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Laguerre-Gram reduced-order modeling

Ahmed Amghayrir,Student Member, IEEE,Noël Tanguy,
Pascale Bŕehonnet, Pierre Vilb́e, and Ĺeon-Claude Calvez

Abstract— We present an efficient model reduction procedure based
on the Laguerre description of the system to be approximated. Using
a one-order operator defined in the Laplace domain we construct a
pencil of functions and formulate the problem as the minimization of the
L2

̟

(
R

+
)

criterion. The use of a weight function in the inner product
definition allows a control of the time-error spreading in model reduction
procedure. We show how the required Gram matrix can be computed
efficiently and prove that the impulse response of the reduced model is
also in L2

̟

(
R

+
)
. The transfer function approach allows an immediate

and promising application in model reduction of infinite dimensional
systems. An extension to MIMO systems is also given.

Index Terms— Model-order reduction, Laguerre functions, infinite
dimensional systems.
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I. I NTRODUCTION

Laguerre functions have shown their large potential in numerous
applications as in signal analysis and parameter identification [1],
system identification [2], [3], approximation of finite or infinite-
dimensional system [4], [5], industrial control [6],... More recently,
starting with a state-space representation of a system, a Laguerre
description has been used to compute a reduced-order model of the
system. The method is based on Padé approximation of the Laguerre
spectra, associated to a Krylov subspace decomposition technique
[7]–[9]. In this paper we present a model reduction technique using a
transfer-function formalism that allows reduction of irrational transfer
functions. The derivative and integral operators usually employed
to construct a pencil of functions for the reduction procedure are
here replaced by a one-order operator more suited to construct a
set of basis functions from the Laguerre description of the system.
The model reduction problem is then formulated as aL2

̟

(
R

+
)

criterion minimization in which the required Gram matrix can be
efficiently computed. The use of a weight function in the inner
product definition permits a control of the time-error spreading of
the reduced model. Assuming that the original function belongs to
L2

̟

(
R

+
)

the presented procedure yields a reduced model whose
impulse response provably belongs toL2

̟

(
R

+
)
. An extension to

MIMO systems is also derived.
The paper is organized as follows. From the Laguerre representa-

tion of the system we construct in section II a set of linearly inde-
pendent functions. On the base of this set of functions we formulate
in section III the model reduction problem as the minimization of
a L2

̟

(
R

+
)

criterion and solve it. The belonging toL2
̟

(
R

+
)

of
the resultant funtion is proved and the extension of the reduction
procedure to MIMO systems is given. A numerical example of the
model reduction method is then presented in section IV.

The authors are with the Laboratoire d’Electronique et des Systèmes de
Télécommunications (LEST) UMR CNRS n◦ 6165 at the University of Brest,
Brest, France.

II. PENCIL OF FUNCTIONS CONSTRUCTION

The real causal two-parameters Laguerre functionsφn (t) related
to the Laguerre polynomialsLn (x) by

φn (t) ,
√

γe
−αt

Ln (γt) ,

with α > 0, γ > 0 and

Ln (x) ,
ex

n!

dn

dxn

(
x

n
e
−x

)
,

have the following Laplace transforms

φ̂n (s) =

√
γ

s + α

(
s − γ + α

s + α

)n

, n = 0, 1, 2, ... (1)

Defining the weighted inner product of two real causal functions by

〈f, g〉 ,

∫ ∞

0

̟ (t) f (t) g (t) dt, (2)

where the weight function is given by

̟ (t) , e
−(γ−2α)t

,

let L2
̟

(
R

+
)

denote the Hilbert space of measurableR-valued
functions f (t) for which 〈f, f〉 , ‖f‖2

̟ < ∞. It will be noted
that a necessary (but not sufficient) condition forf (t) to belong to
L2

