z2 � 1:8z + 0:9)
:

The input signal is a Gaussian white noise of unit variance. A 15th-
order Laguerre model filter is used with an initiala parameter equal to
0.5. The system is simulated using 4000 samples. Fig. 4 presents the
variation of thea parameter during the simulation. In this example, the
gradient algorithm presents a very slow convergence with� = 1:0 �
10�6, which was well chosen after different tests. After 4000 iterations,
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Fig. 4. Comparison ofa-parameter adaptive curve.

Fig. 5. Variation of the normalized quadratic error as a function of the
a-parameter.

our suboptimal algorithm with� = 1=200 givesa = 0:7311 with
qN = 0:0283. Note that our technique converges rapidly, and after only
800 samples, a good value for thea parameter is obtained. In Fig. 5, we
present the variation of the normalized quadratic errorqN versus thea
parameter.

VI. CONCLUSION

In this correspondence, we have developed a new online parameter
optimization algorithm in adaptive Laguerre-based models. The pro-
posed method highly exhibits better performance than that achieved by
a gradient algorithm and requires only some supplementary calculus.
The optimal value of the parameter is obtained directly from the La-
guerre spectrum of the function/system without calculating the sam-
ples of the impulse response. The results of our simulation indicate
that the method supplies a rapid convergence to a good value of thea
parameter. Different simulation conditions have been tested that show
the robustness and the numerical stability of the algorithm. Moreover,

the proposed algorithm has been efficiently implemented on a digital
signal processor and can be efficiently used by itself or as a preliminary
approach for an optimal method.

REFERENCES

[1] M. A. Masnadi-Shirazi and N. Ahmed, “Laguerre approximation of
non recursive discrete-time systems,” inProc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Albuquerque, NM, Apr. 3–6, 1990, pp.
1309–1312.

[2] , “Optimum Laguerre networks for a class of discrete-time sys-
tems,” IEEE Trans. Signal Processing, vol. 39, pp. 2104–2108, Aug.
1991.

[3] M. A. Masnadi-Shirazi, “Optimum synthesis of linear discrete-time sys-
tems using orthogonal Laguerre sequences,” Ph.D. dissertation, Univ.
New Mexico, Albuquerque, May 1990.

[4] T. Oliveira e Silva, “On the determination of the optimal pole posi-
tion of Laguerre filters,”IEEE Trans. Signal Processing, vol. 43, pp.
2079–2087, Sept. 1995.

[5] Y. Fu and G. A. Dumont, “An optimum time scale for discrete Laguerre
network,”IEEE Trans. Automat. Contr., vol. 38, pp. 934–938, June 1993.

[6] N. Tanguy, P. Vilbé, and L. C. Calvez, “Optimum choice of free param-
eter in orthonormal approximations,”IEEE Trans. Automat. Contr., vol.
40, pp. 1811–1813, 1995.

[7] J. Ragot, M. Roesch, and C. Humbert, “Algorithm for identifying the
dynamic characteristics of objects by means of orthogonal functions,”
J. A, vol. 18, no. 3, pp. 156–168, 1977.

[8] N. Tanguy, “La transformation de Laguerre discrète,” Thèse de doctorat,
Univ. Brest, Brest, France, Dec. 1994.

[9] H. Perez and S. Tsujii, “IIR adaptative filtering via discrete Legendre
functions,”Electron. Lett., vol. 24, no. 8, pp. 450–451, 1988.

[10] , “A system identification algorithm using orthogonal functions,”
IEEE Trans. Signal Processing, vol. 39, pp. 752–756, Apr. 1991.

[11] J. C. Principe, B. De Vries, and P.G. de Oliveira, “The gamma filter—A
new class of adaptive IIR filters with restricted feedback,”IEEE Trans.
Signal Processing, vol. 41, pp. 649–656, Feb. 1993.

A Two-Stage Algorithm for MIMO Blind Deconvolution of
Nonstationary Colored Signals

Chor Tin Ma, Zhi Ding, and Sze Fong Yau

Abstract—A new two-stage algorithm is proposed for the deconvolu-
tion of multi-input multi-output (MIMO) systems with colored input sig-
nals. While many blind deconvolution algorithms in the literature utilize
high order statistics of the output signal for white input signals, the addi-
tional information contained in colored input signals allows the design of
second-order statistical algorithms. In fact, practical signal sources such
as speech signals do have distinct, nonstationary, colored power spectral
densities. We present a two-stage signal separation approach in which the
first step utilizes a matrix pencil between output auto-correlation matrices
at different delays, whereas the second stage adopts a subspace method to
identify and deconvolve MIMO systems.

Index Terms—Blind deconvolution, multiuser systems, signal separation.
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