
HAL Id: hal-00424922
https://hal.univ-brest.fr/hal-00424922v1

Submitted on 19 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep structure, recent deformation and analog modeling
of the Gulf of Cadiz accretionary wedge: Implications

for the 1755 Lisbon earthquake
Marc-André M-A Gutscher, Stephane Dominguez, Graham K. Westbrook,

Pascal Leroy

To cite this version:
Marc-André M-A Gutscher, Stephane Dominguez, Graham K. Westbrook, Pascal Leroy. Deep struc-
ture, recent deformation and analog modeling of the Gulf of Cadiz accretionary wedge: Implications for
the 1755 Lisbon earthquake. Tectonophysics, 2009, 475 (1), pp.85-97. �10.1016/j.tecto.2008.11.031�.
�hal-00424922�

https://hal.univ-brest.fr/hal-00424922v1
https://hal.archives-ouvertes.fr


 1 
  

Deep structure, recent deformation and analog modeling of the Gulf of Cadiz 

accretionary wedge: implications for the 1755 Lisbon earthquake 

 
MS for Special volume of Tectonophysics, Proceedings of the MAPG Meeting Marrakech 

(revised version returned 15 Oct. 2008) 

 

Gutscher, Marc-André (Université Européene de Bretagne, Brest, IUEM, Domaines Océaniques, 

UMR6538 CNRS, Univ. Brest, France), 

Dominguez, Stephane (Univ. Montpellier II, Géosciences Montpellier, UMR5243 CNRS, 

Montpellier, France), 

Westbrook, Graham K. (Univ. Birmingham, United Kingdom), 

Leroy, Pascal (Université Européene de Bretagne, Brest, IUEM, Domaines Océaniques, UMR6538 

CNRS, Univ. Brest, France), 

Corresponding author: M-A Gutscher,  e-mail: gutscher@univ-brest.fr 

      Phone: [+33] (0)2 98 49 87 27 

      Fax: [+33] (0)2 98 49 87 60 

 
Abstract: 

 The Gulf of Cadiz spans the plate boundary between Africa and Eurasia west of the 
Betic-Rif mountain belt. A narrow east dipping subduction zone descends beneath the Gulf of Cadiz 
and the straits of Gibraltar. The deep crustal structure of the Gulf and the adjacent SW Iberian and 
Moroccan margins is constrained by numerous multi-channel seismic reflection and wide-angle 
seismic surveys. A compilation of these existing studies is presented in the form of depth to basement, 
sediment thickness, depth to Moho and crustal thickness maps. These structural maps image an E-W 
trending trough, with thin (<10 km) crust beneath the Gulf of Cadiz. This trough is filled by an 
eastward thickening wedge of sediments, reaching a thickness of 10 -15 km in the eastern Gulf. These 
sediments are tectonically deformed, primarily along a series of westward-vergent thrust faults and 
represent a 200-250 km wide accretionary wedge. The northern and especially the southern limits of 
the accretionary wedge are marked by sharp morphological lineaments showing evidence of recent 
deformation. These tectonic limits are situated in an internal position with respect to the Miocene 
deformation front (external Betic and Rif allocthons), which has been abandoned. At the western 
boundary of the accretionary wedge, near the adjacent Seine and Horseshoe abyssal plains, an E-W 
trending basement high (Coral Patch Ridge) can be seen indenting the deformation front in an 
asymmetric manner. Analog modeling is performed using granular materials accreted against a semi-
circular backstop (representing the basement of the Rif aand Betic mountain belts). The modeling 
initially produces a symmetric, arcuate accretionary wedge. The ensuing collision of an oblique rigid 
indenter retards accretion on one side, resulting in an embayment and a locally steeper deformation 
front. The deformation pattern observed in morphology and high-resolution seismic profiles suggests 
the accretionary wedge and underlying subduction system is still active. The implications of active 
subduction for the source region of the 1755 Lisbon earthquake and the regional seismic hazard 
assessment are discussed. 
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Introduction 

 The Gulf of Cadiz is located offshore Southwest Iberia and Northwest Morocco just 

west of the Betic-Rif mountain belt and astride the Africa - Eurasia plate boundary. However, the 

nature and exact location of the plate boundary here is uncertain, due to a broad region of complex 

deformation and diffuse seismicity roughly 200 km wide, from north to south (Sartori et al ., 1994; 

Tortella et al., 1997; Jimenez-Munt et al., 2001) (Fig. 1). Two types of geodynamic models have been 

proposed to explain the recent tectonics and formation of this region; models involoving delamination 

of continental lithosphere beneath the Betic-Rif Alboran Sea region (Platt and Vissers, 1989; Calvert 

et al., 2000), and those including subduction of oceanic lithosphere, with associated roll-back 

(Lonergan and White, 1997; Gutscher et al., 2002; Duggen et al., 2004). Tomographic data image an 

east-dipping slab of cold, dense lithosphere extending continuously from the Atlantic domain of the 

Gulf of Cadiz to the 660 km discontinuity beneath the Alboran Sea (Gutscher et al., 2002; Spakman 

and Wortel, 2004). A recent study which examined the dispersion of teleseismic body waves 

concluded that this east dipping slab of dense lithosphere was oceanic in nature, thus supporting the 

subduction model and effectively ruling out the delamination model (Bokelmann and Maufroy, 2007). 

