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I. INTRODUCTION

N many signal processing applications, fast digital filtering 1s required. Transform-based block digital filtering 1s well known for two benefits : firstly, its ability to reduce the computational complexity, and secondly, the possibility to increase the parallelism of computation in digital filtering systems, which is so much required now with the availability of multiprocessor architectures. Many approaches to Block Digital Filters (BDFs) design exist. Some approaches compel the BDF to be time-invariant so that conventional filter synthesis techniques can be used [6]. The best known and most widely used approach 1s Overlap-save ([10, p. 558]). In some other approaches, no such constraint on the BDF 1s imposed so that the BDF can be time-variant [7]. For that, an optimal matrix-oriented approach was developed by G. Burel in [2]. Although the aliasing distortion is not null, the global distortion obtained with this optimal approach is lower than the global distortion obtained with overlap-save or other approaches.

On the other hand, many fast algorithms in the context of digital filtering have been obtained based on particular matrix structures [9], [11].

In this letter, we are explicitly establishing the relationship of the circulant, Toeplitz and cyclic shift matrices with the design of the optimal BDF. Within this process, a very fast algorithm is obtained. The proposed algorithm gives the same BDF as that obtained in [2] but with lower computational cost and less memory requirement.

This letter is organized as follows. In Section II, the principle of transform-based block digital filters 1s shown. In Section III, the existing algorithm for the optimal BDF design 1s presented. In Section IV, a description of our proposed algorithm 1s provided. In Section V, computational complexity The principle of the transform-based block digital filtering is illustrated on Fig. 1. The input signal 1s divided into overlapping blocks of M samples. Each block 1s then processed by transform filtering and provides L samples of the output signal (L < M and 2d = M -L is even to preserve symmetry).

In this letter, we consider that the input block size M and the output block size L are chosen based on hardware and software considerations. The transform used 1s the Discrete Fourier Transform (DFT).

Throughout the letter, we will note : e Fn : the N x N matrix corresponding to an /N -point DFT and F y ! as its inverse; e Py :the M x M permutation matrix of the cyclic right shift operator; e A(:,j) : an m x 1 vector composed by the elements of the 5 column of an m x n matrix A: e A(i,:) : an n x 1 vector composed by the elements of the it" row of an m x n matrix A: e (.), : the modulo q operation. For an input block e;, the output block f; 1s given by : fi = Ae;

(1)

where the L x M matrix A is decomposed as follows :

A = SF,/GFy (2)

G is a matrix of size M x M. The elements of G are chosen in order to obtain a frequency response close to the desired one. Often, and in our case, G is considered as a diagonal matrix. S is the L x M selection matrix given by : S = [Orxd r Orsa]

(3)

with 07 x4 1s the Lx d zero matrix and /,, is the Lx L identity matrix.

The filtered signal is formed by the concatenation of the output blocks f;.

III. PREVIOUS WORK

Four methods for the optimal BDF design have been proposed by G. Burel in [2]. Each method has a domain of validity which depends on the kind of criterion and on the kind of transform. They provide the optimal BDF (matrix G) but they differ by computational complexity and memory requirements. The obtained BDF 1s periodically time-variant and there is an aliasing error but the global distortion 1s lower than the global distortion obtained with overlap-save or other approaches. These methods were derived from an approach based only on elementary matrix computation, hence it is easy to implement them with modern mathematical tools. The fourth method, which 1s the fastest, and which 1s applied in case of unweighed frequency (where no frequency 1s privileged) and unitary transform (DFT in our case), will be discussed. The criterion defined for the optimal BDF design is to minimize the quadratic error given by the following Frobenius norm : e = ||SF; GFm -Aal["

As given in [START_REF] Burel | A matrix-oriented approach for analysis and optimisation of block digital filters[END_REF], the elements -aa(l,m) (:0-L-1,m:0-M -1) of the L x M matrix Ay are extracted from the AE x K matrix Hy given by : Ha = Fz " HaFr (5)

K is the desired frequency resolution (K > M, K = bL with b an integer). Hj is the K x K diagonal matrix with Ha(k,k) = f(k) (k = 0,..., K -1)
where f (k) is the desired frequency response.

To reduce the complexity of calculation of the matrix A, G. Burel proposed in [2] to extract ag(/,m) from the elements pa(l, k) of an L x K matrix P; as below : aq (l,m) = pa (I, +d-m),)

The matrix P 1s given by : Py = LF; P F;! (7)

where P, is the L x K matrix whose first row elements are the f(k) and the other elements are null.

For the case of G diagonal, its diagonal elements g, are given by : H (B(,n)) E(,n) Evaluating the computational cost (the number of real multiplications) of this method, we have to :

: this requires a 2D-FFT of matrix Py. Its cost is approximately LK (log» (LK)) real multiplications. We remind that, with complex data, the required number of real multiplications for a Kpoint FFT is K (logo K -3) + 4 (see [8, p. 60]), that is, approximately, Klogs K . e Extract A; from P, according to (6) : this does not require multiplications. e Compute B given by ( 9) : it is only a selection of L rows of the inverse transform matrix. It does not require multiplications. e Compute AE given by ( 10) : it is an inverse transform of the rows of A,. It requires LM log9 M real multiplications. e Compute g, in (8) : it requires 2ML complex multiplications. As a complex multiplication 1s equivalent to three real multiplications (Golub's method), therefore computing g, requires OM L real multiplications.

e Use (7) to compute P IV. PROPOSED ALGORITHM

In the previous algorithm, the calculation has been made without considering the particular structures of the different matrices and the tools that can reduce the computation complexity. To optimize the process, we propose a faster algorithm by using the properties of Toeplitz, circulant and shift cyclic matrices.