̟

(
R

+
)

is γ

2
− α > ℜ (−si), where(−si) stands for the poles of

f̂ (s) [10]. The Laguerre functions constitute an orthonormal basis
in L2

̟

(
R

+
)

satisfying

〈φn, φm〉 = δn,m,

with δn,m the Krönecker symbol. In mostly engineering literature
the particular choiceγ − 2α = 0 is made and corresponds to an unit
weight function in the inner product definition (2). A different choice
of the (γ − 2α) value modifies the temporal part of the functions in
the inner product and will yield to modify the error-spreading of the
impulse response of the reduced model along the temporal axis. Since
the Laguerre functions constitute an orthonormal basis inL2

̟

(
R

+
)
,

the Laplace transform̂f (s) of any functionf ∈ L2
̟

(
R

+
)

can be
represented by a Laguerre series

f̂ (s) =

∞∑

n=0

fnφ̂n (s) , (3)

where the Laguerre spectrum{fn}n≥0 is given by fn = 〈f, φn〉.
Using the orthogonality property, the weighted inner product defined
in (2) can be replaced by a discrete sum usually more convenient for
numerical computation

〈f, g〉 =

∞∑

n=0

fngn. (4)

Denoting F (z) the z-transform of the Laguerre spectrum
{fn}n≥0, F (z) can be derived using the bilinear transformation
z = s+α

s+α−γ
which maps the open left plane ins-domain delimited

by ℜ (s) < γ

2
− α into the open unit disk inz-domain

f̂ (s) 7→ F (z) ,

∞∑

n=0

fnz
−n =

√
γz

z − 1
f̂

(
γz

z − 1
− α

)
. (5)

It is worth noting that the inner product (4) may be written in the
z-domain as

〈f, g〉 =
1

2πj

∮

|z|=1

F (z) G

(
1

z

)
dz

z
. (6)

An important property of the bilinear transformation is the preser-
vation of the order of complexity of transfer functions. As for
example if f̂ (s), an irreducible analytic transfer function in some
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s-domain, is given byf̂ (s) =
p

m−1sm−1+...+p1s+p0

qmsm+...+q1s+q0
therefore

F (z) =
z(u

m−1zm−1+...+u1z+u0)
vmzm+...+v1z+v0

will be an irreducible, analytic
and rational transfer function in correspondingz-domain. The recip-
rocal transformation givinĝf (s) from F (z) is

F (z) 7→ f̂ (s) =

√
γ

s + α
F

(
s + α

s − γ + α

)
. (7)

Now let us define

f̂ (s) 7→ Λ
{

f̂ (s)
}

,
s + α

s − γ + α

[
f̂ (s) − γ

s + α
f̂ (γ − α)

]
, (8)

and construct recursivelyΩr =
{

f̂0, f̂1, ..., f̂r

}
using

f̂0 (s) , f̂ (s) ,

f̂i+1 (s) , Λ
{

f̂i (s)
}

for i = 0, 1, ..., r − 1. Denoting{fi,n}n≥0 the Laguerre spectra of

the functionsf̂i (s) and Ξr = {F0, F1, ..., Fr} the set of functions
Fi (z) derived from f̂i (s) via transformation (5), one obtains the
relation linking the successive functionsFi (z) as

Fi+1 (z) = z [Fi (z) − fi,0] (9)

with F0 (z) = F (z). Therefore it follows that the Laguerre spectrum
of f̂i+1 (s) is readily obtained from the Laguerre spectrum off̂i (s),
and so on

fi+1,n = fi,n+1 = ... = f0,n+i+1 = fn+i+1 (10)

for all n ≥ 0, i ≥ 0. Hence no computation is required and so no
error is made when computing the Laguerre spectrum of any member
of the setΩr. Moreover using (8) or (9) andfi,0 =

√
γf̂i (γ − α) =

lim
z→∞

Fi (z) deduced from (5) one should readily verify thatΛ

operator preserves the natural frequencies or poles in the Laplace
domain. ThereforeΩr constitutes an efficient set of approximating
functions for determining ar-order reduced denominator.

III. M ODEL REDUCTION

To construct ar-order reduced model of̂f (s), consider now the
approximation off̂r (s) using the setΩr−1. Denotingê (s) the local
error andai the negatives of the coefficients of the approximation,
we can write

r∑

i=0

aif̂i (s) + ê (s) = 0, wherear = 1. (11)

Applying transformation (5) to equation (11) yields
r∑

i=0

aiFi (z) + E (z) = 0, (12)

where

E (z) =

√
γz

z − 1
ê

(
γz

z − 1
− α

)
.