Seismic reflection and refraction profiles image a gently eastward dipping basement and eastward 

dipping decollement beneath a thick pile (>6 km) of deformed sediments which was interpreted to be 

an accretionary wedge, related the east-dipping subduction zone beneath the Cadiz-Gibraltar region 

(Gutscher et al., 2002; Thiebot and Gutscher, 2006). GPS data reveal the presence of a west to 

southwestward moving tectonic block in the Betic-Rif-Alboran region (Stich et al., 2007; Tahayt et 

al., 2008), which has been alternatively interpreted as being related to subduction roll-back (Fernandes 

et al., 2007) or as roll-back linked to delamination (Fadil et al., 2006). 

 

The Gulf of Cadiz region has experienced strong instrumental earthquakes like the 1969 M7.9 

Cape St. Vincent earthquake (Fukao, 1973), the 1964 M6.5 Huelva earthquake and the recent 12 Feb. 

2007 M6.0 Cape St. Vincent earthquake (Stich et al. 2007). The strongest earthquake in European 

history struck offshore SW Iberia in 1755, the M8.7 Great Lisbon earthquake (Martinez-Solares et al., 

1979; Johnston, 1996), though the location of the source remains controversial (Zitellini et al., 2001; 

Terrinha et al., 2003; Gracia et al., 2003a; Gutscher, 2004). During the past decade, many marine 

geophysical studies have been performed in the region in an effort to identify the source region of the 
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1755 earthquake and to obtain better estimates on the long-term frequency of such high magnitude 

events. An accurate inventory of the active faults in the area can make a significant contribution to 

improving long-term seismic hazard assessments for the region. The purpose of this study is to present 

the state of the art on the deep crustal structure of the region as well as examine the shallow 

morphology. These observations will be related to the recent and ongoing tectonics in the area in an 

effort to answer the question whether subduction is still active and poses significant seismic hazard to 

the region. 

 

Data 

Seafloor bathymetry 

 As a result of numerous marine geophysical surveys performed since the year 2000, the 

majority of the Gulf of Cadiz region has been covered by multi-beam swath-mapping. The 

bathymetric compilation presented here (Fig. 2) incorporates data from the following surveys; 

Cadisar, Cadisar2, TV-GIB and DelSis (all using the R/V Suroit EM300 system), the Delila and 

MatesPro cruises (with the NRP Dom Carlos EM120 system), the GAP cruise (R/V Sonne EM120 

system) and a transit performed by the R/V Marion Dufresne following the Microsystems Cruise. The 

Marion Dufresne data were processed by X. Morin. Additional bathymetric data were provided by D. 

Masson and C. Berndt from the 2006 Hermes Cruise onboard the R/V Charles Darwin. The R/V 

Suroit data from the Cadisar (Mulder et al., 2003) and Cadisar2 (Mulder et al., 2006) cruises were 

processed with Caraïbes software (developed by Ifremer) and typically have a spatial resolution better 

than 30 m (in water depths < 2000 m). The MatesPro data (Terrinha et al., in press) were processed by 

the Portuguese Instituto Hidrografico Team. The GAP bathymetric data (Kopf et al., 2003) in the SE 

portion of the Gulf of Cadiz were processed using Caraïbes software and included in this compilation 

for areas not mapped by the Cadisar or Delila surveys.  

 The bathymetric map (Fig. 2A) reveals several distinct morphological provinces. These 

include, the flat and nearly featureless abyssal plains, bounded by generally E-W to N60E trending 

basement highs and by the adjacent continental margins. The southern Portuguese (Algarve) margin is 

steep and deeply incised by S to SW draining canyons. The SW Spanish margin is much flatter and 

marked by diverse sedimentary structures, (a contourite levee with accompanying channels, contourite 

drift, seafloor sand-dunes, etc.) formed as the Mediterranean Outflow Water locally erodes and 

redeposits large quantities of sediment (Mulder et al., 2003; 2006). The most prominent feature 

however, is a region of gently undulating morphology with elongate curvi-linear ridges and troughs 

(Fig. 2B). This gently inclined slope (1° westward dip on average) forms the surface of a sediment 

pile with a relatively high rugosity (compared to the abyssal plain regions). The deformed sedimentary 

slope is bounded by a continuous, horseshoe-shaped deformation front between 300 and 400 km in 
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total length. The southern boundary is particularly sharp, and forms an E-W lineament off the 

Moroccan margin at the northern limit of the Rharb submarine valley. 

 

Seismic images of the deformation front 

Deep sounding seismic data have been acquired in the Gulf of Cadiz imaging the deformation 

front and internal portions of the deformed sediment slope, in particular the Sismar 360-channel 

seismic data acquired by the R/V Nadir in April 2001 (Gutscher et al., 2002, Thiebot and Gutscher, 

2006) and 24-channel seismic data acquired by the R/V Suroit in April 2005 during the DelSis cruise 

(Gutscher et al., 2008). These data image the sediment slope to be an eastward thickening pile of 

sediment, with strong internal deformation, overlying a region of sub-horizontal to gently east dipping 

reflectors (separated by a thin decollement layer). West vergent ramp thrusts are observed soling out 

to this decollement. The seismic data clearly demonstrate that the base of the accretionary wedge (the 

decollement and top basement reflectors) is eastward dipping and therefore that the wedge has a 

primarily tectonic origin (Gutscher et al., 2002) and is not a large-scale gravitational feature. At a 

more shallow level (<2000m water depth in the easternmost portion of the wedge) some superficial 

gravity sliding is occurring, likely along rheologically weak layers (highly overpressured shales or 

evaporates) (Maestro et al., 2003; Medialdea et al., 2004; Gutscher et al., 2008). The majority of the 

accretionary wedge was constructed by offscraping of deep sea sediments during Miocene (and 

earlier) westward motion of the Gibraltar arc (Thiebot and Gutscher, 2006; Iribarren et al., 2007). 

