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Fast Algorithm for Optimal Design of Block Digital 

Filters Based on Circulant Matrices 
Ali Daher, El Houssain Baghious, and Gilles Burel, Member, IEEE 

Abstract—Block digital filtering has been suggested to reduce 
the computational complexity and to increase the parallelism 

of computation in digital filtering systems. In this letter, a fast 
algorithm for optimal design of Block Digital Filters (BDFs) 
is developed. This algorithm, based on circulant, Toeplitz and 
shift cyclic matrices, does not only reduce the computational 
complexity of the design process but also decreases the memory 
requirements. 

Index Terms—Block digital filters, circulant matrix, Toeplitz 
matrix, time-varying systems, aliasing, overlap-save. 

I. INTRODUCTION 

N many signal processing applications, fast digital filtering 

1s required. Transform-based block digital filtering 1s well 

known for two benefits : firstly, its ability to reduce the 

computational complexity, and secondly, the possibility to 

increase the parallelism of computation in digital filtering 

systems, which is so much required now with the availability 

of multiprocessor architectures. Many approaches to Block 

Digital Filters (BDFs) design exist. Some approaches com- 

pel the BDF to be time-invariant so that conventional filter 

synthesis techniques can be used [6]. The best known and 

most widely used approach 1s Overlap-save ([10, p. 558]). 

In some other approaches, no such constraint on the BDF 1s 

imposed so that the BDF can be time-variant [7]. For that, 

an optimal matrix-oriented approach was developed by G. 

Burel in [2]. Although the aliasing distortion is not null, the 

global distortion obtained with this optimal approach is lower 

than the global distortion obtained with overlap-save or other 

approaches. 

On the other hand, many fast algorithms in the context of 

digital filtering have been obtained based on particular matrix 

structures [9], [11]. 

In this letter, we are explicitly establishing the relationship 

of the circulant, Toeplitz and cyclic shift matrices with the 

design of the optimal BDF. Within this process, a very fast 

algorithm is obtained. The proposed algorithm gives the same 

BDF as that obtained in [2] but with lower computational cost 

and less memory requirement. 

This letter is organized as follows. In Section II, the 

principle of transform-based block digital filters 1s shown. In 

Section III, the existing algorithm for the optimal BDF design 

1s presented. In Section IV, a description of our proposed 

algorithm 1s provided. In Section V, computational complexity 
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Fig. 1. Transform-based block digital filtering 

and memory requirements are shown. Finally, a conclusion 1s 

drawn in Section VI. 

II. TRANSFORM-BASED BLOCK DIGITAL FILTER 

The principle of the transform-based block digital filtering 

is illustrated on Fig. 1. The input signal 1s divided into over- 

lapping blocks of M samples. Each block 1s then processed by 

transform filtering and provides L samples of the output signal 

(L < M and 2d = M — L is even to preserve symmetry). 

In this letter, we consider that the input block size M and 

the output block size L are chosen based on hardware and 

software considerations. The transform used 1s the Discrete 

Fourier Transform (DFT). 

Throughout the letter, we will note : 

e Fn : the N x N matrix corresponding to an /N —point 

DFT and F y ! as its inverse; 

e S :the L x M selection matrix, a binary matrix which 

selects L values out of M from the middle; 

e Py :the M x M permutation matrix of the cyclic right 

shift operator; 

e A(:,j) : an m x 1 vector composed by the elements of 

the 5 column of an m x n matrix A: 
e A(i,:) : an n x 1 vector composed by the elements of 

the it" row of an m x n matrix A: 

e (.), : the modulo q operation. 

For an input block e;, the output block f; 1s given by : 

fi = Ae; (1)
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where the L x M matrix A is decomposed as follows : 

A = SF,/GFy (2) 

G is a matrix of size M x M. The elements of G are chosen 

in order to obtain a frequency response close to the desired 

one. Often, and in our case, G is considered as a diagonal 

matrix. S is the L x M selection matrix given by : 

S = [Orxd r Orsa] (3) 

with 07 x4 1s the Lx d zero matrix and /,, is the Lx L identity 

matrix. 

The filtered signal is formed by the concatenation of the 

output blocks f;. 

III. PREVIOUS WORK 

Four methods for the optimal BDF design have been pro- 

posed by G. Burel in [2]. Each method has a domain of 

validity which depends on the kind of criterion and on the 

kind of transform. They provide the optimal BDF (matrix 

G) but they differ by computational complexity and memory 

requirements. The obtained BDF 1s periodically time-variant 

and there is an aliasing error but the global distortion 1s 

lower than the global distortion obtained with overlap-save 

or other approaches. These methods were derived from an 

approach based only on elementary matrix computation, hence 

it is easy to implement them with modern mathematical 

tools. The fourth method, which 1s the fastest, and which 1s 

applied in case of unweighed frequency (where no frequency 

1s privileged) and unitary transform (DFT in our case), will be 

discussed. The criterion defined for the optimal BDF design 

is to minimize the quadratic error given by the following 

Frobenius norm : 

e = ||SF; GFm — Aal[” (4) 
As  given  in [1], the  elements — aa(l,m) 
(:0—L—1,m:0— M —1) of the L x M matrix 
Ay are extracted from the Æ x K matrix Hy given by : 

Ha = Fz " HaFr (5) 

K is the desired frequency resolution 

(K > M, K = bL with b an integer). Hj is the K x K 

diagonal matrix with Ha(k,k) = f(k) (k = 0,..., K — 1) 
where f (k) is the desired frequency response. 