Therefore, in view of (6), we infer that minimizing〈e, e〉 in Laplace
domain to construct anr-order reduced model of̂f (s) is equivalent
to minimizing 〈e, e〉 in z-domain to construct anr-order reduced
model ofF (z).

Denoting Ψ the Gram matrix constituted of the inner prod-
ucts ψi,j , 〈fi, fj〉 for i, j = 0, 1, ..., r − 1 and ~b ,

[ψ0,r ψ1,r ... ψr−1,r]
T whereT denotes the transpose, then the best

r-vector~a , [a0 a1 ... ar−1]
T in the sense of minimizing the error

energy〈e, e〉 in (11) can be obtained by solving the linear system

Ψ~a = −~b. (13)

From (4) and (10) the inner products can be expressed exclusively
from the Laguerre spectrum of̂f (s) as

ψi,j =

∞∑

n=0

fn+ifn+j , (14)

which constitute absolutely convergent series assuming thatf (t)
belongs to L2

̟

(
R

+
)
. Inner productsψi,j are thus replaced by

sums, in practice finite, that are simple to calculate. Moreover, cost
computation of the Gram matrix will be drastically reduced using the
symmetry propertyψi,j = ψj,i and the recurrence relation deduced
from (14)

ψi,j = ψi−1,j−1 − fi−1fj−1, i, j = 1, 2, ... (15)

Repeating the use of (9) and using (10) yields

Fi (z) = z
i
F0 (z) −

i−1∑

j=0

fjz
i−j

. (16)

Substituting (16) in (12) and solving forF0 (z) yields

F0 (z) =
zBr−1 (z) − E (z)

Ar (z)
(17)

whereBr−1 (z) ,
r∑

i=1

ai

i−1∑
j=0

fjz
i−j−1 andAr (z) ,

r∑
i=0

aiz
i, with

ar = 1, are polynomials inz respectively of orderr − 1 and r.
BecauseE (z) is an error term, assuming that〈e, e〉 is sufficiently
small, equation (17) suggests that

F̃ (z) =
zBr−1 (z)

Ar (z)
(18)

is a r-order candidate model forF (z) = F0 (z). Therefore applying
reciprocal transformation (7) to (18) yields

̂̃
f (s) =

p (s)

q (s)
=

√
γ

r∑
i=1

ai

i−1∑
j=0

fj (s + α)i−j−1 (s − γ + α)r−i+j

r∑
i=0

ai (s + α)i (s − γ + α)r−i

(19)
with ar = 1, a r-model candidate for approximatinĝf (s).

Starting with the Laguerre spectrum{fn}n≥0 of f̂ (s), the model

reduction procedure to construct ar-order model off̂ (s) can be
summarized as follows:

1. Form the Gram matrixΨ and~b , [ψ0,r ψ1,r ... ψr−1,r]
T , by

computing the required inner products in the following way:
- computeψ0,j =

∑∞
n=0 fnfn+j for j = 0, 1, ...r,

- recursively computeψi,j = ψi−1,j−1 − fi−1fj−1, for i =
1, 2, ...r − 1 and j = i, i + 1, ..., r,

- complete the lower triangular part ofΨ using the symmetry
propertyψi,j = ψj,i.

2. SolveΨ~a = −~b for ~a = [a0 a1 ... ar−1]
T .

3. Form the reduced model using (19).
Remarks:
- The Laguerre expansion for some simple transfer functions can

be found in [11], but usually deducing the infinite Laguerre expansion
(3) and computing the Gram matrixΨ of an irrational transfer
function is not a straightforward problem. In practice aN -order
truncated Laguerre series (N ≫ r) should be used in the place of
(3); assuming that the truncated error is sufficiently small the model
reduction will give a good approximation of the original transfer
function. It will be noted that the Laguerre spectrum{fn}0≤n<N of

f̂ (s), can always be evaluated by the Weeks method [12], [13].
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- It will be noted that the reduced model given by (19) preserves
ther-first Laguerre coefficientsfj of f̂ (s). As the Laguerre spectrum
of f̂ (s) is related to the derivatives of̂f (s) at s = γ − α [11] by

dnf̂ (s)

dsn

∣∣∣∣∣
s=γ−α

=
1√
γ

n!