There is still ongoing debate as to the current day activity of the system. Deep seismic profiles BS1 

and GC3 on the SW Spanish margin image deformation of shallow sedimentary layers to the SW of 

the Guadalquivir river (due W of the city of Cadiz) (Gracia et al., 2003b) at the NE lateral boundary of 

the accretionary wedge. Here we present some high resolution Chirp profiles acquired by the R/V 

Suroit during the DelSis cruise which document recent deformation in the uppermost sedimentary 

layers at the western and southeastern lateral boundaries of the accretionary wedge. 

Chirp profile 19 crosses the NW deformation front at the eastern termination of the Horseshoe 

abyssal plain (Fig. 3A). The highly reflective, sub-horizontal turbiditic sediments, associated with the 

abyssal plain can be clearly seen to the NW. The nature of the sediments was confirmed by gravity 

coring at the NW end of the profile, which revealed alternating fine clay hemipelagic sediments, and 

turbiditic sequences grading downwards from fine to coarse grained (sandy) layers (Babbonneau, et 

al., 2006). There is an abrupt change in slope at the deformation front and further SE the sedimentary 

strata are less reflective and gently folded, rising to form an undulating slope on the sea-floor. The 

sediment thickness varies between the minor sub-basins in the troughs and on the crests of the 

anticlinal ridges, suggesting a syn-tectonic sedimentation pattern (Fig. 3A). 

Some of the best structural images were obtained from the shallow water Eastern Rharb Valley 
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(<1600 m depth). Two spectacular images of surface and shallow subsurface deformation at the 

seafloor are shown below crossing the northern edge of the Rharb marine valley (the southern limit of 

the accretionary wedge) (Figs. 3 B, C). The former is in water depths of roughly 500-600 m and 

shows folds associated with faults which emerge at the seafloor (Fig. 3B). The latter is on the shallow 

NW Moroccan continental platform in water depths between 100 m and 150 m. Here subvertical 

faults can be seen, most of which are truncated by a major horizontal unconformity. This 

unconformity is at about 120 m water depth and corresponds to the sea-level lowstand during the last 

glacial maximum (LGM) at about 20 ka. The LGM unconformity is gently folded in places and 

slightly offset by a fault, indicating recent deformation (post dating 20 ka) (Fig. 3C). This provides 

definitive proof that active deformation occurs on the SE flank of the accretionary wedge.  

A 24-channel seismic profile acquired by the R/V Suroit (DelSis cruise) in April 2005 crosses 

the entire Rharb submarine valley at 2800 m water depth and provides additional constraints on the 

timing of deformation on the southern flank of the accretionary wedge (Fig. 4). At the base a thrust 

anticline is imaged, which may represents the early Miocene thrust wedge identified by other workers 

(Iribarren et al., 2007). The sequence containing the anticline is overlain by a chaotic facies (the 

Tortonian Olistostrome) and by horizontal valley fill. The surface of the chaotic facies is deformed, 

eroded and then sealed by the valley fill. The wedge of the chaotic facies follows the shape of the 

underlying anticline, and so was either folded with the underlying strata, placing the age of the folding 

as Tortonian or later, or pushed as a wedge across the anticline. The former seems more likely. The 

chaotic facies does not pond in the synclinal trough, and so was not deposited in this location after the 

fold was formed. The NE portion of the chaotic facies is more strongly deformed and uplifted along a 

NE dipping thrust fault, marking the edge of the active accretionary wedge. This profile thus reveals a 

sequence of several events; 1) an earlier episode of SW vergent thrusting onto the toe of the adjacent 

Moroccan margin (presumably until the mid-Miocene), 2) deposition of a NE-ward thickening chaotic 

sedimentary unit (the Tortonian Olistostrome), 3) deformation of the chaotic facies and thickening, 4) 

deposition of well stratified horizontal valley fill, sealing the early Miocene wedge and the chaotic 

facies unit in the Rharb Valley, 5) tectonic reactivation of the chaotic facies along a SW vergent ramp 

thrust, causing uplift and deformation of the chaotic facies unit. This ramp thrust marks the limit of 

the active accretionary wedge and its expression at the seafloor coincides with the E-W oriented 

lineament at the northern limit of the Rharb Valley. This profile clearly shows that the lineament is 

tectonic in origin and not purely an erosional feature. 

 

Structural Maps (basement, sediment, Moho and crustal maps) 

All available seismic profiles (multi-channel reflection, as well as wide angle refraction) were 

used to construct 3-D grids of the crustal structure in the Gulf of Cadiz area (Fig. 5). The principle 
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horizons picked were, the sediment-basement interface and the Moho, with values in two-way way 

travel time (TWT) sampled every 10 km along the seismic reflection profiles. The TWT to the top 

basement reflection was converted to depth using a mean sedimentary velocity of 3 km/ and basement 

thickness was likewise converted from TWT to depth using a mean velocity of 6 km/s. Depth sections 

were available for some seismic profiles, with ocean-bottom seismometer (OBS) data; lines SIS-4 

(Contrucci et al., 2004), SIS-16 (Gutscher et al., 2002) and/or where pre-stack depth migration was 

performed; SIS-22 (Thiebot and Gutscher, 2006) and offered an independent calibration of depth to 

basement and depth to Moho. On land, depth to basement was taken from published geological maps, 

which included borehole data in the Guadalquivir and Rharb Basins. All the x,y,z depth to basement 

points were converted into a depth-to basement grid using the GMT gridding algorithm surface 

(Wessel and Smith, 1991). In similar fashion all the x,y,z depth to Moho points obtained from the 

seismic profiles, were taken together with a few values from published Moho maps of NW Africa or 

the SW Iberia region, and gridded to obtain a 3-D surface to the Moho. Together with the depth to 

sea-floor grid  (obtained from multi-beam bathymetry), three 3-D surfaces were available across the 

study area. The depth to basement map is shown in Fig. 5A. By taking the difference between the 

bathymetry and depth to basement grids, it was possible to obtain a sediment thickness map (Fig. 5B). 