To reduce the complexity of calculation of the matrix A, 

G. Burel proposed in [2] to extract ag(/,m) from the elements 

pa(l, k) of an L x K matrix P; as below : 

aq (l,m) = pa (I, +d—m),) (6) 

The matrix P 1s given by : 

Py = LF; P F;! (7) 

where P, is the L x K matrix whose first row elements are 

the f(k) and the other elements are null. 

For the case of G diagonal, its diagonal elements g, are 

given by : 

H 
(B(,n)) E(,n) 

:1— M 8 

1BC )P ‘ Q 
Yn — 

()H stands for the Hermitian transpose. B and L are the 

L x M matrices given below : 

B=B8F4 (9) 

E = AaFyy (10) 

Evaluating the computational cost (the number of real 

multiplications) of this method, we have to : 

: this requires a 2D-FFT of 

matrix Py. Its cost is approximately LK (log» (LK)) 
real multiplications. We remind that, with complex data, 

the required number of real multiplications for a K- 

point FFT is K (logo K — 3) + 4 (see [8, p. 60]), that 
is, approximately, Klogs K. 

e Extract A; from P, according to (6) : this does not 

require multiplications. 

e Compute B given by (9) : it is only a selection of L 

rows of the inverse transform matrix. It does not require 

multiplications. 

e Compute Æ given by (10) : it is an inverse transform of 

the rows of A,. It requires LM log9 M real multiplica- 

tions. 

e Compute g, in (8) : it requires 2ML complex mul- 

tiplications. As a complex multiplication 1s equivalent 

to three real multiplications (Golub’s method), therefore 

computing g, requires OM L real multiplications. 

e Use (7) to compute P 

IV. PROPOSED ALGORITHM 

In the previous algorithm, the calculation has been made 

without considering the particular structures of the different 

matrices and the tools that can reduce the computation com- 

plexity. To optimize the process, we propose a faster algorithm 

by using the properties of Toeplitz, circulant and shift cyclic 

matrices. 

A. Toeplitz, Circulant and cyclic shift matrices 

An M x M matrix 7" is known as Toeplitz matrix if it has 

constant values on each diagonal, that 1s, along the lines of 

entries parallel to the main diagonal : 

The circulant matrix C' is a particular case of the Toeplitz 

structure with t;_; =€) 

1m> 0 

" 

1>M) = C(j—i),, ! 1,7:0— M—l 

(12) 
The M x M circulant matrix C' is then formed from an M- 

vector by cyclically permuting the entries : 

c(i,j) = c((
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Co C1 CM -1 

CM—1 0 C1 CM —2 

G= (13) 

C1 CM —1 Co | 

In vector-matrix form, the relation between the rows of C can 

be described by : 

C(n,:) = PMC (n — 1,:) (14) 

C (n,:) = (Pm)"7*C (1,:) (15) 

Pm 1s the M x M permutation matrix of the cyclic right shift 

operator given by : 

0 0 O 0 1 

1 0 O 0 0 

0 1 O 0 0 
Pm = (16) 

o 0 0 --- 0 O 

10 0 60 -~ 1 O 

Pm 1s a particular circulant matrix with the attributes : 

(Pm)”" = Im (17) 

Py Py = Im (18) 
The circulant matrices have many mathematical properties 

used in communications and information theory [4], [5]. The 

most interesting property is matrix diagonalisation. À circulant 

matrix C can be decomposed as : 

C=F DFm (19) 

with D an M x M diagonal matrix, the diagonal of which 1s 

obtained by : 

diag(D) = FmC(,1) (20) 

diag(D) = MF,, C (1,:) (21) 

B. Description of the algorithm 

As described in [2], we have to minimize the error given in 

(4). Because G is diagonal, by using (19), this 1s equivalent 

to minimize : 

e = ||SC — Aal[” (22) 
where C is a circulant matrix. 

The first step of our algorithm is to compute the matrix Ay 

whose elements are extracted from the matrix q as given in 

[1]. Because H, is a diagonal matrix, the matrix H,; given 

by (5) 1s a circulant matrix. The elements of the first column 

of the matrix Hq are derived from (20) as given in equations 

(23) and (24). We note that A;, a block L x M of the K x K 

circulant matrix H g, will have a rectangular Toeplitz structure 

(Aa(i,7) = Aali+1,j+1); 1:0— L—2,7:0— M—2). 