(−γ)n

n∑

j=0

(
n

j

)
(−1)j

fj

where
(

n

j

)
stands for the binomial coefficients, this implies that the

reduced model given by (19) preserves the first derivatives off̂ (s)
at s = γ − α, i.e.

dn̂̃
f (s)

dsn

∣∣∣∣∣∣
s=γ−α

=
dnf̂ (s)

dsn

∣∣∣∣∣
s=γ−α

, n = 0, 1, ..., r − 1.

- Moreover, takingq (s) =
r∑

i=0

ai (s + α)i (s − γ + α)r−i as the

denominator of the reduced model, the choice of the numerator
can be optimized in the sense of minimizing the quadratic error〈
f − f̃ , f − f̃

〉
. The problem is then a well-known linear problem

which leads to the resolution of̃̂f (ν∗
i + γ − 2α) = f̂ (ν∗

i + γ − 2α)
for i = 1, 2, ..., r whereν∗

i stands for the negatives of the complex
conjugate of the zeros ofq (s).

A. Belonging toL2
̟

(
R

+
)

consideration

Assuming thatf̂ (s) is a transfer function of degreer0 ≥ r, Ωr−1

is a set of linearly independent functions and then the Gram matrixΨ
constituted of the inner productsψi,j = 〈fi, fj〉 (i, j = 0, 1, ..., r−1)
is a positive definite matrix. Consider now the Lyapunov equationΨ−
AT ΨA = C whereA ,

(
~0T

I

∣∣∣∣ − ~a

)
represents the companion

form of the reduced system in the state-space representation. Taking
into account that~a satisfies (13) and using (15), the solution of
the Lyapunov equation is given byC = ~c~cT + M where ~c ,

[f0 f1 ... fr−1]
T and M ,

(
0

~0T

∣∣∣∣
~0
ε

)
with ε = 〈e, e〉. As the

quadratic errorε is always non-negative,C matrix is semi-positive
definite, thereforeAr (z) cannot have any zero outside the unit circle
and thusq (s) cannot have any zero in the right half-plane delimited
by ℜ (s) > γ

2
−α. Furthermore, provided that{A, C} is observable,

the reduced model belongs toL2
̟

(
R

+
)

[14]. In the particular case
γ = 2α, which corresponds to a unit weighting function in (2),
the model-reduction procedure then yields a model proved to be
asymptotically stable.

B. Extension to MIMO systems

In MIMO case, the system under consideration is described by a
matrix of transfer functionŝF (s) =

[
f̂λ,µ (s)

]
. The problem is then

to derive a matrix̂̃
F (s) of transfer functions possessing the same

r-order denominatorq (s) i.e.

̂̃
F (s) =

[
̂̃
fλ,µ (s)

]
=

[pλ,µ (s)]

q (s)
, (20)

in the sense of minimizing the quadratic errorε =
∑

λ,µ ελ,µ where
ελ,µ = 〈eλ,µ, eλ,µ〉. The solution is given by solving




∑

λ,µ

Ψλ,µ


~a = −




∑

λ,µ

~bλ,µ


 ,

where the Gram matricesΨλ,µ and the vectors~bλ,µ are computed for
each transfer function̂fλ,µ (s) with the same Laguerre parametersα

andγ.
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Fig. 1. Impulse responses of the original system, of its 4th-order model
for (α1; γ1) = (18.5; 37.0) (dashed line), for(α2; γ2) = (8.95; 47.9) (dot
line) and of its 4th-order Padé model (dashed-dot line)

Starting with the Laguerre spectrum of each functionf̂λ,µ (s)
computed for common valuesα and γ of the Laguerre parameters,
the procedure of MIMO system reduction then follows:

1. Compute the Gram matricesΨλ,µ and the vectors~bλ,µ relative
to the transfer functionŝfλ,µ (s).

2. Form the Gram matrixΨ =
∑

λ,µ Ψλ,µ and the vector~b =∑
λ,µ

~bλ,µ then solveΨ~a = −~b for ~a = [a0 a1 ... ar−1]
T .