The depth to Moho map is also shown (Fig. 5C), and likewise, by taking the difference between the 

depth to basement and the depth to Moho maps, it was possible to construct a map of total crustal 

thickness map (Fig. 5D).  

The depth to basement map (Fig. 5A) shows a roughly E-W oriented trough, in the Gulf of 

Cadiz. On the SW Iberian margin and the NW Moroccan margin, depth to basement is typically about 

4-5 km and decreases to 0.5-2 km near the coast.  Below the adjacent abyssal plains, the depth to 

basement ranges from about 8-10 km. Within the E-W trough, there is a gradual deepening towards 

the east, reaching maximum values of 13-14 km. The region of greatest basement depth terminates to 

the east in a crescent shaped trough, sub-parallel to the Betic-Rif mountain belt. This trough 

represents the flexural foreland basin caused by the construction of the orogen. It is noteworthy 

however, that the depth to basement only reaches values of 2-3 km onland (Guadalquivir basin in SW 

Spain and Rharb Basin in NW Morocco which both overly continental crust), whereas the depth to 

basement in the Gulf of Cadiz (likely floored by oceanic crust) reaches 12-14 km. 

The total sediment thickness map shows similarities to the basement map; a thick, generally E-

W oriented sedimentary basin, terminating in a crescent shaped basin in the foreland of the Betic and 

Rif mountain belts (Fig. 5B). The main difference however, is that while the crescent shaped foreland 

basin never exceeds values of 3-4 km on land, the basin centered within the Gulf of Cadiz is more 

circular and the maximum thickness reaches values of 12-13 km. Again this maximum thickness is 

located on the central to eastern side of the Gulf of Cadiz. It is possible that sediment thicknesses may 
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increase further east, however, no seismic data are available here (between 7°W and 6°W). The 

trends observed here are similar to those described in a recent study of sedimentary thicknesses 

(Iribarren et al., 2007) where a maximum of 12 km was reported in the central Gulf. 

The regional Moho map reveals four distinct domains, the Iberian and Moroccan continental 

domains (with a Moho depth of 28-38 km), an Atlantic domain (depths of 12-16 km) and the Alboran 

domain (with depths of 8-16 km in the East Alboran Sea and 18-20 km in the West Alboran Sea) (Fig. 

5C). Moho depth is greatest beneath the Betic Mountains (34-38 km), where a thick crustal root 

compensates the highest mountains of the Sierra Nevada (3700 m). A more modest, crescent shaped 

crustal root appears to underlie the western Betics, the straits of Gibraltar and the SW edge of the Rif 

mountains (with Moho depths of about 32 km), although these regions are not well constrained by 

wide-angle seismic data. These results are in good agreement with the Moho depth values reported in 

a recent regional lithospheric study (Fullea et al., 2007). 

 The crustal thickness map (Fig. 5D) is similar to the Moho map, but the Gulf of Cadiz region 

appears much more clearly as an E-W corridor of thin crust, with values of 6-10 km. The NW corner 

of the African continent appears clearly as an angular promontory, with a N30°E oriented Atlantic 

margin to the west, and a roughly N80°E oriented “Cadiz margin” to the north. The Alboran region 

also changes in appearance, with a greater similarity between the western and eastern Alboran 

domains (crustal thicknesses of 6-10 km separated by a 16 km thick, NE-SW oriented ridge, passing 

through Alboran Island. 

 

Interpretation and regional lithospheric structure 

As the 3-D geometry of the lithosphere in the Southern Iberia region is rather complex, the 

results of the crustal maps above will now be discussed within the regional geodynamic framework. A 

narrow east-dipping slab of dense lithosphere has been imaged in tomographic cross-sections 

(Gutscher et al., 2002; Spakman and Wortel, 2004) The deep geometry in horizontal however, 

indicates an asymmetric curved shaped body at depth, elongated parallel to the Betics sections  

(Wortel and Spakman, 2000; Spakmand and Wortel, 2004) (Figure 6). This high p-wave velocity 

body at depth, which represents a curved slab of dense lithosphere is the locus of the majority of the 

intermediate-depth seismicity beneath the West Alboran suggesting it is a slab of oceanic lithosphere, 

This is confirmed by the dispersion of teleseismic waves passing through this body (Bokelmann and 

Maufroy, 2007). The presence of a narrow corridor of oceanic lithosphere beneath the western and 

central Gulf of Cadiz is suggested by the presence of generally E-W oriented magnetic anomalies here 

(Verhoef et al., 1991) and by the very low crustal thickness observed in the crustal thickness map. 