A. Toeplitz, Circulant and cyclic shift matrices

An M x M matrix 7" is known as Toeplitz matrix if it has constant values on each diagonal, that 1s, along the lines of entries parallel to the main diagonal :

The circulant matrix C' is a particular case of the Toeplitz structure with t;_; =€) 1m> 0

" 1>M) = C(j-i),, ! 1,7:0-M-l (12)
The M x M circulant matrix C' is then formed from an Mvector by cyclically permuting the entries : c(i,j) = c (( IEEE Signal Processing Letters, pp. 637-640, Vol. 15, 2008 

Co C1 CM -1 CM-1 0 C1 CM -2 G= (13) C1 CM -1 Co |
In vector-matrix form, the relation between the rows of C can be described by : C(n,:) = PMC (n -1,:)

C (n,:) = (Pm)"7*C ( 1 , : )

Pm 1s the M x M permutation matrix of the cyclic right shift operator given by :

0 0 O 0 1 1 0 O 0 0 0 1 O 0 0 Pm = (16) o 0 0 ---0 O 10 0 60 -~ 1 O
Pm 1s a particular circulant matrix with the attributes :

(Pm)"" = Im (17) Py Py = Im (18)

The circulant matrices have many mathematical properties 

B. Description of the algorithm As described in [2], we have to minimize the error given in (4). Because G is diagonal, by using ( 19), this 1s equivalent to minimize : e = ||SC -Aal [" (22) where C is a circulant matrix.

The first step of our algorithm is to compute the matrix Ay whose elements are extracted from the matrix q as given in [START_REF] Burel | A matrix-oriented approach for analysis and optimisation of block digital filters[END_REF]. Because H, is a diagonal matrix, the matrix H,; given by (5) 1s a circulant matrix. The elements of the first column of the matrix Hq are derived from (20) as given in equations ( 23) and ( 24). We note that A;, a block L x M of the K x K circulant matrix H g, will have a rectangular Toeplitz structure (Aa(i,7) = Aali+1,j+1); 1:0-L-2,7:0-M-2).

Ha(:,1) = F* diag (Ëd) ( 23) f(0) f( 1) . ( 24)

f(K -1 )

The second step is to compute the matrix C' that minimizes the error e given in (22). Noting that the Frobenius norm of a matrix 1s equal to the Frobenius norm of the vector formed by the concatenation of its rows, this gives : By using the pseudo-inverse and the Py,-matrix properties given in ( 17) and ( 18), the vector C (1,:) minimizing ( 26) is given by :

(

1) = L (27) 
ÈZ (P i) 7 Aa(i ,:)) i=1

Note that Pflj_rl 1s the permutation matrix of the cyclic left shift operator, then a matrix-vector product (Pfl}l)n X 1s simply a cyclic n-elements left shift of the M -vector X and does not require any operation of multiplication or addition. The final step is to compute the diagonal elements of the matrix G. By referring to (21), they are obtained by : diag(G) = MF,, C (1,:)

Let us evaluate the computational cost of our algorithm. We have to :

e Compute the elements of the matrix H,; according to (24) : this requires an inverse AE -point FFT of the desired frequency response f(k). Its cost is approximately K (log2K ) real multiplications.

e Extract the matrix A, from the matrix H4; as described in [START_REF] Burel | A matrix-oriented approach for analysis and optimisation of block digital filters[END_REF] : this does not require any multiplication. V. RESULTS

To approximate the computational complexity of the algorithms, we have considered that the computational cost is the required number of real multiplications. Then, the cost of the existing algorithm developed in [2] is about

Fig. 1 .

 1 Fig. 1. Transform-based block digital filtering

  e S :the L x M selection matrix, a binary matrix which selects L values out of M from the middle;

  used in communications and information theory [4],[5]. The most interesting property is matrix diagonalisation. À circulant matrix C can be decomposed as :

  is the vector formed by concatenating the rows of matrix U. Due to the structure of matrix S, vec (SC') is then the vector obtained by concatenating rows ranging from d+1 to M -d of matrix C. Using (15), (25) can be written as :

e

  Compute C (1,:) as given in (27) : this does not require any multiplication. e Compute diag(G) as given in (28) : this requires an M -point FFT . Its cost 1s approximately Mloga M real multiplications.

The proposed algorithm provides a faster method to design the optimal BDF. We obtain the same BDF developed in [2] but we can see from Table I and Table II that, for example, for M = 2048, L = 1024 and K = 8192, the proposed algorithm requires approximately 1775 times fewer multiplications and 366 times less space memory than the existing algorithm. There are many practical applications in which such large values of block sizes, M and L, and frequency resolution K are required.

VI. CONCLUSION

Design of fast computationally efficient algorithms has been a major focus of research activity in digital signal processing. Transform-based block digital filters (BDFs) are well known for their ability to reduce the computational complexity and to increase the parallelism of computation in digital filters. In this letter, we have shown an existing matrix-oriented approach to design an optimal BDF. To improve that, we have proposed a new faster algorithm to design the same BDF by using the properties of circulant matrices. The proposed algorithm gives the same BDF coefficients, and therefore, the same global distortion, as the existing algorithm but it has a lower computational cost and less memory 1s required. This allows a simple implementation of the optimal BDF design in many filtering applications.