3. Construct the reduced model̂̃
F (s) given in (20) by using (19)

for all the values ofλ andµ.

Note that the numeratorspλ,µ (s) could be optimized by solving

̂̃
fλ,µ (ν∗

i + γ − 2α) = f̂λ,µ (ν∗
i + γ − 2α)

for i = 1, 2, ..., r whereν∗
i stands for the negatives of the complex

conjugate of the zeros ofq (s).

IV. N UMERICAL EXAMPLE

To illustrate the utility of the method we present a typical ap-
plication of model reduction of an infinite-dimensional system. The
system considered is a distributed RC circuit whose irrational transfer
function is [15], [16]

ĝ (s) =
1

1 +
sinh(

√
RCs)√

RCs

with RC = 1.

From ĝ (s), the firstN = 150 coefficients of a Laguerre model are
recursively computed using [17] for two different weight functions
̟1 (t) = 1 and ̟2 (t) = e−30t. The corresponding Laguerre
parameters(α1; γ1) = (18.5; 37.0) and (α2; γ2) = (8.95; 47.9)
used for the computation of the truncated Laguerre spectrum ofĝ (s)
came from the optimization method described in [16], [18]. Using
the technique presented in this paper the following 4th-order reduced
models are derived as

̂̃g1 (s) =
−0.397s3 + 155.4s2 − 25589s + 1746201

s4 + 157.5s3 + 10611s2 + 239771s + 3493517
,

̂̃g2 (s) =
−0.177s3 + 83.50s2 − 15866s + 1209479

s4 + 113.8s3 + 7820s2 + 166458s + 2443337
,

and are compared with the Padé approximation

̂̃gPadé (s) =
−1.298s3 + 357.2s2 − 46275s + 2693055

s4 + 205.6s3 + 15444s2 + 356292s + 5386110
.

The impulse response of the original transfer function and those
of the 4th-order models and Padé approximation are presented Fig.
1 and show the great accuracy of the presented model-reduction
procedure. The time zoom neart = 0 underlines the role played
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by the weight function̟ (t) = e−(γ−2α)t: a choice ofγ > 2α,
as used to derivễg2 (s), produces an improvement of the reduced
model quality aroundt = 0 (to a comparative detriment of the
quality for t greater). If we define the relative weighted quadratic
error by Q , 〈g − g̃, g − g̃〉 /〈g, g〉 we obtainQ1 = 2.18 · 10−4

and Q2 = 6.10 · 10−4 for the Laguerre-Gram reduced models,
and QPadé = 1.32 · 10−3 (computed for the weighting function
̟ (t) = 1) for the Pad́e model. These results confirm the great
accuracy of the model reduction procedure.

V. CONCLUSION

An efficient procedure for model reduction of finite or infinite
dimensional transfer function described by a Laguerre expansion
has been presented. Based on a one-order operator in the Laplace
domain is constructed a set of basis functions from which is applied
a procedure of quadratic error minimization. The use of a weight
function in the inner product definition permits a control of the time-
error spreading of the reduced model. Integrals defining the required
inner products are replaced by sums (finite in practice) expressed
using the Laguerre spectrum of the original transfer function and
can be computed recursively, allowing a numerically convenient
calculation. We have shown that the reduced model preserves the
first derivatives of the transfer function at a chosen points = γ − α

and has an impulse response that belongs toL2
̟

(
R

+
)
. The procedure

has also been extended to MIMO systems. Presented work takes part
inter alia of model reduction of infinite dimensional systems. An
illustrative example has shown the efficiency of the procedure.
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[11] L. C. Calvez,Contributionà l’ étude des propriét́es de la transformation
Z et de la transformation de Laguerre. Applicationsà l’analyse des
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