Additional seismic studies of the crustal types here would be necessary to test this interpretation, 

which if confirmed would further support the subduction model. 
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It is also instructive to note the numerous sub-parallel arcuate features in the Gibraltar 

region at depth and at the surface. These include: the high p-wave velocity body (at 200 km depth 

beneath the Alboran Sea); the distribution of intermediate earthquakes (60-120 km depth); the 

sedimentary trough in the West Alboran Sea (as expressed by the negative gravity anomaly and 

representing the low density sedimentary fill in the arcuate back-arc basin); the surface relief of the 

Betic and Rif mountain chain (related to the fold and thrust belt which constructed the orogen). West 

of Gibraltar additional arc shaped features include the gravity minimum in the the Gulf of Cadiz 

(related to the great sedimentary thickness here and which also has an E-W axis of symmetry) and 

finally much further west the roughly horseshoe shaped deformation front of the accretionary wedge. 

It seems inescapable that 6 independent sub-parallel arcuate shaped structures at varying depths and 

expressed in completely independent data sets must be genetically linked. The only single process, 

which can explain all these observations, is east-dipping subduction of a narrow slab of oceanic 

lithosphere (but which is curved at depth) as already suggested by earlier authors (Lonergan and 

White, 1997). 

This lithospheric structure is expressed schematically by two cross-sections (Fig. 7). The 

longer E-W section crossing Gibraltar passes along the axis of symmetry of the curved subduction 

system. A 2-D density model of this section (constructed on the basis of seismic refraction p-wave 

velocities) can successfully predict the observed free-air gravity anomaly along this profile (Thiebot 

and Gutscher, 2006). The main features are; the deep sedimentary trough in the West Alboran Sea, the 

thick sedimentary wedge in the Gulf of Cadiz and the east-dipping basement beneath this accretionary 

wedge. The detailed crustal structure beneath the Rif-Betic mountain belt (near the Straits of 

Gibraltar) is poorly constrained and somewhat speculative. The N-S cross-section passes along an 

existing deep seismic sounding profile (Sismar-13) and suggests a corridor of thin crust underlying the 

accretionary wedge, which may be oceanic in nature. However, more detailed analysis of OBS data 

will be necessary before this can be conclusively determined. 

 Summing up, these structural data from the Gulf of Cadiz clearly reveal the presence of an 

eastward thickening wedge of sediments, situated in an E-W oriented trough, underlain by a thin (6-10 

km) crust with a gentle eastward dip. This geometry in confirmed by other regional studies and the 

current consensus is that this thick accumulation of sediments is an accretionary wedge formed by the 

westward motion of the Gibraltar arc until at least the Miocene (Iribarren et al., 2007). The questions, 

which remain unresolved, are: is deformation continuing today in this tectonic wedge? And if so is it 

due to continuing subduction rollback (inducing E-W compression) or could it be caused by the 

overall NW-SE convergence of Africa and Eurasia? In order to address these questions analog 

modeling of accretionary wedge growth and subsequent collision with a rigid indenter was performed. 
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Analog modeling of accretion and an oblique indenter 

An accretionary wedge sliding along a basal detachment (decollement) can be considered to be 

a critical Coulomb wedge, with material added to the front of the wedge as a series of imbricate thrust 

slices (Davis et al., 1983). The wedge also deforms internally (along out-of-sequence thrusts and 

back-thrusts) to maintain a surface profile, which is a function of the basal friction and the internal 

friction of the material. The sum of the basal slope and surface slope is known as the wedge taper and 

for regular accretion at the front, a constant wedge taper is maintained. This notion is called critical 

wedge theory and predicts self-similar behavior, independent of scale (Davis et al., 1983). Therefore, 

the mechanical behavior of thrust wedges can be modeled (at a smaller scale) using granular materials 

and successfully reproduces a variety of accretionary processes (frontal accretion, underthrusting and 

underplating) observed in accretionary wedges worldwide (Lallemand et al., 1994; Gutscher et al., 

1998a,b). The impact of subducting asperities (seamounts or linear ridges) can also be modeled using 

the same approach (Dominguez et al., 1998). 

This approach was applied to study the deformation of the Cadiz accretionary wedge and the 

impact of an oblique ridge on the deformation front. However, since the geometry of the Gulf of 

Cadiz and Coral Patch Ridge are highly 3-D, the experimental apparatus selected was a 3-D table 

(Fig. 8), rather than the more commonly used glass-sided 2-D box. A 15mm thick layer of granular 

materials were deposited on a sheet of mylar film. These materials included 4 mm of glass beads at 

the base (to obtain the lowest possible basal friction), 10 mm of sand and 1mm of a fine colored 

cohesive powder to better preserve the fine structure of deformation at the surface. The mylar film and 

overlying granular layer was pulled beneath a rigid, curved, semi-circular backstop. The shape of the 

rigid experimental backstop (Fig. 8, Fig. 9 - 0cm) was chosen to represent the overall curvature of the 

Betic and Rif mountain belts, which form the orogenic core or “backstop” of the subduction system 

(Fig. 1, Fig. 6). Pulling the film beneath the backstop is kinematically equivalent to pushing the 

backstop over the film, which represents the westward motion of the Rif-Betic block which led to the 

construction of the accretionary wedge (Lonergan and White, 1997; Gutscher et al., 2002; Iribarren et 

al., 2007). 

During the initial phase of the experiment (Fig. 9 12-25 cm) frontal accretion occurs with 

imbrication of a series of thrust slices at a fairly regular spacing. These develop in a curved manner, in 

response to the backstop shape and a horseshoe-shaped deformation front is rapidly established (Fig. 6 

37-50 cm). Next, the rigid oblique ridge approaches the horseshoe-shaped accretionary wedge (Fig. 6 

- 63 cm). As the oblique ridge begins to collide with the wedge, the propagation of frontal thrusts is 

blocked, and the deformation front steepens here, while it is free to continue advancing on the left 

(Fig. 9 - 76 cm). In the final stage the deformation front has become asymmetric, with a marked 
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embayment at the point of impact, and a steeper slope here where the indenter has caused 

underthrusting and some local sliding (frontal erosion) (Fig. 9 - 89 cm). 