Ha(:,1) = F* diag (Ëd) (23) 

f(0) 
f(1) 

. (24) 

f(K —1) 
The second step is to compute the matrix C' that minimizes 

the error e given in (22). Noting that the Frobenius norm of 

a matrix 1s equal to the Frobenius norm of the vector formed 

by the concatenation of its rows, this gives : 

e = |lvec (SC) — vec (Aa)|[” (25) 

vec(U) is the vector formed by concatenating the rows of 

matrix U. Due to the structure of matrix S, vec (SC') is then 
the vector obtained by concatenating rows ranging from d+1 

to M — d of matrix C. Using (15), (25) can be written as : 

= 2 

(26) 

(PA{)A{_d—l 

By using the pseudo-inverse and the Py,-matrix properties 

given in (17) and (18), the vector C (1,:) minimizing (26) 

is given by : 

(1) = 

L 

(27) ÈZ (Pi) 7 Aa(i,:)) 
i=1 

Note that Pflj_rl 1s the permutation matrix of the cyclic left shift 

operator, then a matrix-vector product (Pfl}l)n X 1s simply a 

cyclic n— elements left shift of the M —vector X and does 

not require any operation of multiplication or addition. 

The final step is to compute the diagonal elements of the 

matrix G. By referring to (21), they are obtained by : 

diag(G) = MF,, C (1,:) (28) 

Let us evaluate the computational cost of our algorithm. We 

have to : 

e Compute the elements of the matrix H,; according to 

(24) : this requires an inverse Æ —point FFT of the de- 

sired frequency response f(k). Its cost is approximately 

K (log2K ) real multiplications. 
e Extract the matrix A, from the matrix H4; as described 

in [1] : this does not require any multiplication. 

e Compute C (1,:) as given in (27) : this does not require 
any multiplication. 

e Compute diag(G) as given in (28) : this requires an 

M —point FFT . Its cost 1s approximately Mloga M real 

multiplications. 

V. RESULTS 

To approximate the computational complexity of the al- 

gorithms, we have considered that the computational cost 

is the required number of real multiplications. Then, the 

cost of the existing algorithm developed in [2] is about
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TABLE I 

COMPUTATIONAL COMPLEXITY 

(M, L, K) algorithm 1 | algorithm 2 

(32,24, 96) 3.42 x 10* | 7.92 x 107 
(256, 200, 1024) 1.33 x 10° 1.23 x 10~ 

(2048, 1024, 8192) | 2.29 x 105 | 1.29 x 105 

TABLE Il 

MEMORY REQUIREMENTS 

(M,L,K) algorithm 1 | algorithm 2 

(32, 24, 96) 12 KB 1.2 KB 

(256, 200, 1024) 819 KB 11.8 KB 

(2048, 1024, 8192) 33 MB 90.1 KB 

LK(logoKL) + LMlogaM + 6M L while it is only about 
K(logaK) + M(logo M) for our proposed algorithm. In ad- 

dition, due to the structure of circulant and Toeplitz matrices, 

our algorithm requires less memory. An M x M circulant 

matrix can be represented by its first column; therefore, we 

require memory to store only M elements. An L x M matrix 

with Toeplitz structure can be represented by its first column 

and its first row; therefore, we require memory to store only 

M + L — 1 elements. 

In order to illustrate that, we give in Table I and Table IT 

the computational complexity (number of real multiplications) 

and the memory requirements (in Kilobyte or Megabyte) for 

different typical values of M, L and K. The existing algorithm 

1s noted as algorithm 1 and our proposed algorithm 1s noted 

as algorithm 2. 

The proposed algorithm provides a faster method to design 

the optimal BDF. We obtain the same BDF developed in [2] 

but we can see from Table I and Table II that, for example, for 

M = 2048, L = 1024 and K = 8192, the proposed algorithm 

requires approximately 1775 times fewer multiplications and 

366 times less space memory than the existing algorithm. 

There are many practical applications in which such large 

values of block sizes, M and L, and frequency resolution K 

are required. 

VI. CONCLUSION 

Design of fast computationally efficient algorithms has been 

a major focus of research activity in digital signal processing. 

Transform-based block digital filters (BDFs) are well known 

for their ability to reduce the computational complexity and to 

increase the parallelism of computation in digital filters. In this 

letter, we have shown an existing matrix-oriented approach to 

design an optimal BDF. To improve that, we have proposed 

a new faster algorithm to design the same BDF by using 

the properties of circulant matrices. The proposed algorithm 

gives the same BDF coefficients, and therefore, the same 

global distortion, as the existing algorithm but it has a lower 

computational cost and less memory 1s required. This allows 

a simple implementation of the optimal BDF design in many 

filtering applications. 
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