There are some significant differences in the overall geometry of the modeled thrust wedge 

with respect to the natural example. The submarine accretionary wedge is more elongate (roughly 200 

km E-W and 150 km N-S) and has a shallower surface slope and wedge taper (1° surface slope, with a 

2° mean basal dip and thus 3° wedge taper) than the model wedge (N-S roughly 100 cm, E-W roughly 

50 cm, surface slope 6°, basal dip = 0° and thus 6° wedge taper). This appears to be a limitation of the 

dry granular materials used which are stronger (have a higher coefficient of internal friction) than 

underconsolidated and often overpressured marine sediments. In particular fluid overpressures likely 

present within the decollement layer, are not reproduced adequately and the ensuing basal friction is 

thus too high in the model wedge. The accretionary wedge may also contain evaporates which can 

exhibit some of the weakest rheologies known (Gutscher et al., 2008). The higher basal friction in the 

model wedge results in a higher taper and shorter length (Davis et al., 1983; Lallemand et al., 1994, 

Gutscher et al., 1998b). The submarine wedge is much thinner and much longer. 

Despite these limitations, the final stage of the experiment with the oversteepened deformation 

front, and the curved and deflected anticlinal thrust ridges on the accretionary wedge (even locally 

overriding the ridge itself) (Fig. 10A) is highly reminiscent of the 3-D geometry of the seafloor at the 

point of impact between Coral Patch Ridge and the deformation front (Fig. 10B). In the natural 

example the deformation front has clearly advanced further to the north (to the left) and has a gentler 

surface slope here as well. The asymmetry of the deformation front, with the embayment south of the 

indenter clearly indicates the relative sense of motion of the backstop with respect to the indenter 

(equivalent to SW to WSW for the Gulf of Cadiz). 

If the primary direction of tectonic shortening pushing the accretionary wedge into the indenter 

were towards the NW (Africa - Iberia motion), then the embayment would appear on the northern side 

of the Coral Patch Ridge. The analog model thus unequivocally demonstrates a predominantly WSW 

compressional motion of the Rif-Betic backstop towards the seafloor in the Horseshoe and Seine 

abyssal plain region. This tectonic motion (of the Rif - Betic block) is also borne out by GPS data 

from the region (Fernandes et al., 2007; Stich et al., 2007; Tahayt et al., 2008). As the seafloor 

morphology (imaged by multi-beam bathymetry) and shallow sediment deformation imaged by high-

resolution seismic profiles at the intersection of the indenter and the accretionary wedge are all very 

recent (Gutscher et al., 2008), this demonstrates that the subduction rollback mechanism continues to 

drive tectonic deformation today. Understanding the plate tectonic forces active today in the region is 

of primary importance for a proper assessment of the modern day seismic hazard. The first and most 

important step in this effort is trying to identify the source region of the strongest earthquake in 

European history the Great Lisbon earthquake of 1755. 
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Implication for the 1755 earthquake 

Numerous candidate sources have been proposed for the 1755 earthquake; Gorringe Bank, 

Marquis de Pombal and the Horseshoe fault (Fig. 1). Following the M7.9 St. Vincent earthquake in 

1969, which occurred on the Horseshoe Fault in the Horseshoe abyssal plain, some authors proposed 

this to be the source of the 1755 earthquake as well (Fukao, 1973). The fault plane solution indicates 

conjugate N60° striking, 45° dipping fault planes with a reverse sense of motion. Other authors 

proposed the nearby Gorringe Bank, an uplifted flake of oceanic crust (rising to a water depth of 25 

m), to be the source (Johnston, 1996). Seismic profiles reveal steep scarps and deformed sediments 

suggestive of recent thrust deformation here (Sartori et al., 1994; Hayward et al., 1999). The potential 

dimensions of a lithospheric scale thrust fault for Gorringe Bank are about 200 km x 80 km (for a 50 

km thick elastic lithosphere, and 40° fault dip). Using a very high rigidity value of 6.5 x 1010 Pa (for 

a fault entirely in oceanic lithosphere), a magnitude of 8.7 was calculated for a uniform slip of 12 m 

(Johnston, 1996). For a more typical rigidity value of about 3 x 1010 Pa, a uniform slip of 24 m would 

be required to produce an M8.7 event. 

 More recently, authors have focussed on the Marquis de Pombal, a basement high off the SW 

corner of Portugal (Zitellini et al., 2001; Gracia et al., 2003a). Tsunami modeling suggests a source 

located at the Marquis de Pombal structure can provide a reasonable fit for arrival time for most 

stations, though discrepancies exist for the Gulf of Cadiz and NW Morroccan coast (Baptista et al., 

1998). The primary objection to the Marquis de Pombal source, however, is that the dimensions of 

this structure (about 100 km x 70 km) are too modest to produce an earthquake of M>8.5. A 

calculation using a uniform slip of 15 m, yields only M=8.3 (Zitellini et al., 2001). An event of this 

magnitude would not be felt in Hamburg or the Cape Verde Islands. Indeed, an empirical relation has 

been established between earthquake magnitude and the rupture area of the fault on the basis of 

earthquakes M≤8 (Fig. 11) (Wells and Coppersmith, 1994). The relation also holds true when great 

subduction earthquakes of the past 100 years are added. Thus, according to this relation, the source 

region of an M8.7 earthquake should be over 30,000 km2 in area (roughly 150 km x 200 km) (Fig. 

11). Of the known tectonic structures off SW Iberia, only the subduction fault plane (and to a lesser 

extent Gorringe Bank) has sufficiently large dimensions (Fig. 11).  

 Finally, some authors have proposed combining a series of faults in a chain, with rupture along 

one segment triggering rupture along the following segment, and thus attempted to explain the large 

seismic moment (Gracia et al., 2003; Baptista et al., 2003; Stich et al., 2007). However, even after 

adding two such segments together (e.g. - the Marquis de Pombal and Horseshoe faults) the surface 

area is still far too small to generate the appropriate seismic moment (Fig. 11). Three such faults are 
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also insufficient. And a scenario where four (or more) small faults rupture in rapid succession 

becomes increasingly unlikely and untenable as a hypothesis. 

 

Conclusions 

Morpho-bathymetric data from the Gulf of Cadiz image a rugous sea-floor slope with curvi-

linear ridges and troughs comprising an eastward thickening wedge of tectonically deformed 

sediments. Deep crustal structural maps are presented which demonstrate that sediment thicknesses in 

the central Gulf of Cadiz reach a maximum of 12-13 km. The basement beneath the western and 

central Gulf is generally between 7 and 10 km thick and forms a roughly E-W oriented trough 

between the thicker (20-30 km) continental crust of SW Iberia and NW Morocco. The thick 

tectonically deformed sedimentary wedge is an accretionary wedge formed by the W to SW migration 

of the Rif-Betic block. The frontal (western) and lateral (south-eastern) boundaries of the accretionary 

wedge show signs of recent deformation. Ongoing hydrological activity of the accretionary wedge is 

indicated by the presence of abundant mud volcanoes (Pinheiro et al., 2003; 2006) as well as the 

geochemistry of fluids emanating from these mud volcanoes, which indicate an origin due to clay 

mineral dehydration processes, typical of accretionary wedges (Hensen et al., 2007). Eastward 

diminishing heatflow as observed on the accretionary wedge also requires active underthrusting 

(subduction) at rates ≥5mm/yr (Grevemeyer et al., 2008). All of these data are consistent with ongoing 

subduction. 

The formation and evolution of the accretionary wedge is investigated by analog modeling. 

The development of a curved, horseshoe-shaped deformation front is reproduced by accretion against 

a curved rigid backstop (representing the orogenic core of the Rif and Betic Mountain belts). The 

collision of an oblique trending linear ridge with the accretionary wedge is modeled as well. The 

impact is an asymmetric deformation front with an embayment (to the south) marked by a steeper 

surface slope. These morphological features successfully reproduce the seafloor morphology imaged 

by the bathymetric data and provide kinematic constraints on the relative shortening between the Rif-

Betic block and the oceanic abyssal plains in the Atlantic domain to the west. These demonstrate a 

WSW directed relative convergence direction, driven by subduction roll-back. The tectonic activity of 

the subduction system has a strong impact on the seismic hazard assessment for the region. Indeed, 

the shallow east-dipping subduction fault plane has the appropriate dimensions (180 km N-S x 210 

km E-W) to generate an earthquake of magnitude 8.6 for 10 m of uniform co-seismic slip. The 

subduction fault plane is the only single tectonic structure in the region with sufficiently large 

dimensions to generate such a great earthquake. 
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Figure Captions 

 

Figure 1: General location map, seismicity and primary faults of the S. Iberian / N. Moroccan region 

(after Gutscher, 2004). Shaded hill relief shown here in background and in Figures 5 and 6 from 

Gebco 1 min global grid (IOC et al., 2003). Major earthquakes (M>6) are shown with date. Dashed 

line represents likely position of plate boundary separating Iberia (Eurasia) from Africa (Nubia) and 

defining a third, pie-shaped block (the Rif-Betic-Alboran domain). The green shaded faults; G = 

Gorringe Bank (Johnston, 1996), HF = Horseshoe Fault (Gracia et al., 2003a; Stich et al., 2007), Mq = 

Marques de Pombal (Zitellini, et al., 2001; Gracia et al., 2003a) as well as the subduction fault plane 

(below the accretionary wedge) (Gutscher, 2004; Gutscher et al., 2006) have been proposed as being 

the potential source of the 1755 M8.7 Great “Lisbon” earthquake.  

 

Figure 2: Seafloor morphology of the Gulf of Cadiz A: Compilation of multibeam bathymetric data 

acquired during the following cruises: GAP (Kopf et al., 2003); Cadisar (Mulder et al., 2003); 

Cadisar2 (Mulder et al., 2006); MatesPro (Terrinha et al., in press); TV-GIB (Gutscher, 2005); 

Hermes (D. Masson, R/V Charles Darwin, 2006); Delila and DelSis (Gutscher et al., 2008) and 

Microsystems (D. Blamart, R/V Marion Dufresne, July 2008). In regions without multi-beam 

coverage colored contour lines are shown every 200 m from the GEBCO 1 min grid (IOC et al., 

2003). Red lines show the portions of seismic profiles presented in the paper below, with the numbers 

indicating the figure numbers. B: 3-D perspective view looking E towards the straits of Gibraltar. 

Note the WNW-ESE trending basement high (Coral Patch Ridge) indenting the SW portion of the 

accretionary wedge. 

 

Figure 3: High resolution Chirp seismic profiles acquired by the R/V Suroit (DelSis cruise) in April 

2005 

A: NE-SW oriented chirp profile (SE at right) crossing the toe of the deformation front (profile is 9 
km long, 1 trace = 3 m). Note highly reflective strata at adjacent abyssal plain and folded strata on the 
accretionary wedge (VE=30). 
B: N-S chirp profile (N at left) crossing northern limit of Rharb Valley fault at 6°56’W and a mean 
depth of 500- 
600m, (profile length = 15 km) note folded and eroded strata (VE=30). 
C: NNE-SSW chirp profile (N at right) on Moroccan shelf (crossing the prolongation of the 
Rharb Valley fault at 6°39’W) at 115-135m water depth, note folded strata and discordance at 120- 
130m depth, likely due to the sea-level lowstand during the Last Glacial Maximum (VE=40) 
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Figure 4: DelSis line 29 (24-channel seismic profile) acquired by the R/V Suroit in April 2005. 

The profile crosses the entire Rharb submarine valley at 2800 m depth and images an anticline at the 

base, overlain by a chaotic facies (Tortonian Olistostrome) and by horizontal valley fill. Note the 

upper surface of the chaotic facies is slightly deformed and then sealed by the valley fill. The NE 

portion of the chaotic facies is more strongly deformed and uplifted along a SE dipping thrust fault, 

marking the edge of the active accretionary wedge. 

 

Figure 5: Structural maps of the S. Iberian / N. Moroccan region A: depth to basement map obtained 

from joint interpretation of all seismic profiles shown (Thiebot and Gutscher, 2006); B: sediment 

thickness map obtained by combining relief (adding topography and subtracting bathymetry) with the 

depth to basement map; C: depth to Moho map obtained by integrating all published seismic 

reflection, and seismic refraction profiles (Hatzfeld and Bensari, 1977; Working Group, 1978; Banda 

and Ansorge, 1980; Docherty and Banda, 1995; Seber et al., 2001; Gutscher et al., 2002; Contrucci et 

al., 2004). Where no seismic data were available (NE Atlantic, Iberia or NW Africa) some values 

were taken from regional crustal thickness compilations of the Mediterranean region (van der Meijde 

et al., 2003; Dezes and Ziegler, 2001) D: crustal thickness map obtained by subtracting depth to 

basement from depth to Moho map. 

 

Figure 6: Relief map of Southern Iberia region (Gebco 1 min grid - IOC et al., 2003), with location of 

arcuate structures shown in map view (see explanation in Figure). Six independent arc-shaped features 

can be identified at depths ranging from 60-200 km to the surface, and are aligned along a WSW-ENE 

axis of symmetry, along the trend of the straits of Gibraltar. Regions likely floored by oceanic crust 

are shown in yellow. TAP = Tagus Abyssal Plain, HAP = Horseshoe Abyssal Plain, SAP = Seine 

Abyssal Plain, Gor = Gorringe Bank, CP = Coral Patch seamount, GR = Guadalquivir Ridge; WAS = 

West Alboran Sea. (More details are given in the text.) 

 

Figure 7: (Top) Free-air gravity anomaly map of the Gulf of Cadiz - Alboran Sea region (Sandwell 

and Smith, 1997) with location of Sismar seismic profiles shown (Gutscher et al., 2002; Contrucci et 

al., 2004). (Abbreviations are the same as in Fig. 6.) Most gravity maxima are associated with 

basement highs (e.g. - Gorringe Bank, Coral Patch seamount, etc.) or continental margins. (Bottom) 

Two schematic lithospheric cross-sections, with co-located 2-D free-air gravity anomaly profiles (red 

dots). Locations indicated on the free-air gravity map above. Gravity minima are typically associated 

with thick sedimentary accumulations. 
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Figure 8: Experimental set-up of analog model using granular materials. The curved backstop 

consists of a thin, rigid board overlain by a 4cm thick layer of sand. Tectonic convergence is 

simulated by pulling a mylar film beneath the rigid backstop. The layer of granular materials 

overlying the mylar consists of a 10 mm thick layer of sand and 1 mm cohesive colored powder 

overlying a 4mm thick glass bead layer. These granular materials are progressively scraped off and 

accumulate against the curved backstop. 

 

Figure 9: Photographs at different stages of the analog modeling experiment, with the amount of 

convergence indicated in cm in each case. 0 cm is the initial stage. The rose colored sand on the edges 

also overlies the mylar film and represents the SW Iberian and NW Moroccan continental margins. 

 

Figure 10: Comparison of experiment and sea-floor morphology. A: Close-up of final stage of 

experiment (after 89 cm of shortening) B: Close-up 3-D bathymetric view of Coral-Patch Ridge 

indenting the deformation front. Note in both cases, the asymmetric shape of the deformation front, 

with the embayment to the right associated with a steeper frontal slope. 

 

Figure 11: Empirical relation between fault surface area and earthquake magnitude (redrawn after 

Wells and Coppersmith, 1994). Several large subduction earthquakes have been included like the 

Sumatra 2004 M9.3 and 2005 M8.7 events (Lay et al., 2005) and the Chile 1960 M9.5 and Alaska 

1964 M9.2 earthquakes. The surface areas of various candidate faults for the 1755 Lisbon earthquake 

have been plotted (see Fig. 1 and caption to Fig. 1 for references). Note that only the subduction fault 

plane has sufficient dimensions (180 km x 210 km) to generate a M>8.5 earthquake. 
























